Leibniz and Suszko filters for non-protoalgebraic logics

Hugo Albuquerque joint work with Josep Maria Font and Ramon Jansana

Topology, Algebra, and Categories in Logic 2015 Ischia, June 22

 Outline			
OOO	COOOO	Strong version of a sententional logic	Non-protoalgebraic examples
Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	New weeks also have a supervalue.

1 Preliminaries

2 Leibniz and Suszko filters

- Truth-equational logics
- Isomorphism theorem for protoalgebraic logics

3 Strong version of a sententional logic

4 Non-protoalgebraic examples

- Positive Modal Logic
- Dunn-Belnap's Logic
- Lukasiewicz infinite-valued logic preserving degrees of truth
- Logics preserving degrees of truth from varieties of residuated lattices

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
•00	00000	00	0000000
Preliminaries			

Leibniz and Suszko congruences

• Given $F \subseteq A$, the *Leibniz congruence of F*, which shall be denoted by $\Omega^{A}(F)$, is the largest congruence of A compatible with F.

• Given $F \subseteq A$, the *Suszko congruence of* F, which shall be denoted by $\widetilde{\Omega}^{A}_{S}(F)$, is the largest congruence of A compatible with every $G \in (\mathcal{F}i_{S}A)^{F}$, or, equivalently,

$$\widetilde{\Omega}^{\boldsymbol{A}}_{\mathcal{S}}(F) \coloneqq igcap \{ \boldsymbol{\varOmega}^{\boldsymbol{A}}(G) : G \in \mathcal{F}i_{\mathcal{S}}\boldsymbol{A}, F \subseteq G \} \;.$$

Leibniz and Suszko operators

- The Leibniz operator on A is the map $\Omega^A : \mathcal{F}i_S A \to \operatorname{Co} A$ defined by $F \mapsto \Omega^A(F)$.
- The Suszko operator on A is the map $\widetilde{\Omega}_{S}^{A} : \mathcal{F}_{iS}A \to \operatorname{Co}A$ defined by $F \mapsto \widetilde{\Omega}_{S}^{A}(F)$.

000 00000 00 0000000	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
	000	00000	00	0000000

The classes of algebras $\mathsf{Alg}^*\mathcal{S}$ and $\mathsf{Alg}\mathcal{S}$

Definition

Let ${\mathcal S}$ be a logic.

▶ Alg^{*}S := {
$$A$$
 : there is $F \in Fi_S A$ such that $\Omega^A(F) = id_A$ };

• Alg
$$S := \{ \mathbf{A} : \text{there is } F \in \mathcal{F}i_S \mathbf{A} \text{ such that } \widetilde{\Omega}_S^{\mathbf{A}}(F) = id_{\mathbf{A}} \}.$$

Proposition

 $\mathsf{Alg}\mathcal{S} = \mathbb{P}_{\mathrm{S}}(\mathsf{Alg}^*\mathcal{S}).$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000
The Leibniz hierarchy			

Figure: Fragment of the Leibniz hierarchy.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	● O OOO	00	0000000

Leibniz classes and Leibniz filters

Definition

Let S be a logic, **A** be an algebra and $F \in \mathcal{F}i_{\mathcal{S}}(A)$. The Leibniz class of F is defined by

$$\llbracket F \rrbracket^* := \left\{ G \in \mathcal{F}i_{\mathcal{S}} A : \Omega^A(F) \subseteq \Omega^A(G) \right\}.$$

The least element of $\llbracket F \rrbracket^*$ shall be denoted by F^* . We say that F is a *Leibniz filter* if $F = F^*$, and we denote the set of all Leibniz filters of A by $\mathcal{F}i^*_{\mathcal{S}}A$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	● 0 000	00	0000000

Leibniz classes and Leibniz filters

Definition

Let S be a logic, **A** be an algebra and $F \in \mathcal{F}i_{\mathcal{S}}(A)$. The Leibniz class of F is defined by

$$\llbracket F \rrbracket^* := \left\{ G \in \mathcal{F}i_{\mathcal{S}} \boldsymbol{A} : \boldsymbol{\Omega}^{\boldsymbol{A}}(F) \subseteq \boldsymbol{\Omega}^{\boldsymbol{A}}(G) \right\}.$$

The least element of $\llbracket F \rrbracket^*$ shall be denoted by F^* . We say that F is a *Leibniz filter* if $F = F^*$, and we denote the set of all Leibniz filters of A by $\mathcal{F}i_S^*A$.

• The new definition of Leibniz filters generalizes for arbitrary logics the existing one for protoalgebraic logics [Font and Jansana, 2001].

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Suszko classes and Suszko filters

Definition

Let S be a logic, **A** be an algebra and $F \in \mathcal{F}_{iS}(A)$. The Suszko class of F is defined by

$$\llbracket F \rrbracket^{\mathrm{Su}} := \left\{ G \in \mathcal{F}i_{\mathcal{S}} \boldsymbol{A} : \widetilde{\boldsymbol{\Omega}}_{\mathcal{S}}^{\boldsymbol{A}}(F) \subseteq \boldsymbol{\Omega}^{\boldsymbol{A}}(G) \right\} \,.$$

The least element of $\llbracket F \rrbracket^{Su}$ shall be denoted by F^{Su} . We say that F is a *Suszko filter* if $F = F^{Su}$, and we denote the set of all Suszko filters of A by $\mathcal{F}i_S^{Su}A$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Suszko classes and Suszko filters

Definition

Let S be a logic, **A** be an algebra and $F \in \mathcal{F}i_{\mathcal{S}}(A)$. The Suszko class of F is defined by

$$\llbracket F \rrbracket^{\mathrm{Su}} := \left\{ G \in \mathcal{F}i_{\mathcal{S}} \boldsymbol{A} : \widetilde{\boldsymbol{\Omega}}_{\mathcal{S}}^{\boldsymbol{A}}(F) \subseteq \boldsymbol{\Omega}^{\boldsymbol{A}}(G) \right\} \,.$$

The least element of $\llbracket F \rrbracket^{Su}$ shall be denoted by F^{Su} . We say that F is a *Suszko filter* if $F = F^{Su}$, and we denote the set of all Suszko filters of A by $\mathcal{F}i_S^{Su}A$.

