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Preliminaries

Leibniz and Suszko congruences

� Given F ⊆ A, the Leibniz congruence of F , which shall be denoted by ΩA(F ), is the
largest congruence of A compatible with F .

� Given F ⊆ A, the Suszko congruence of F , which shall be denoted by
∼
ΩA
S(F ), is the

largest congruence of A compatible with every G ∈ (F iSA)F , or, equivalently,

∼
ΩA
S(F ) :=

⋂{
ΩA(G) : G ∈ F iSA,F ⊆ G

}
.

Leibniz and Suszko operators

� The Leibniz operator on A is the map ΩA : F iSA→ CoA defined by F 7→ ΩA(F ).

� The Suszko operator on A is the map
∼
ΩA
S : F iSA→ CoA defined by F 7→ ∼

ΩA
S(F ).
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The classes of algebras Alg∗S and AlgS

Definition

Let S be a logic.

I Alg∗S :=
{
A : there is F ∈ F iSA such that ΩA(F ) = idA};

I AlgS :=
{
A : there is F ∈ F iSA such that

∼
ΩA
S(F ) = idA}.

Proposition

AlgS = PS(Alg∗S).
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The Leibniz hierarchy

Figure: Fragment of the Leibniz hierarchy.
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Leibniz classes and Leibniz filters

Definition

Let S be a logic, A be an algebra and F ∈ F iS(A). The Leibniz class of F is defined by

JF K∗ :=
{

G ∈ F iSA : ΩA(F ) ⊆ ΩA(G)
}
.

The least element of JF K∗ shall be denoted by F ∗. We say that F is a Leibniz filter if
F = F ∗, and we denote the set of all Leibniz filters of A by F i∗SA.

� The new definition of Leibniz filters generalizes for arbitrary logics the existing one
for protoalgebraic logics [Font and Jansana, 2001].
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Suszko classes and Suszko filters

Definition

Let S be a logic, A be an algebra and F ∈ F iS(A). The Suszko class of F is defined by

JF KSu :=
{

G ∈ F iSA :
∼
ΩA
S(F ) ⊆ ΩA(G)

}
.

The least element of JF KSu shall be denoted by FSu. We say that F is a Suszko filter
if F = FSu, and we denote the set of all Suszko filters of A by F iSuS A.

� FSu ⊆ F ∗ ⊆ F .

Lemma

Every Suszko filter of A is a Leibniz filter of A.
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Truth-equational vs. Suszko filters

� [Raftery, 2006] introduces the class of truth-equational logics.

Theorem [Font, Jansana, A.]

Let S be a logic. The following are equivalent:

1. S is truth-equational;

2. For every A, every S-filter of A is a Suszko filter;

3. For every A ∈ Alg(S), every S-filter of A is a Suszko filter.
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Isomorphism theorems in AAL

Isomorphism Theorem for protoalgebraic logics
[Font, Jansana, A.]

Let S be a logic. The following are equivalent:

1. S is protoalgebraic;

2. The Leibniz operator ΩA : F iSuS (A)→ CoAlg∗(S)(A), restricted to the Suszko
filters, is an order-isomorphism, for every algebra A.

Isomorphism Theorem for equivalential logics
[Font, Jansana, A.]

Let S be a logic. The following are equivalent:

1. S is equivalential;

2. The Leibniz operator ΩA : F iSuS (A)→ CoAlg∗(S)(A), restricted to the Suszko
filters, is an order-isomorphism which commutes with inverse images of
homomorphisms, for every algebra A.
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Isomorphism theorems in AAL

Isomorphism Theorem for weakly algebraizable logics
[Czelakowski and Jansana, 2000]

Let S be a logic. The following are equivalent:

1. S is weakly algebraizable;

2. The Leibniz operator ΩA : F iSA→ CoAlg∗(S)(A) is an order-isomorphism, for
every algebra A.

Isomorphism Theorem for algebraizable logics
[Blok and Pigozzi, 1989] and [Herrmann, 1997]

Let S be a logic. The following are equivalent:

1. S is algebraizable;

2. The Leibniz operator ΩA : F iSA→ CoAlg∗(S)(A) is an order-isomorphism which
commutes with inverse images of homomorphisms, for every algebra A.
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The strong version of a sententional logic

� With the new definition of Leibniz filter, we can generalize the notion of strong
version of a protoalgebraic logic [Font and Jansana, 2001] to arbitrary logics:

Definition

Let S be a logic. The strong version of S, which we shall denote by S+, is the logic
induced by the class of matrices whose distinguished set is a Leibniz filter. That is,

S+ =
⋂
{�〈A,F〉: A an algebra, F ∈ F i∗S(A)} .
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The strong version of a sententional logic

Proposition

S+ =
⋂
{�〈A,F〉: A an algebra, F ∈ F iSuS (A)} .

