Leibniz and Suszko filters for non-protoalgebraic logics

Hugo Albuquerque
joint work with Josep Maria Font and Ramon Jansana

@ Universitat de Barcelona

Topology, Algebra, and Categories in Logic 2015
Ischia, June 22



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples

000 00000 [e]e] 00000000

Outline

1 Preliminaries

2 Leibniz and Suszko filters
» Truth-equational logics
» Isomorphism theorem for protoalgebraic logics

3 Strong version of a sententional logic

4 Non-protoalgebraic examples
» Positive Modal Logic
» Dunn-Belnap’s Logic
» Lukasiewicz infinite-valued logic preserving degrees of truth
» Logics preserving degrees of truth from varieties of residuated lattices



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples

@00 00000 [e]e] 00000000

Preliminaries

Leibniz and Suszko congruences

= Given F C A, the Leibniz congruence of F, which shall be denoted by £24(F), is the
largest congruence of A compatible with F.

m Given F C A, the Suszko congruence of F, which shall be denoted by ﬁg(F) is the
largest congruence of A compatible with every G € (]—"isA)F, or, equivalently,

5(F) =({024(G): Ge FisA, FC G} .

Leibniz and Suszko operators

= The Leibniz operator on A is the map 2% : FisA — CoA defined by F — Q24(F).

= The Suszko operator on A is the map {24 : FisA — CoA defined by F — $24(F).
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The classes of algebras Alg*S and AlgS

Let S be a logic.
> Alg*S := {A: there is F € FisA such that 24(F) = ida};

> AlgS := {A: there is F € FisA such that £224(F) = ida}.

| A\

Proposition

AlgS = Ps(Alg*S).
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Non-protoalgebraic examples

00000000

The Leibniz hierarchy

algebraizable
. / weakly
equivalential algebraizable

NN

protoalgebraic truth-equational

Figure: Fragment of the Leibniz hierarchy.
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Leibniz classes and Leibniz filters

Definition
Let S be a logic, A be an algebra and F € Fis(A). The Leibniz class of F is defined by

[FI* := {G € FisA: 2%(F) C 2*(G)} .

The least element of [F]* shall be denoted by F*. We say that F is a Leibniz filter if
F = F*, and we denote the set of all Leibniz filters of A by FisA.
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Leibniz classes and Leibniz filters

Definition
Let S be a logic, A be an algebra and F € Fis(A). The Leibniz class of F is defined by

[FI* := {G € FisA: 2%(F) C 2*(G)} .

The least element of [F]* shall be denoted by F*. We say that F is a Leibniz filter if
F = F*, and we denote the set of all Leibniz filters of A by FisA.

= The new definition of Leibniz filters generalizes for arbitrary logics the existing one
for protoalgebraic logics [Font and Jansana, 2001].
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Suszko classes and Suszko filters

Definition
Let S be a logic, A be an algebra and F € Fis(A). The Suszko class of F is defined by

[FI°" := {G € FisA: {25(F) C 2(G)} .

The least element of [F]5" shall be denoted by FS". We say that F is a Suszko filter
if F = F5", and we denote the set of all Suszko filters of A by FiS"A.
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Suszko classes and Suszko filters

Definition
Let S be a logic, A be an algebra and F € Fis(A). The Suszko class of F is defined by

[FI% := {G € FisA: f¥(F) C 24(G)} .

The least element of [F]5" shall be denoted by FS". We say that F is a Suszko filter
if F = F5", and we denote the set of all Suszko filters of A by FiS"A.

= FS"C F*CF.

Every Suszko filter of A is a Leibniz filter of A. I
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Truth-equational vs. Suszko filters

= [Raftery, 2006] introduces the class of truth-equational logics.



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples
[e]e]e} 00000 [e]e) 00000000

Truth-equational vs. Suszko filters

= [Raftery, 2006] introduces the class of truth-equational logics.

Theorem [Font, Jansana, A.]

Let S be a logic. The following are equivalent:
1. S is truth-equational;
2. For every A, every S-filter of A is a Suszko filter;
3. For every A € Alg(S), every S-filter of A is a Suszko filter.
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Isomorphism theorems in AAL

Isomorphism Theorem for protoalgebraic logics

[Font, Jansana, A.]