• $F^{\mathrm{Su}} \subseteq F^* \subseteq F$.

Lemma

Every Suszko filter of A is a Leibniz filter of A.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	0000	00	0000000

Truth-equational vs. Suszko filters

• [Raftery, 2006] introduces the class of truth-equational logics.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	0000	00	0000000

Truth-equational vs. Suszko filters

• [Raftery, 2006] introduces the class of truth-equational logics.

Theorem [Font, Jansana, A.]

- 1. S is truth-equational;
- 2. For every A, every S-filter of A is a Suszko filter;
- 3. For every $\mathbf{A} \in Alg(S)$, every S-filter of \mathbf{A} is a Suszko filter.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Isomorphism Theorem for protoalgebraic logics [Font, Jansana, A.]

- 1. *S* is protoalgebraic;
- 2. The Leibniz operator $\Omega^{A} : \mathcal{F}i_{S}^{Su}(A) \to \operatorname{Co}_{Alg^{*}(S)}(A)$, restricted to the Suszko filters, is an order-isomorphism, for every algebra A.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Isomorphism Theorem for protoalgebraic logics [Font, Jansana, A.]

Let S be a logic. The following are equivalent:

- 1. S is protoalgebraic;
- 2. The Leibniz operator $\Omega^{\mathbf{A}} : \mathcal{F}_{l_{\mathcal{S}}}^{\mathrm{Su}}(\mathbf{A}) \to \mathrm{Co}_{\mathrm{Alg}^*(\mathcal{S})}(\mathbf{A})$, restricted to the Suszko filters, is an order-isomorphism, for every algebra \mathbf{A} .

Isomorphism Theorem for equivalential logics [Font, Jansana, A.]

- 1. S is equivalential;
- The Leibniz operator Ω^A : Fi^{Su}_S(A) → Co_{Alg*(S)}(A), restricted to the Suszko filters, is an order-isomorphism which commutes with inverse images of homomorphisms, for every algebra A.

000	0000	00	0000000
Preliminaries			Non-protoalgebraic examples

Isomorphism Theorem for weakly algebraizable logics [Czelakowski and Jansana, 2000]

Let S be a logic. The following are equivalent:

1. S is weakly algebraizable;

2. The Leibniz operator $\Omega^{A} : \mathcal{F}i_{\mathcal{S}}A \to \operatorname{Co}_{\operatorname{Alg}^{*}(\mathcal{S})}(A)$ is an order-isomorphism, for every algebra A.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Isomorphism Theorem for weakly algebraizable logics [Czelakowski and Jansana, 2000]

Let S be a logic. The following are equivalent:

- 1. S is weakly algebraizable;
- 2. The Leibniz operator $\Omega^{A} : \mathcal{F}_{iS}A \to \operatorname{Co}_{\operatorname{Alg}^{*}(S)}(A)$ is an order-isomorphism, for every algebra A.

Isomorphism Theorem for algebraizable logics [Blok and Pigozzi, 1989] and [Herrmann, 1997]

- 1. S is algebraizable;
- The Leibniz operator Ω^A : F_{iS}A → Co_{Alg*(S)}(A) is an order-isomorphism which commutes with inverse images of homomorphisms, for every algebra A.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	•0	0000000

• With the new definition of Leibniz filter, we can generalize the notion of strong version of a protoalgebraic logic [Font and Jansana, 2001] to arbitrary logics:

Definition

Let S be a logic. The strong version of S, which we shall denote by S^+ , is the logic induced by the class of matrices whose distinguished set is a Leibniz filter. That is,

$$\mathcal{S}^+ = \bigcap \{\vDash_{\langle \boldsymbol{A}, \boldsymbol{F} \rangle} : \boldsymbol{A} \text{ an algebra, } \boldsymbol{F} \in \mathcal{F}i^*_{\mathcal{S}}(\boldsymbol{A}) \} \ .$$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic example
000	00000	00	0000000

Proposition

$$\mathcal{S}^+ = \bigcap \{\vDash_{\langle \boldsymbol{A}, \boldsymbol{F} \rangle}: \boldsymbol{A} \text{ an algebra, } \boldsymbol{F} \in \mathcal{F}i_{\mathcal{S}}^{\mathrm{Su}}(\boldsymbol{A}) \} \ .$$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic exampl
000	00000	0●	0000000

Proposition

$$\mathcal{S}^+ = \bigcap \{\vDash_{\langle \mathbf{A}, F \rangle} : \mathbf{A} \text{ an algebra, } F \in \mathcal{F}i_{\mathcal{S}}^{\mathrm{Su}}(\mathbf{A}) \} .$$

