Representation of Partial Traces

TACL 2015, Ischia, Italy

MARC BAGNOL — University of Ottawa

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object **1**.

Traces in symmetric monoidal categories

Monoidal: a category with an associative bifunctor \otimes and a unit object **1**.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}$: $A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}$: $A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \rightarrow B \otimes U$

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}$: $A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \rightarrow B \otimes U$ into $\mathsf{Tr}^{U}[f] : A \rightarrow B$.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}$: $A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \rightarrow B \otimes U$ into $\mathsf{Tr}^{U}[f] : A \rightarrow B$.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}$: $A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \rightarrow B \otimes U$ into $\mathsf{Tr}^{U}[f] : A \rightarrow B$.

Understood as a *feedback along U*.

Symmetric: moreover has natural isomorphisms $\sigma_{A,B}$: $A \otimes B \rightarrow B \otimes A$, such that $\sigma_{A,B} \circ \sigma_{B,A} = \text{Id}_{A \otimes B}$.

Trace (A. Joyal, R. Street, D. Verity): operation turning $f : A \otimes U \rightarrow B \otimes U$ into $\mathsf{Tr}^{U}[f] : A \rightarrow B$.

Understood as a *feedback along U*.

Ubiquitous structure in mathematics: linear algebra, topology, knot theory, proof theory...

P. Scott & E. Haghverdi: axiomatization of partially-defined trace,

One example of partial traces axiom: sliding

One example of partial traces axiom: sliding

$$\mathsf{Tr}^{U}[f(\mathrm{Id}_{A}\otimes g)] \rightleftharpoons \mathsf{Tr}^{U'}[(\mathrm{Id}_{B}\otimes g)f]$$

One example of partial traces axiom: sliding

$$\mathsf{Tr}^{U}[f(\mathrm{Id}_{A}\otimes g)] \coloneqq \mathsf{Tr}^{U'}[(\mathrm{Id}_{B}\otimes g)f]$$

 $\circ~$ Consider a totally traced category $\mathcal{D}.$

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- \circ Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- $\circ \ \text{If } f \, : \, A \otimes U \to B \otimes U \text{ is in } \mathcal{C} \, ,$

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\mathsf{Tr}^{U}[f]$ in \mathcal{D} .

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- Take any sub-symmetric monoidal category $\mathcal{C} \subseteq \mathcal{D}$.
- If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D} . ($\operatorname{Tr}^{U}[f]$ may or may not end up in C)

A straightforward way to build partial traces:

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- $\circ~$ Take any sub-symmetric monoidal category $\mathcal{C}\subseteq\mathcal{D}.$

• If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\mathbf{Tr}^{U}[f]$ in \mathcal{D} . ($\mathbf{Tr}^{U}[f]$ may or may not end up in C) Define a partial trace $\widehat{\mathbf{Tr}}$ on C as:

A straightforward way to build partial traces:

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- $\circ~$ Take any sub-symmetric monoidal category $\mathcal{C}\subseteq\mathcal{D}.$

If f : A ⊗ U → B ⊗ U is in C, it always has a trace Tr^U[f] in D. (Tr^U[f] may or may not end up in C) Define a partial trace Tr on C as:

if $\mathbf{Tr}^{U}[f] \in \mathcal{C}$

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- $\circ~$ Take any sub-symmetric monoidal category $\mathcal{C}\subseteq\mathcal{D}.$

• If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\mathbf{Tr}^{U}[f]$ in \mathcal{D} . ($\mathbf{Tr}^{U}[f]$ may or may not end up in C) Define a partial trace $\widehat{\mathbf{Tr}}$ on C as:

if
$$\mathbf{Tr}^{U}[f] \in \mathcal{C}$$
 then $\widehat{\mathbf{Tr}}^{U}[f] = \mathbf{Tr}^{U}[f]$

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- $\circ~$ Take any sub-symmetric monoidal category $\mathcal{C}\subseteq\mathcal{D}$.

• If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\mathbf{Tr}^{U}[f]$ in \mathcal{D} . ($\mathbf{Tr}^{U}[f]$ may or may not end up in C) Define a partial trace $\widehat{\mathbf{Tr}}$ on C as:

if $\mathbf{Tr}^{U}[f] \in \mathcal{C}$ then $\widehat{\mathbf{Tr}}^{U}[f] = \mathbf{Tr}^{U}[f]$, undefined otherwise

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- $\circ~$ Take any sub-symmetric monoidal category $\mathcal{C}\subseteq\mathcal{D}$.

• If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D} . ($\operatorname{Tr}^{U}[f]$ may or may not end up in C) Define a partial trace $\widehat{\operatorname{Tr}}$ on C as:

if $\mathbf{Tr}^{U}[f] \in \mathcal{C}$ then $\widehat{\mathbf{Tr}}^{U}[f] = \mathbf{Tr}^{U}[f]$, undefined otherwise

Does any partial trace arise this way?

- $\circ~$ Consider a totally traced category $\mathcal{D}.$
- $\circ~$ Take any sub-symmetric monoidal category $\mathcal{C}\subseteq\mathcal{D}.$

• If $f : A \otimes U \to B \otimes U$ is in C, it always has a trace $\operatorname{Tr}^{U}[f]$ in \mathcal{D} . ($\operatorname{Tr}^{U}[f]$ may or may not end up in C) Define a partial trace $\widehat{\operatorname{Tr}}$ on C as:

if $\mathbf{Tr}^{U}[f] \in \mathcal{C}$ then $\widehat{\mathbf{Tr}}^{U}[f] = \mathbf{Tr}^{U}[f]$, undefined otherwise

Does any partial trace arise this way?

