Representation of Partial Traces

TACL 2015, Ischia, Italy

Marc Bagnol - University of Ottawa

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 .

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 . Symmetric: moreover has natural isomorphisms $\sigma_{A, B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A, B} \circ \sigma_{B, A}=\operatorname{Id}_{A \otimes B}$.

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 . Symmetric: moreover has natural isomorphisms $\sigma_{A, B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A, B} \circ \sigma_{B, A}=\operatorname{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f: A \otimes U \rightarrow B \otimes U$

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 .
Symmetric: moreover has natural isomorphisms $\sigma_{A, B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A, B} \circ \sigma_{B, A}=\operatorname{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f: A \otimes U \rightarrow B \otimes U$ into $\operatorname{Tr}^{U}[f]: A \rightarrow B$.

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 .
Symmetric: moreover has natural isomorphisms $\sigma_{A, B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A, B} \circ \sigma_{B, A}=\operatorname{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f: A \otimes U \rightarrow B \otimes U$ into $\operatorname{Tr}^{U}[f]: A \rightarrow B$.

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 .
Symmetric: moreover has natural isomorphisms $\sigma_{A, B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A, B} \circ \sigma_{B, A}=\operatorname{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f: A \otimes U \rightarrow B \otimes U$ into $\boldsymbol{T r}^{U}[f]: A \rightarrow B$.

Understood as a feedback along U.

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object 1 .
Symmetric: moreover has natural isomorphisms $\sigma_{A, B}: A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A, B} \circ \sigma_{B, A}=\operatorname{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f: A \otimes U \rightarrow B \otimes U$ into $\boldsymbol{T r}^{U}[f]: A \rightarrow B$.

Understood as a feedback along U.
Ubiquitous structure in mathematics: linear algebra, topology, knot theory, proof theory...

Partial traces

P. Scott \& E. Haghverdi: axiomatization of partially-defined trace,

Partial traces

P. Scott \& E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

Partial traces

P. Scott \& E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

Partial traces

P. Scott \& E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

$$
\operatorname{Tr}^{u}\left[f\left(\operatorname{Id}_{A} \otimes g\right)\right] \leftrightharpoons \operatorname{Tr}^{u^{\prime}}\left[\left(\operatorname{Id}_{B} \otimes g\right) f\right]
$$

Partial traces

P. Scott \& E. Haghverdi: axiomatization of partially-defined trace, capturing the idea of (partially defined) categorical feedback.

One example of partial traces axiom: sliding

$$
\operatorname{Tr}^{U}\left[f\left(\operatorname{Id}_{A} \otimes g\right)\right] \leftrightharpoons \operatorname{Tr}^{U^{\prime}}\left[\left(\operatorname{Id}_{B} \otimes g\right) f\right]
$$

Partial traces and sub-categories

A straightforward way to build partial traces:

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C},

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}.

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}. $\left(\operatorname{Tr}^{u}{ }^{U}[f]\right.$ may or may not end up in \mathcal{C})

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}.
($\mathbf{T r}^{u}{ }^{U}[f]$ may or may not end up in \mathcal{C})
Define a partial trace $\widehat{\operatorname{Tr}}$ on \mathcal{C} as:

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}.
($\mathbf{T r}^{u}{ }^{U}[f]$ may or may not end up in \mathcal{C})
Define a partial trace $\widehat{\operatorname{Tr}}$ on \mathcal{C} as:

$$
\text { if } \operatorname{Tr}^{U}[f] \in \mathcal{C}
$$

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}.
($\mathbf{T r}^{U}{ }^{U}[f]$ may or may not end up in \mathcal{C})
Define a partial trace $\widehat{\operatorname{Tr}}$ on \mathcal{C} as:

$$
\text { if } \mathbf{T r}^{u}[f] \in \mathcal{C} \text { then } \widehat{\operatorname{Tr}}^{U}[f]=\mathbf{T r}^{u}[f]
$$