Proposition

$$\begin{split} \mathcal{S}^{+} &= \bigcap \{ \vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \text{ an algebra } \} \\ &= \bigcap \{ \vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \in \mathsf{Alg}(\mathcal{S}) \} \end{split}$$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic exampl
000	00000	0●	0000000

Proposition

$$\mathcal{S}^+ = \bigcap \{\vDash_{\langle \boldsymbol{A}, \boldsymbol{F} \rangle}: \boldsymbol{A} \text{ an algebra, } \boldsymbol{F} \in \mathcal{F}i_{\mathcal{S}}^{\mathrm{Su}}(\boldsymbol{A}) \} \ .$$

Proposition

$$\begin{split} \mathcal{S}^{+} &= \bigcap \{ \vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \text{ an algebra } \} \\ &= \bigcap \{ \vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \in \mathsf{Alg}(\mathcal{S}) \} \end{split}$$

• If S is truth-equational, then $S^+ = S$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic exampl
000	00000	0●	0000000

Proposition

$$\mathcal{S}^+ = \bigcap \{\vDash_{\langle \boldsymbol{A}, \boldsymbol{F} \rangle}: \boldsymbol{A} \text{ an algebra, } \boldsymbol{F} \in \mathcal{F}i_{\mathcal{S}}^{\mathrm{Su}}(\boldsymbol{A}) \} \ .$$

Proposition

$$\begin{split} \mathcal{S}^{+} &= \bigcap \{\vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \text{ an algebra } \} \\ &= \bigcap \{\vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \in \mathsf{Alg}(\mathcal{S}) \} \end{split}$$

- If S is truth-equational, then $S^+ = S$.
- If S is protoalgebraic, then we fall into the scope of [Font and Jansana, 2001].

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	0●	0000000

Proposition

$$\mathcal{S}^+ = \bigcap \{\vDash_{\langle \boldsymbol{A}, \boldsymbol{F} \rangle}: \boldsymbol{A} \text{ an algebra, } \boldsymbol{F} \in \mathcal{F}i_{\mathcal{S}}^{\mathrm{Su}}(\boldsymbol{A}) \} \ .$$

Proposition

$$\begin{split} \mathcal{S}^{+} &= \bigcap \{\vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \text{ an algebra } \} \\ &= \bigcap \{\vDash_{\langle \mathbf{A}, \bigcap \mathcal{F}_{i_{\mathcal{S}}} \mathbf{A} \rangle} : \mathbf{A} \in \mathsf{Alg}(\mathcal{S}) \} \end{split}$$

- If S is truth-equational, then $S^+ = S$.
- If S is protoalgebraic, then we fall into the scope of [Font and Jansana, 2001].
- We are therefore interested in examples of non-truth-equational and non-protoalgebraic logics. That is, examples of logics outside the Leibniz hierarchy.

	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
	000	00000	00	0 000000
. .				

•
$$\mathcal{L} = \{ \land, \lor, \Box, \top, \bot \}$$

Definition

A positive modal algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \square^{\mathbf{A}}, \Diamond^{\mathbf{A}}, 1, 0 \rangle$, such that $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, 1, 0 \rangle$ is a bounded distributive lattice and $\square^{\mathbf{A}}, \Diamond^{\mathbf{A}}$ are two unary modal connectives satisfying:

1.
$$\Box^{A}(a \wedge^{A} b) = \Box^{A}a \wedge^{A} \Box^{A}b;$$
 2. $\Diamond^{A}(a \vee^{A} b) = \Diamond^{A}a \vee^{A} \Diamond^{A}b;$
3. $\Box^{A}a \wedge^{A} \Diamond^{A}b \leq \Diamond^{A}(a \wedge^{A} b);$ 4. $\Box^{A}(a \vee^{A} b) \leq \Box^{A}a \vee^{A} \Diamond^{A}b;$
5. $\Box^{A}1 = 1;$ 6. $\Diamond^{A}0 = 0.$

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, **PML** $= \models_{PMA}^{\leq}$.

	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
	000	00000	00	● O OOOOOO
. .				

$$\bullet \mathcal{L} = \{ \land, \lor, \Box, \top, \bot \}$$

Definition

A positive modal algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \square^{\mathbf{A}}, \Diamond^{\mathbf{A}}, 1, 0 \rangle$, such that $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, 1, 0 \rangle$ is a bounded distributive lattice and $\square^{\mathbf{A}}, \Diamond^{\mathbf{A}}$ are two unary modal connectives satisfying:

1.
$$\Box^{A}(a \wedge^{A} b) = \Box^{A}a \wedge^{A} \Box^{A}b;$$
 2. $\Diamond^{A}(a \vee^{A} b) = \Diamond^{A}a \vee^{A} \Diamond^{A}b;$
3. $\Box^{A}a \wedge^{A} \Diamond^{A}b \leq \Diamond^{A}(a \wedge^{A} b);$ 4. $\Box^{A}(a \vee^{A} b) \leq \Box^{A}a \vee^{A} \Diamond^{A}b;$
5. $\Box^{A}1 = 1;$ 6. $\Diamond^{A}0 = 0.$

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, **PML** $= \models_{PMA}^{\leq}$.