Proposition

S+ =
⋂
{�〈A,

⋂
F iSA〉: A an algebra }

=
⋂
{�〈A,

⋂
F iSA〉: A ∈ Alg(S)}

� If S is truth-equational, then S+ = S.

� If S is protoalgebraic, then we fall into the scope of [Font and Jansana, 2001].

� We are therefore interested in examples of non-truth-equational and
non-protoalgebraic logics. That is, examples of logics outside the Leibniz hierarchy.
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Positive Modal Logic

� L = {∧,∨,�,>,⊥}

Definition

A positive modal algebra is an L-algebra A = 〈A,∧A,∨A,�A,♦A, 1, 0〉, such that
〈A,∧A,∨A, 1, 0〉 is a bounded distributive lattice and �A,♦A are two unary modal
connectives satisfying:

1. �A(a ∧A b) = �Aa ∧A �Ab; 2. ♦A(a ∨A b) = ♦Aa ∨A ♦Ab;

3. �Aa ∧A ♦Ab ≤ ♦A(a ∧A b); 4. �A(a ∨A b) ≤ �Aa ∨A ♦Ab;

5. �A1 = 1; 6. ♦A0 = 0.

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, PML = �≤PMA.

� PML is not truth-equational neither protoalgebraic.

� For every A ∈ PMA, F iPML(A) = Filt(A).

� Alg∗(PML) ( Alg(PML) = PMA.
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Positive Modal Logic

Leibniz and Suszko PML-filters

Definition

Let A ∈ PMA. A lattice filter F ∈ Filt(A) is open, if it is closed under �, i.e., for
every a ∈ A, if a ∈ F , then �Aa ∈ F .

The set of all open lattice filters of A will be denoted by Filt�(A).

Theorem

Let A ∈ PMA. The Leibniz and Suszko PML-filters of A coincide with the open
lattice filters of A. That is,

F i∗PML(A) = F iSuPML(A) = Filt�(A) .

Strong version of PML

Theorem

PML+ is the logic preserving truth wrt. PMA, i.e., PML+ = �1
PMA.
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Dunn-Belnap’s Logic

� L = 〈∧,∨,¬,>,⊥〉

Definition

A De Morgan algebra is an L-algebra A = 〈A,∧A,∨A,¬A, 0, 1〉 such that:

(i) The reduct 〈A,∧A,∨A〉 is a distributive lattice;

(ii) The De Morgan laws hold, that is, ¬A(a ∨A b) = (¬Aa ∧A ¬b) and
¬A(a ∧A b) = (¬Aa ∨A ¬Ab);

(iii) The unary operation ¬A is idempotent, that is, a = ¬A¬Aa;

(iv) 1 and 0 are the top and bottom elements, respectively, that is, x ∨A 1 = 1 and
x ∧A 0 = 0.

The class of all De Morgan algebras will be denoted by DMA.

Definition

B is the logic preserving degrees of truth wrt. DMA, i.e, B = �≤DMA.

� B is not truth-equational neither protoalgebraic.

� For every A ∈ DMA, F iB(A) = Filt(A).

� Alg∗(B) ( Alg(B) = DMA.
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Dunn-Belnap’s Logic

Leibniz and Suszko B-filters

Definition

Let A ∈ DMA. A lattice filter F ∈ Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a, b ∈ A, if a, a→A b ∈ F , then b ∈ F .

The set of all implicative filters of A will be denoted by Filt→(A).

Theorem

Let A ∈ DMA. The Leibniz B-filters of A coincide with the implicative lattice filters of
A. That is,

F i∗B(A) = Filt→(A) .

� The Suszko B-filters are a strict subset of the Leibniz B-filters.

Strong version of B

Theorem

B+ is the logic preserving truth wrt. DMA, i.e., B+ = �1
DMA.
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Lukasiewicz infinite-valued logic preserving degrees of truth

� L = 〈∧,∨,→,�,>,⊥〉

Definition

An MV-algebra is an L-algebra A = 〈A,∧A,∨A,→A,�A, 1, 0〉 such that:

(i) A is an integral commutative residuated lattice;

(ii) a ∧A b = a�A (a→A b);

(iii) (a→A b) ∨A (b →A a) = 1;

(iv) ((a→A 0)→A 0) = a.

The class of all MV-algebras algebras will be denoted by MV.

Definition

 L≤∞ is the logic preserving degrees of truth wrt. MV, i.e,  L≤∞ = �≤MV.

�  L≤∞ is not truth-equational neither protoalgebraic.

� For every A ∈ MV, F i L≤∞
(A) = Filt(A).

� Alg∗( L≤∞) = Alg( L≤∞) = MV.
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Lukasiewicz infinite-valued logic preserving degrees of truth

Leibniz and Suszko  L≤∞-filters

Definition

Let A ∈ MV. A lattice filter F ∈ Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a, b ∈ A, if a, a→A b ∈ F , then b ∈ F .

The set of all implicative filters of A will be denoted by Filt→(A).