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}.
($\mathbf{T r}^{U}{ }^{U}[f]$ may or may not end up in \mathcal{C})
Define a partial trace $\widehat{\operatorname{Tr}}$ on \mathcal{C} as:
if $\boldsymbol{T r}^{u}[f] \in \mathcal{C}$ then $\widehat{\operatorname{Tr}}^{u}[f]=\operatorname{Tr}^{U}[f]$, undefined otherwise

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}.
($\mathbf{T r}^{U}{ }^{U}[f]$ may or may not end up in \mathcal{C})
Define a partial trace $\widehat{\operatorname{Tr}}$ on \mathcal{C} as:
if $\boldsymbol{T r}^{u}[f] \in \mathcal{C}$ then $\widehat{\operatorname{Tr}}^{u}[f]=\operatorname{Tr}^{U}[f]$, undefined otherwise

Does any partial trace arise this way?

Partial traces and sub-categories

A straightforward way to build partial traces:

- Consider a totally traced category \mathcal{D}.
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f: A \otimes U \rightarrow B \otimes U$ is in \mathcal{C}, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D}. ($\mathbf{T r}^{U}{ }^{U}[f]$ may or may not end up in \mathcal{C}) Define a partial trace $\widehat{\operatorname{Tr}}$ on \mathcal{C} as: if $\boldsymbol{T r}^{u}[f] \in \mathcal{C}$ then $\widehat{\operatorname{Tr}}^{u}[f]=\operatorname{Tr}^{U}[f]$, undefined otherwise

Does any partial trace arise this way?
O. Malherbe, P. Scott, P. Selinger: representation theorem.

The representation theorem

More precisely: any partially traced category embeds in a totally traced one.

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

$$
\mathcal{C} \xrightarrow{E_{\mathcal{C}}} \mathbf{T}(\mathcal{C})
$$

(where \mathcal{C} is partially traced, $\mathbf{T}(\mathcal{C})$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from \mathcal{C} to \mathcal{D})

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where \mathcal{C} is partially traced, $\mathbf{T}(\mathcal{C})$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from \mathcal{C} to \mathcal{D})

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where \mathcal{C} is partially traced, $\mathbf{T}(\mathcal{C})$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from \mathcal{C} to \mathcal{D})

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where \mathcal{C} is partially traced, $\mathbf{T}(\mathcal{C})$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from \mathcal{C} to \mathcal{D})

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where \mathcal{C} is partially traced, $\mathbf{T}(\mathcal{C})$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from \mathcal{C} to \mathcal{D})

Original proof: intermediate partial version of the $\boldsymbol{\operatorname { I n t }}(\cdot)$ construction and "paracategories".

The representation theorem

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where \mathcal{C} is partially traced, $\mathbf{T}(\mathcal{C})$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from \mathcal{C} to \mathcal{D})

Original proof: intermediate partial version of the $\boldsymbol{\operatorname { I n t }}(\cdot)$ construction and "paracategories".

Contribution: a more direct and simplified proof.

The proof (I): the dialect construction

A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}.

The proof (I): the dialect construction

A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}. Basic idea: add a "state space" to morphisms.

The proof (I): the dialect construction

A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}. Basic idea: add a "state space" to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

The proof (I): the dialect construction

A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}. Basic idea: add a "state space" to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

- U an object of \mathcal{C}.

The proof (I): the dialect construction

A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}. Basic idea: add a "state space" to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

- U an object of \mathcal{C}.
- $f: A \otimes U \rightarrow B \otimes U$ a morphism of \mathcal{C}.

The proof (I): the dialect construction

A generic construction $\mathbf{D}(\mathcal{C})$ on any monoidal category \mathcal{C}. Basic idea: add a "state space" to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

- U an object of \mathcal{C}.
- $f: A \otimes U \rightarrow B \otimes U$ a morphism of \mathcal{C}.

When composing (f, U) and (g, V) the state spaces do not interact.

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

$$
\mathbf{H}^{U}[f, V]=(f, U \otimes V): A \rightarrow B
$$

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

$$
\mathbf{H}^{U}[f, V]=(f, U \otimes V): A \rightarrow B
$$

$\mathbf{H}[\cdot]$ behaves a lot like a (total) trace.