PML is not truth-equational neither protoalgebraic.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	● ○ ○○○○○○

•
$$\mathcal{L} = \{ \land, \lor, \Box, \top, \bot \}$$

Definition

A positive modal algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \square^{\mathbf{A}}, \Diamond^{\mathbf{A}}, 1, 0 \rangle$, such that $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, 1, 0 \rangle$ is a bounded distributive lattice and $\square^{\mathbf{A}}, \Diamond^{\mathbf{A}}$ are two unary modal connectives satisfying:

1.
$$\Box^{A}(a \wedge^{A} b) = \Box^{A}a \wedge^{A} \Box^{A}b;$$
 2. $\Diamond^{A}(a \vee^{A} b) = \Diamond^{A}a \vee^{A} \Diamond^{A}b;$
3. $\Box^{A}a \wedge^{A} \Diamond^{A}b \leq \Diamond^{A}(a \wedge^{A} b);$ 4. $\Box^{A}(a \vee^{A} b) \leq \Box^{A}a \vee^{A} \Diamond^{A}b;$
5. $\Box^{A}1 = 1;$ 6. $\Diamond^{A}0 = 0.$

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, **PML** $= \models_{PMA}^{\leq}$.

- PML is not truth-equational neither protoalgebraic.
- For every $\boldsymbol{A} \in \text{PMA}$, $\mathcal{F}i_{\text{PML}}(\boldsymbol{A}) = \text{Filt}(\boldsymbol{A})$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0 000000

•
$$\mathcal{L} = \{ \land, \lor, \Box, \top, \bot \}$$

Definition

A positive modal algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \square^{\mathbf{A}}, \Diamond^{\mathbf{A}}, 1, 0 \rangle$, such that $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, 1, 0 \rangle$ is a bounded distributive lattice and $\square^{\mathbf{A}}, \Diamond^{\mathbf{A}}$ are two unary modal connectives satisfying:

1.
$$\Box^{A}(a \wedge^{A} b) = \Box^{A}a \wedge^{A} \Box^{A}b;$$
 2. $\Diamond^{A}(a \vee^{A} b) = \Diamond^{A}a \vee^{A} \Diamond^{A}b;$
3. $\Box^{A}a \wedge^{A} \Diamond^{A}b \leq \Diamond^{A}(a \wedge^{A} b);$ 4. $\Box^{A}(a \vee^{A} b) \leq \Box^{A}a \vee^{A} \Diamond^{A}b;$
5. $\Box^{A}1 = 1;$ 6. $\Diamond^{A}0 = 0.$

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, **PML** $= \models_{PMA}^{\leq}$.

- PML is not truth-equational neither protoalgebraic.
- For every $\boldsymbol{A} \in \mathrm{PMA}$, $\mathcal{F}_{\mathsf{PML}}(\boldsymbol{A}) = \mathrm{Filt}(\boldsymbol{A})$.
- $Alg^*(PML) \subsetneq Alg(PML) = PMA.$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples	
000	00000	00	0000000	
Positive Modal	Logic			

Leibniz and Suszko PML-filters

Definition

Let $A \in PMA$. A lattice filter $F \in Filt(A)$ is *open*, if it is closed under \Box , i.e., for every $a \in A$, if $a \in F$, then $\Box^A a \in F$.

The set of all open lattice filters of \boldsymbol{A} will be denoted by $\operatorname{Filt}_{\Box}(\boldsymbol{A})$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Leibniz and Suszko PML-filters

Definition

Let $A \in PMA$. A lattice filter $F \in Filt(A)$ is *open*, if it is closed under \Box , i.e., for every $a \in A$, if $a \in F$, then $\Box^A a \in F$.

The set of all open lattice filters of \boldsymbol{A} will be denoted by $\operatorname{Filt}_{\Box}(\boldsymbol{A})$.

Theorem

Let $A \in PMA$. The Leibniz and Suszko PML-filters of A coincide with the open lattice filters of A. That is,

$$\mathcal{F}i^*_{\mathsf{PML}}(\mathbf{A}) = \mathcal{F}i^{\mathrm{Su}}_{\mathsf{PML}}(\mathbf{A}) = \mathrm{Filt}_{\Box}(\mathbf{A}) \ .$$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Leibniz and Suszko PML-filters

Definition

Let $A \in PMA$. A lattice filter $F \in Filt(A)$ is open, if it is closed under \Box , i.e., for every $a \in A$, if $a \in F$, then $\Box^A a \in F$.

The set of all open lattice filters of **A** will be denoted by $\operatorname{Filt}_{\Box}(A)$.

Theorem

Let $A \in PMA$. The Leibniz and Suszko PML-filters of A coincide with the open lattice filters of A. That is,

$$\mathcal{F}i^*_{\mathsf{PML}}(\mathbf{A}) = \mathcal{F}i^{\mathrm{Su}}_{\mathsf{PML}}(\mathbf{A}) = \mathrm{Filt}_{\Box}(\mathbf{A}) \ .$$

Strong version of PML

Theorem

PML⁺ is the logic preserving truth wrt. PMA, i.e., **PML**⁺ = \models_{PMA}^1 .

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	000000

•
$$\mathcal{L} = \langle \wedge, \lor, \neg, \top, \bot \rangle$$

Definition

A De Morgan algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \neg^{\mathbf{A}}, 0, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{A}, \vee^{A} \rangle$ is a distributive lattice;
- (ii) The De Morgan laws hold, that is, $\neg^{A}(a \lor^{A} b) = (\neg^{A} a \land^{A} \neg b)$ and $\neg^{A}(a \land^{A} b) = (\neg^{A} a \lor^{A} \neg^{A} b)$;
- (iii) The unary operation \neg^{A} is idempotent, that is, $a = \neg^{A} \neg^{A} a$;
- (iv) 1 and 0 are the top and bottom elements, respectively, that is, $x \vee^{A} 1 = 1$ and $x \wedge^{A} 0 = 0$.