Theorem

Let A ∈ MV. The Leibniz  L≤∞-filters of A coincide with the implicative lattice filters of
A. That is,

F i∗
 L≤∞

(A) = Filt→(A) .

� The Suszko  L≤∞-filters are a strict subset of the Leibniz  L≤∞-filters.

The strong version of  L≤∞

Theorem

( L≤∞)+ is the Lukasiewicz infinite valued logic, i.e., ( L≤∞)+ =  L∞.
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Logics preserving degrees of truth from varieties of residuated lattices

� L = 〈∧,∨,→,�,>〉

Definition

An (integral commutative) residuated lattice is an L-algebra
A = 〈A,∧A,∨A,→A,�A, 1〉 such that:

(i) The reduct 〈A,∧A,∨A〉 is a lattice;

(ii) 〈A,�A, 1〉 is a commutative monoid;

(iii) →A is the residuum of �A, that is, for every a, b ∈ A, a�A c ≤ b iff c ≤ a→A b;

(iv) 1 is the top element of A, that is, for every a ∈ A, a ∨A 1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

� �≤RL is not truth-equational neither protoalgebraic.

� For every A ∈ RL, F i
�≤RL

(A) = Filt(A).

� Alg∗(�≤RL) = Alg(�≤RL) = RL.

19



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples

Logics preserving degrees of truth from varieties of residuated lattices

� L = 〈∧,∨,→,�,>〉

Definition

An (integral commutative) residuated lattice is an L-algebra
A = 〈A,∧A,∨A,→A,�A, 1〉 such that:

(i) The reduct 〈A,∧A,∨A〉 is a lattice;

(ii) 〈A,�A, 1〉 is a commutative monoid;

(iii) →A is the residuum of �A, that is, for every a, b ∈ A, a�A c ≤ b iff c ≤ a→A b;

(iv) 1 is the top element of A, that is, for every a ∈ A, a ∨A 1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

� �≤RL is not truth-equational neither protoalgebraic.

� For every A ∈ RL, F i
�≤RL

(A) = Filt(A).

� Alg∗(�≤RL) = Alg(�≤RL) = RL.

19



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples

Logics preserving degrees of truth from varieties of residuated lattices

� L = 〈∧,∨,→,�,>〉

Definition

An (integral commutative) residuated lattice is an L-algebra
A = 〈A,∧A,∨A,→A,�A, 1〉 such that:

(i) The reduct 〈A,∧A,∨A〉 is a lattice;

(ii) 〈A,�A, 1〉 is a commutative monoid;

(iii) →A is the residuum of �A, that is, for every a, b ∈ A, a�A c ≤ b iff c ≤ a→A b;

(iv) 1 is the top element of A, that is, for every a ∈ A, a ∨A 1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

� �≤RL is not truth-equational neither protoalgebraic.

� For every A ∈ RL, F i
�≤RL

(A) = Filt(A).

� Alg∗(�≤RL) = Alg(�≤RL) = RL.

19



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples

Logics preserving degrees of truth from varieties of residuated lattices

� L = 〈∧,∨,→,�,>〉

Definition

An (integral commutative) residuated lattice is an L-algebra
A = 〈A,∧A,∨A,→A,�A, 1〉 such that:

(i) The reduct 〈A,∧A,∨A〉 is a lattice;

(ii) 〈A,�A, 1〉 is a commutative monoid;

(iii) →A is the residuum of �A, that is, for every a, b ∈ A, a�A c ≤ b iff c ≤ a→A b;

(iv) 1 is the top element of A, that is, for every a ∈ A, a ∨A 1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

� �≤RL is not truth-equational neither protoalgebraic.

� For every A ∈ RL, F i
�≤RL

(A) = Filt(A).

� Alg∗(�≤RL) = Alg(�≤RL) = RL.

19



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples

Logics preserving degrees of truth from varieties of residuated lattices

Leibniz and Suszko �≤RL-filters

Definition

Let A ∈ RL. A lattice filter F ∈ Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a, b ∈ A, if a, a→A b ∈ F , then b ∈ F .

The set of all implicative filters of A will be denoted by Filt→(A).

Theorem

Let A ∈ RL. The Leibniz �≤RL-filters of A coincide with the implicative lattice filters of
A. That is,

F i∗
�≤RL

(A) = Filt→(A) .

� The Suszko �≤RL-filters are a strict subset of the Leibniz �≤RL-filters.

The strong version of �≤RL

Theorem

(�≤RL)+ is the logic preserving truth wrt. RL, i.e, (�≤RL)+ = �1
RL.
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Thank you!
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Original definition of Leibniz filters for protoalgebraic logics

Definition

Let S be a protoalgebraic logic and A an algebra. An S-filter F ∈ F iSA is a Leibniz
S-filter of A, if it is the least element of

[F ] = {G ∈ F iSA : ΩA(F ) = ΩA(G)} .

Back to Leibniz filters.
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