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

$$
\mathbf{H}^{U}[f, V]=(f, U \otimes V): A \rightarrow B
$$

$\mathbf{H}[\cdot]$ behaves a lot like a (total) trace.
Congruences: consider the equivalence relation on morphisms generated by some required equations, including

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

$$
\mathbf{H}^{U}[f, V]=(f, U \otimes V): A \rightarrow B
$$

$\mathbf{H}[\cdot]$ behaves a lot like a (total) trace.
Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$
(f, U \otimes V) \approx\left(\operatorname{Tr}^{V}[f], U\right) \text { when } \operatorname{Tr}^{V}[f] \text { is defined. }
$$

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

$$
\mathbf{H}^{U}[f, V]=(f, U \otimes V): A \rightarrow B
$$

$\mathbf{H}[\cdot]$ behaves a lot like a (total) trace.
Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$
(f, U \otimes V) \approx\left(\operatorname{Tr}^{V}[f], U\right) \text { when } \operatorname{Tr}^{V}[f] \text { is defined. }
$$

Then we can set $\mathbf{T}(\mathcal{C})=\mathbf{D}(\mathcal{C}) / \approx$

The proof (II): hiding and congruences

Hiding: given a partially traced \mathcal{C} we can look at $\mathbf{D}(\mathcal{C})$ and define a hiding operation turning $(f, V): A \otimes U \rightarrow B \otimes U$ into

$$
\mathbf{H}^{U}[f, V]=(f, U \otimes V): A \rightarrow B
$$

$\mathbf{H}[\cdot]$ behaves a lot like a (total) trace.
Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$
(f, U \otimes V) \approx\left(\operatorname{Tr}^{V}[f], U\right) \text { when } \operatorname{Tr}^{V}[f] \text { is defined. }
$$

Then we can set $\mathbf{T}(\mathcal{C})=\mathbf{D}(\mathcal{C}) / \approx$ in which $\mathbf{H}[\cdot]$ induces a total trace, encompassing the original partial trace of \mathcal{C}.

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding?

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding? We check that $(f, \mathbf{1}) \approx(g, \mathbf{1})$ implies $f=g$.

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding? We check that $(f, \mathbf{1}) \approx(g, \mathbf{1})$ implies $f=g$.
Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding? We check that $(f, \mathbf{1}) \approx(g, \mathbf{1})$ implies $f=g$.
Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property:

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding? We check that $(f, \mathbf{1}) \approx(g, \mathbf{1})$ implies $f=g$.
Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding? We check that $(f, \mathbf{1}) \approx(g, \mathbf{1})$ implies $f=g$.
Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

by setting $G(f, U)=\operatorname{Tr}^{F U}[F f]$.

The proof (III): a sketch

We can embed \mathcal{C} in $\mathbf{T}(\mathcal{C})$ by setting $E_{\mathcal{C}}(f)=(f, \mathbf{1})$.
Is it really an embedding? We check that $(f, \mathbf{1}) \approx(g, \mathbf{1})$ implies $f=g$.
Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

by setting $G(f, U)=\operatorname{Tr}^{F U}[F f]$.
(well defined because $(f, U) \approx(g, V)$ implies $\left.\operatorname{Tr}^{F U}(F f)=\mathbf{T r}^{F V}(F g)\right)$

Conclusion

Easier proof of an already known result: the representation theorem for partially traced categories.

Conclusion

Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.

Conclusion

Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.
A question: how do the constructions of both proofs relate?

Conclusion

Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.
A question: how do the constructions of both proofs relate?

Another: can the setting be tweaked to account for partial traces of infinite-dimensional Hilbert spaces and \mathbb{C}^{*}-algebras?

Conclusion

Easier proof of an already known result: the representation theorem for partially traced categories.

Allows intuitive diagrammatic reasoning also in the partially-defined case.
A question: how do the constructions of both proofs relate?

Another: can the setting be tweaked to account for partial traces of infinite-dimensional Hilbert spaces and \mathbb{C}^{*}-algebras?
...THANK YOU FOR YOUR ATTENTION