The class of all De Morgan algebras will be denoted by DMA.

Definition

 \mathcal{B} is the logic preserving degrees of truth wrt. DMA, i.e, $\mathcal{B} = \vDash_{DMA}^{\leq}$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	000000

•
$$\mathcal{L} = \langle \wedge, \lor, \neg, \top, \bot \rangle$$

Definition

A De Morgan algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \neg^{\mathbf{A}}, 0, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a distributive lattice;
- (ii) The De Morgan laws hold, that is, $\neg^{A}(a \lor^{A} b) = (\neg^{A} a \land^{A} \neg b)$ and $\neg^{A}(a \land^{A} b) = (\neg^{A} a \lor^{A} \neg^{A} b)$;
- (iii) The unary operation \neg^{A} is idempotent, that is, $a = \neg^{A} \neg^{A} a$;
- (iv) 1 and 0 are the top and bottom elements, respectively, that is, $x \vee^{A} 1 = 1$ and $x \wedge^{A} 0 = 0$.

The class of all De Morgan algebras will be denoted by DMA.

Definition

 \mathcal{B} is the logic preserving degrees of truth wrt. DMA, i.e, $\mathcal{B} = \vDash_{DMA}^{\leq}$.

• \mathcal{B} is not truth-equational neither protoalgebraic.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	000000

•
$$\mathcal{L} = \langle \wedge, \lor, \neg, \top, \bot \rangle$$

Definition

A De Morgan algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \neg^{\mathbf{A}}, 0, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^A, \vee^A \rangle$ is a distributive lattice;
- (ii) The De Morgan laws hold, that is, $\neg^{A}(a \lor^{A} b) = (\neg^{A} a \land^{A} \neg b)$ and $\neg^{A}(a \land^{A} b) = (\neg^{A} a \lor^{A} \neg^{A} b)$;
- (iii) The unary operation \neg^{A} is idempotent, that is, $a = \neg^{A} \neg^{A} a$;
- (iv) 1 and 0 are the top and bottom elements, respectively, that is, $x \vee^{A} 1 = 1$ and $x \wedge^{A} 0 = 0$.

The class of all De Morgan algebras will be denoted by DMA.

Definition

 \mathcal{B} is the logic preserving degrees of truth wrt. DMA, i.e, $\mathcal{B} = \vDash_{DMA}^{\leq}$.

- B is not truth-equational neither protoalgebraic.
- For every $\boldsymbol{A} \in \text{DMA}$, $\mathcal{F}i_{\mathcal{B}}(\boldsymbol{A}) = \text{Filt}(\boldsymbol{A})$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	000000

•
$$\mathcal{L} = \langle \wedge, \lor, \neg, \top, \bot \rangle$$

Definition

A De Morgan algebra is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \neg^{\mathbf{A}}, 0, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a distributive lattice;
- (ii) The De Morgan laws hold, that is, $\neg^{A}(a \lor^{A} b) = (\neg^{A} a \land^{A} \neg b)$ and $\neg^{A}(a \land^{A} b) = (\neg^{A} a \lor^{A} \neg^{A} b)$;
- (iii) The unary operation \neg^{A} is idempotent, that is, $a = \neg^{A} \neg^{A} a$;
- (iv) 1 and 0 are the top and bottom elements, respectively, that is, $x \vee^{A} 1 = 1$ and $x \wedge^{A} 0 = 0$.

The class of all De Morgan algebras will be denoted by DMA.

Definition

 \mathcal{B} is the logic preserving degrees of truth wrt. DMA, i.e., $\mathcal{B} = \models_{DMA}^{\leq}$.

- B is not truth-equational neither protoalgebraic.
- For every $\boldsymbol{A} \in \text{DMA}$, $\mathcal{F}i_{\mathcal{B}}(\boldsymbol{A}) = \text{Filt}(\boldsymbol{A})$.
- $\operatorname{Alg}^*(\mathcal{B}) \subsetneq \operatorname{Alg}(\mathcal{B}) = \operatorname{DMA}.$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples	
000	00000	00	0000000	
Dunn-Belnap's I	Logic			

Leibniz and Suszko B-filters

Definition

Let $A \in DMA$. A lattice filter $F \in Filt(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$.

The set of all implicative filters of \boldsymbol{A} will be denoted by $\operatorname{Filt}_{\rightarrow}(\boldsymbol{A})$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000
Dunn-Belnap's I	Logic		

Leibniz and Suszko B-filters

Definition

Let $\mathbf{A} \in \text{DMA}$. A lattice filter $F \in \text{Filt}(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of \mathbf{A} will be denoted by $\text{Filt}_{\rightarrow}(\mathbf{A})$.

Theorem

Let $A \in DMA$. The Leibniz B-filters of A coincide with the implicative lattice filters of A. That is,

$$\mathcal{F}i^*_{\mathcal{B}}(\boldsymbol{A}) = \operatorname{Filt}_{\rightarrow}(\boldsymbol{A})$$
.

• The Suszko *B*-filters are a strict subset of the Leibniz *B*-filters.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
Belnap's Lo			

Leibniz and Suszko \mathcal{B} -filters

Definition

Let $\mathbf{A} \in \text{DMA}$. A lattice filter $F \in \text{Filt}(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of \mathbf{A} will be denoted by $\text{Filt}_{\rightarrow}(\mathbf{A})$.