O. Malherbe, P. Scott, P. Selinger: representation theorem.

More precisely: any partially traced category embeds in a totally traced one.

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

$$\mathcal{C} \xrightarrow{E_{\mathcal{C}}} \mathbf{T}(\mathcal{C})$$

(where C is partially traced, T(C) is the totally traced category in which it embeds, D is any other totally traced category, with F a traced functor from C to D)

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where C is partially traced, $\mathbf{T}(C)$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from C to \mathcal{D})

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where C is partially traced, $\mathbf{T}(C)$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from C to \mathcal{D})

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where C is partially traced, $\mathbf{T}(C)$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from C to \mathcal{D})

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where C is partially traced, $\mathbf{T}(C)$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from C to \mathcal{D})

Original proof: intermediate partial version of the $Int(\cdot)$ construction and "paracategories".

More precisely: any partially traced category embeds in a totally traced one. We also have a universal property:

(where C is partially traced, $\mathbf{T}(C)$ is the totally traced category in which it embeds, \mathcal{D} is any other totally traced category, with F a traced functor from C to \mathcal{D})

Original proof: intermediate partial version of the $Int(\cdot)$ construction and "paracategories".

Contribution: a more direct and simplified proof.

A generic construction $D(\mathcal{C})$ on any monoidal category $\mathcal{C}.$

A generic construction D(C) on any monoidal category C. Basic idea: add a "state space" to morphisms. A generic construction D(C) on any monoidal category C. Basic idea: add a "state space" to morphisms.

A morphism from *A* to *B* in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

A generic construction D(C) on any monoidal category C. Basic idea: add a "state space" to morphisms.

A morphism from *A* to *B* in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with \circ *U* an object of *C*. A generic construction D(C) on any monoidal category C. Basic idea: add a "state space" to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

 \circ *U* an object of *C*.

•
$$f : A \otimes U \to B \otimes U$$
 a morphism of C .

A generic construction D(C) on any monoidal category C. **Basic idea:** add a "state space" to morphisms.

A morphism from A to B in $\mathbf{D}(\mathcal{C})$ is a pair (f, U) with

 \circ *U* an object of *C*.

•
$$f : A \otimes U \to B \otimes U$$
 a morphism of C .

When composing (f, U) and (g, V) the state spaces do not interact.

Hiding: given a partially traced ${\mathcal C}$ we can look at $D({\mathcal C})$ and define a hiding operation

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) : A \to B$$

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) \, : \, A \to B$$

 $H[\cdot]$ behaves a lot like a (total) trace.

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) : A \to B$$

 $H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) : A \to B$$

 $H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

 $(f, U \otimes V) \approx (\mathbf{Tr}^{V}[f], U)$ when $\mathbf{Tr}^{V}[f]$ is defined.

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) : A \to B$$

 $H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

 $(f, U \otimes V) \approx (\mathbf{Tr}^{V}[f], U)$ when $\mathbf{Tr}^{V}[f]$ is defined.

Then we can set $\mathbf{T}(\mathcal{C}) = \mathbf{D}(\mathcal{C}) / \approx$

$$\mathbf{H}^{U}[f,V] = (f,U \otimes V) : A \to B$$

 $H[\cdot]$ behaves a lot like a (total) trace.

Congruences: consider the equivalence relation on morphisms generated by some required equations, including

$$(f, U \otimes V) \approx (\mathbf{Tr}^{V}[f], U)$$
 when $\mathbf{Tr}^{V}[f]$ is defined.

Then we can set $\mathbf{T}(\mathcal{C}) = \mathbf{D}(\mathcal{C}) / \approx$ in which $\mathbf{H}[\cdot]$ induces a total trace, encompassing the original partial trace of \mathcal{C} .

We can embed C in T(C) by setting $E_C(f) = (f, 1)$. Is it really an embedding? We can embed C in $\mathbf{T}(C)$ by setting $E_{C}(f) = (f, \mathbf{1})$. Is it really an embedding? We check that $(f, \mathbf{1}) \approx (g, \mathbf{1})$ implies f = g.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies f = g.

Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

We can embed C in $\mathbf{T}(C)$ by setting $E_C(f) = (f, \mathbf{1})$. Is it really an embedding? We check that $(f, \mathbf{1}) \approx (g, \mathbf{1})$ implies f = g. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property:

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies f = g. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies f = g. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

by setting $G(f, U) = \operatorname{Tr}^{FU}[Ff]$.

Is it really an embedding? We check that $(f, 1) \approx (g, 1)$ implies f = g. Because \approx is freely generated, we can do it by induction on chains of elementary equivalences.

Universal property: we can close the diagram

by setting $G(f, U) = \operatorname{Tr}^{FU}[Ff]$. (well defined because $(f, U) \approx (g, V)$ implies $\operatorname{Tr}^{FU}(Ff) = \operatorname{Tr}^{FV}(Fg)$)

Allows intuitive diagrammatic reasoning also in the partially-defined case.

Allows intuitive diagrammatic reasoning also in the partially-defined case.

A question: how do the constructions of both proofs relate?

Allows intuitive diagrammatic reasoning also in the partially-defined case.

A question: how do the constructions of both proofs relate?

Another: can the setting be tweaked to account for partial traces of infinite-dimensional Hilbert spaces and \mathbb{C}^* -algebras?

Allows intuitive diagrammatic reasoning also in the partially-defined case.

A question: how do the constructions of both proofs relate?

Another: can the setting be tweaked to account for partial traces of infinite-dimensional Hilbert spaces and \mathbb{C}^* -algebras?

... Thank you for your attention