Theorem

Let $A \in DMA$. The Leibniz B-filters of A coincide with the implicative lattice filters of A. That is,

$$\mathcal{F}i^*_{\mathcal{B}}(\boldsymbol{A}) = \operatorname{Filt}_{\rightarrow}(\boldsymbol{A})$$
.

• The Suszko *B*-filters are a strict subset of the Leibniz *B*-filters.

Strong version of ${\mathcal B}$

Theorem

 \mathcal{B}^+ is the logic preserving truth wrt. DMA, i.e., $\mathcal{B}^+ = \vDash_{\text{DMA}}^1$.

0000 000000 000 00000000000000000000000	Preliminaries	aries Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
300 30000 00 0000 0000 0000 0000 0000	000	00000	00	0000000

Lukasiewicz infinite-valued logic preserving degrees of truth

 $\bullet \ \mathcal{L} = \langle \wedge, \vee, \rightarrow, \odot, \top, \bot \rangle$

Definition

An *MV-algebra* is an *L*-algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1, 0 \rangle$ such that:

(i) **A** is an integral commutative residuated lattice;

(ii)
$$a \wedge^{A} b = a \odot^{A} (a \rightarrow^{A} b);$$

(iii)
$$(a \rightarrow^{\boldsymbol{A}} b) \lor^{\boldsymbol{A}} (b \rightarrow^{\boldsymbol{A}} a) = 1;$$

(iv)
$$((a \rightarrow^{A} 0) \rightarrow^{A} 0) = a.$$

The class of all MV-algebras algebras will be denoted by $\mathrm{MV}.$

Definition

 $\mathtt{L}_{\infty}^{\leq} \text{ is the logic preserving degrees of truth wrt. } \mathrm{MV} \text{, i.e, } \mathtt{L}_{\infty}^{\leq} \ = \vDash_{\mathrm{MV}}^{\leq}.$

0000 000000 000 00000000000000000000000	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
300 30000 00 000 0000 0000 0000 0000 0	000	00000	00	0000000

 $\bullet \ \mathcal{L} = \langle \wedge, \vee, \rightarrow, \odot, \top, \bot \rangle$

Definition

An *MV-algebra* is an *L*-algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1, 0 \rangle$ such that:

(i) **A** is an integral commutative residuated lattice;

(ii)
$$a \wedge^{A} b = a \odot^{A} (a \rightarrow^{A} b);$$

(iii)
$$(a \rightarrow^{A} b) \lor^{A} (b \rightarrow^{A} a) = 1$$

(iv)
$$((a \rightarrow^{A} 0) \rightarrow^{A} 0) = a.$$

The class of all MV-algebras algebras will be denoted by $\mathrm{MV}.$

Definition

 $\mathtt{L}_{\infty}^{\leq} \text{ is the logic preserving degrees of truth wrt. } \mathrm{MV} \text{, i.e, } \mathtt{L}_{\infty}^{\leq} \ = \vDash_{\mathrm{MV}}^{\leq}.$

• L_{∞}^{\leq} is not truth-equational neither protoalgebraic.

0000 000000 000 00000000000000000000000	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
300 30000 00 000 0000 0000 0000 0000 0	000	00000	00	0000000

 $\bullet \ \mathcal{L} = \langle \wedge, \vee, \rightarrow, \odot, \top, \bot \rangle$

Definition

An *MV-algebra* is an *L*-algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1, 0 \rangle$ such that:

(i) A is an integral commutative residuated lattice;

(ii)
$$a \wedge^{A} b = a \odot^{A} (a \rightarrow^{A} b);$$

(iii)
$$(a \rightarrow^{\boldsymbol{A}} b) \lor^{\boldsymbol{A}} (b \rightarrow^{\boldsymbol{A}} a) = 1$$

(iv)
$$((a \rightarrow^{A} 0) \rightarrow^{A} 0) = a.$$

The class of all MV-algebras algebras will be denoted by $\mathrm{MV}.$

Definition

 $\textbf{L}_{\infty}^{\leq}$ is the logic preserving degrees of truth wrt. MV, i.e, $\textbf{L}_{\infty}^{\leq}$ $= \vDash_{MV}^{\leq}.$

• L_{∞}^{\leq} is not truth-equational neither protoalgebraic.

• For every
$$\mathbf{A} \in \mathrm{MV}$$
, $\mathcal{F}i_{\mathbf{L}_{\infty}^{\leq}}(\mathbf{A}) = \mathrm{Filt}(\mathbf{A}).$

0000 000000 000 00000000000000000000000	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
300 30000 00 000 0000 0000 0000 0000 0	000	00000	00	0000000

 $\bullet \ \mathcal{L} = \langle \wedge, \vee, \rightarrow, \odot, \top, \bot \rangle$

Definition

An *MV-algebra* is an *L*-algebra $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1, 0 \rangle$ such that:

(i) A is an integral commutative residuated lattice;

(ii)
$$a \wedge^{A} b = a \odot^{A} (a \rightarrow^{A} b);$$

(iii)
$$(a \rightarrow^{A} b) \lor^{A} (b \rightarrow^{A} a) = 1$$

(iv)
$$((a \rightarrow^{A} 0) \rightarrow^{A} 0) = a.$$

The class of all MV-algebras algebras will be denoted by $\mathrm{MV}.$

Definition

 $\textbf{L}_{\infty}^{\leq}$ is the logic preserving degrees of truth wrt. MV, i.e, $\textbf{L}_{\infty}^{\leq}$ $= \vDash_{MV}^{\leq}.$

• L_{∞}^{\leq} is not truth-equational neither protoalgebraic.

• For every
$$\boldsymbol{A} \in \mathrm{MV}$$
, $\mathcal{F}i_{\boldsymbol{L}_{\infty}^{\leq}}(\boldsymbol{A}) = \mathrm{Filt}(\boldsymbol{A}).$

•
$$\mathsf{Alg}^*(\mathsf{L}_{\infty}^{\leq}) = \mathsf{Alg}(\mathsf{L}_{\infty}^{\leq}) = \mathrm{MV}.$$

000 00000 00 0000 0 00	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
	000	00000	00	00000000

Leibniz and Suszko L_{∞}^{\leq} -filters

Definition

Let $A \in MV$. A lattice filter $F \in Filt(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of A will be denoted by $Filt_{\rightarrow}(A)$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	00000000

Leibniz and Suszko L_{∞}^{\leq} -filters

Definition

Let $A \in MV$. A lattice filter $F \in Filt(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of A will be denoted by $Filt_{\rightarrow}(A)$.

Theorem

Let $A \in MV$. The Leibniz L_{∞}^{\leq} -filters of A coincide with the implicative lattice filters of A. That is,

$$\mathcal{F}i^*_{\boldsymbol{L}_{\infty}^{\leq}}(\boldsymbol{A}) = \operatorname{Filt}_{\rightarrow}(\boldsymbol{A}) \ .$$

• The Suszko L_{∞}^{\leq} -filters are a strict subset of the Leibniz L_{∞}^{\leq} -filters.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	00000000

Leibniz and Suszko L_{∞}^{\leq} -filters

Definition

Let $A \in MV$. A lattice filter $F \in Filt(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of A will be denoted by $Filt_{\rightarrow}(A)$.

Theorem

Let $A \in MV$. The Leibniz L_{∞}^{\leq} -filters of A coincide with the implicative lattice filters of A. That is,

$$\mathcal{F}i^*_{\boldsymbol{L}_{\infty}^{\leq}}(\boldsymbol{A}) = \operatorname{Filt}_{\rightarrow}(\boldsymbol{A}) \ .$$

 \blacksquare The Suszko L_∞^\leq -filters are a strict subset of the Leibniz L_∞^\leq -filters.

The strong version of $\mathbf{L}_{\infty}^{\leq}$

Theorem

 $(\pounds_{\infty}^{\leq})^{+}$ is the Lukasiewicz infinite valued logic, i.e., $(\pounds_{\infty}^{\leq})^{+} = \pounds_{\infty}$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic e
000	00000	00	000000000

•
$$\mathcal{L} = \langle \wedge, \lor, \rightarrow, \odot, \top \rangle$$

Definition

An (integral commutative) residuated lattice is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}} \rangle$ is a lattice;
- (ii) $\langle A, \odot^{\mathbf{A}}, 1 \rangle$ is a commutative monoid;
- (iii) \rightarrow^{A} is the residuum of \odot^{A} , that is, for every $a, b \in A$, $a \odot^{A} c \leq b$ iff $c \leq a \rightarrow^{A} b$;
- (iv) 1 is the top element of **A**, that is, for every $a \in A$, $a \vee^{A} 1 = 1$.

The class of all (integral commutative) residuated lattices will be denoted by RL.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic e
000	00000	00	000000000

•
$$\mathcal{L} = \langle \wedge, \lor, \rightarrow, \odot, \top \rangle$$

Definition

An (integral commutative) residuated lattice is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{A}, \vee^{A} \rangle$ is a lattice;
- (ii) $\langle A, \odot^{\mathbf{A}}, 1 \rangle$ is a commutative monoid;
- (iii) \rightarrow^{A} is the residuum of \odot^{A} , that is, for every $a, b \in A$, $a \odot^{A} c \leq b$ iff $c \leq a \rightarrow^{A} b$;
- (iv) 1 is the top element of \boldsymbol{A} , that is, for every $a \in A$, $a \vee^{\boldsymbol{A}} 1 = 1$.

The class of all (integral commutative) residuated lattices will be denoted by RL.

■ \models_{RL}^{\leq} is not truth-equational neither protoalgebraic.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic
000	00000	00	000000000

•
$$\mathcal{L} = \langle \wedge, \lor, \rightarrow, \odot, \top \rangle$$

Definition

An (integral commutative) residuated lattice is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{A}, \vee^{A} \rangle$ is a lattice;
- (ii) $\langle A, \odot^{\mathbf{A}}, 1 \rangle$ is a commutative monoid;
- (iii) \rightarrow^{A} is the residuum of \odot^{A} , that is, for every $a, b \in A$, $a \odot^{A} c \leq b$ iff $c \leq a \rightarrow^{A} b$;
- (iv) 1 is the top element of A, that is, for every $a \in A$, $a \vee^A 1 = 1$.

The class of all (integral commutative) residuated lattices will be denoted by RL.

■ \models_{RL}^{\leq} is not truth-equational neither protoalgebraic.

• For every
$$\boldsymbol{A} \in \operatorname{RL}$$
, $\mathcal{F}_{i_{\exists_{\operatorname{RL}}}}(\boldsymbol{A}) = \operatorname{Filt}(\boldsymbol{A}).$

000 00000 00 000 00 00	Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic e
	000	00000	00	000000000

•
$$\mathcal{L} = \langle \wedge, \lor, \rightarrow, \odot, \top \rangle$$

Definition

An (integral commutative) residuated lattice is an \mathcal{L} -algebra $\mathbf{A} = \langle \mathbf{A}, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \rightarrow^{\mathbf{A}}, \odot^{\mathbf{A}}, 1 \rangle$ such that:

- (i) The reduct $\langle A, \wedge^{A}, \vee^{A} \rangle$ is a lattice;
- (ii) $\langle A, \odot^{\mathbf{A}}, 1 \rangle$ is a commutative monoid;
- (iii) \rightarrow^{A} is the residuum of \odot^{A} , that is, for every $a, b \in A$, $a \odot^{A} c \leq b$ iff $c \leq a \rightarrow^{A} b$;
- (iv) 1 is the top element of A, that is, for every $a \in A$, $a \vee^A 1 = 1$.

The class of all (integral commutative) residuated lattices will be denoted by RL.

■ \models_{RL}^{\leq} is not truth-equational neither protoalgebraic.

• For every
$$\boldsymbol{A} \in \operatorname{RL}$$
, $\mathcal{F}_{i_{\models_{\operatorname{Dr}}}}(\boldsymbol{A}) = \operatorname{Filt}(\boldsymbol{A})$.

• $\mathsf{Alg}^*(\models_{\mathrm{RL}}^{\leq}) = \mathsf{Alg}(\models_{\mathrm{RL}}^{\leq}) = \mathrm{RL}.$

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic e
000	00000	00	0000000

Leibniz and Suszko \models_{RL}^{\leq} -filters

Definition

Let $A \in \text{RL}$. A lattice filter $F \in \text{Filt}(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of A will be denoted by $\text{Filt}_{\rightarrow}(A)$.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Leibniz and Suszko \models_{RL}^{\leq} -filters

Definition

Let $A \in \text{RL}$. A lattice filter $F \in \text{Filt}(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of A will be denoted by $\text{Filt}_{\rightarrow}(A)$.

Theorem

Let $A \in RL$. The Leibniz \models_{RL}^{\leq} -filters of A coincide with the implicative lattice filters of A. That is,

$$\mathcal{F}i^*_{\models_{\mathrm{RL}}^{\leq}}(\mathbf{A}) = \mathrm{Filt}_{\rightarrow}(\mathbf{A}) \; .$$

• The Suszko $\vDash_{\rm RL}^{\leq}$ -filters are a strict subset of the Leibniz $\vDash_{\rm RL}^{\leq}$ -filters.

Preliminaries	Leibniz and Suszko filters	Strong version of a sententional logic	Non-protoalgebraic examples
000	00000	00	0000000

Leibniz and Suszko \models_{RL}^{\leq} -filters

Definition

Let $A \in \text{RL}$. A lattice filter $F \in \text{Filt}(A)$ is *implicative*, if it is closed under *modus* ponens, i.e., for every $a, b \in A$, if $a, a \rightarrow^{A} b \in F$, then $b \in F$. The set of all implicative filters of A will be denoted by $\text{Filt}_{\rightarrow}(A)$.

Theorem

Let $A \in RL$. The Leibniz \models_{RL}^{\leq} -filters of A coincide with the implicative lattice filters of A. That is,

$$\mathcal{F}i^*_{\models_{\mathrm{RL}}^{\leq}}(\mathbf{A}) = \mathrm{Filt}_{\rightarrow}(\mathbf{A}) \; .$$

• The Suszko $\vDash_{\rm RL}^{\leq}$ -filters are a strict subset of the Leibniz $\vDash_{\rm RL}^{\leq}$ -filters.

The strong version of \models_{RL}^{\leq}

Theorem

 $(\models_{\mathrm{RL}}^{\leq})^+$ is the logic preserving truth wrt. RL, i.e, $(\models_{\mathrm{RL}}^{\leq})^+ = \models_{\mathrm{RL}}^1$.

000 00000 00 0000000	

Thank you!

References I								
000	00000	00	00	0000000				
Prelimin	aries Leibniz and S	uszko filters Strong version o	of a sententional logic No	on-protoalgebraic examples				

- Albuquerque, H., Font, J. M., and Jansana, R. (201x). Compatibility operators in abstract algebraic logic. The Journal of Symbolic Logic. To appear.
- Blok, W. J. and Pigozzi, D. (1989).
 Algebraizable logics.
 Mem. Amer. Math. Soc., 77(396):vi+78.
- Czelakowski, J. and Jansana, R. (2000).
 Weakly algebraizable logics.
 The Journal of Symbolic Logic, 65(2):641–668.
- Font, J. M. and Jansana, R. (2001). Leibniz filters and the strong version of a protoalgebraic logic. Archive for Mathematical Logic, 40:437–465.
- Herrmann, B. (1997). Characterizing equivalential and algebraizable logics by the Leibniz operator. Studia Logica, 58(2):305–323.
- Raftery, J. G. (2006). The equational definability of truth predicates. *Rep. Math. Logic*, (41):95–149.

Original definition of Leibniz filters for protoalgebraic logics

Definition

Let S be a protoalgebraic logic and **A** an algebra. An S-filter $F \in \mathcal{F}_{iS}A$ is a Leibniz S-filter of **A**, if it is the least element of

$$[F] = \{ G \in \mathcal{F}i_{\mathcal{S}} A : \Omega^{A}(F) = \Omega^{A}(G) \} .$$

Back to Leibniz filters.