Let S be a logic. The following are equivalent:
1. S is protoalgebraic;

2. The Leibniz operator 2 : Fig"(A) — Copig=(s)(A), restricted to the Suszko
filters, is an order-isomorphism, for every algebra A.
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Isomorphism theorems in AAL

Isomorphism Theorem for protoalgebraic logics

[Font, Jansana, A]
Let S be a logic. The following are equivalent:
1. S is protoalgebraic;

2. The Leibniz operator 2 : Fig"(A) — Copig=(s)(A), restricted to the Suszko
filters, is an order-isomorphism, for every algebra A.

Isomorphism Theorem for equivalential logics

[Font, Jansana, A.]

Let S be a logic. The following are equivalent:
1. S is equivalential;
2. The Leibniz operator £2* : Fig"(A) — Copig+(s)(A), restricted to the Suszko

filters, is an order-isomorphism which commutes with inverse images of
homomorphisms, for every algebra A.
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Isomorphism theorems in AAL

Isomorphism Theorem for weakly algebraizable logics

[Czelakowski and Jansana, 2000]

Let S be a logic. The following are equivalent:
1. S is weakly algebraizable;

2. The Leibniz operator 2 : FisA — Copig=(s)(A) is an order-isomorphism, for
every algebra A.

10
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Isomorphism theorems in AAL

Isomorphism Theorem for weakly algebraizable logics

[Czelakowski and Jansana, 2000]

Let S be a logic. The following are equivalent:
1. S is weakly algebraizable;

2. The Leibniz operator 2 : FisA — Copig=(s)(A) is an order-isomorphism, for
every algebra A.

Isomorphism Theorem for algebraizable logics

[Blok and Pigozzi, 1989] and [Herrmann, 1997]

Let S be a logic. The following are equivalent:
1. S is algebraizable;

2. The Leibniz operator 2* : FisA — Coalg=(s)(A) is an order-isomorphism which
commutes with inverse images of homomorphisms, for every algebra A.

10
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The strong version of a sententional logic

= With the new definition of Leibniz filter, we can generalize the notion of strong
version of a protoalgebraic logic [Font and Jansana, 2001] to arbitrary logics:

Definition

Let S be a logic. The strong version of S, which we shall denote by ST, is the logic
induced by the class of matrices whose distinguished set is a Leibniz filter. That is,

ST = ﬂ{lzmﬂ: A an algebra, F € Fis(A)}.

11
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The strong version of a sententional logic

Proposition

ST — m{':“‘ﬂ: A an algebra, F € Fis"(A)} .

12
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The strong version of a sententional logic

Proposition

ST — m{':“‘ﬂ: A an algebra, F € Fis"(A)} .

Proposition

§t= ﬂ{':(A,n Figay: A an algebra }
= ({Funrisa: A€ Alg(S)}

12
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The strong version of a sententional logic

Proposition

ST — m{':“‘ﬂ: A an algebra, F € Fis"(A)} .

Proposition

§t= ﬂ{':(A,n Figay: A an algebra }
= ({Funrisa: A€ Alg(S)}

= |f S is truth-equational, then ST = S.

12
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The strong version of a sententional logic

Proposition

ST — ﬂ{|:<A,F>: A an algebra, F € Fis"(A)} .

Proposition

§t= m{':(A,ﬂfjsA>: A an algebra }
= ({Funrisa: A€ Alg(S)}

= |f S is truth-equational, then ST = S.
m |f S is protoalgebraic, then we fall into the scope of [Font and Jansana, 2001].

= \We are therefore interested in examples of non-truth-equational and
non-protoalgebraic logics. That is, examples of logics outside the Leibniz hierarchy.

12
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Positive Modal Logic

s L={AV,0,T, 1}

Definition

A positive modal algebra is an L-algebra A = (A, AR VA TR, ¢4, 1,0), such that
(A, A VA, 1,0) is a bounded distributive lattice and 04, 0? are two unary modal
connectives satisfying:

1. Ofa A b) =T A 0%; 2. 0A(aVvA b) = 0%a vA O”b;
3. DA 0% < 0A(an?b); 4. O%a VA b) < O% VA O”b;
5. 0%1=1; 6. 00 =0.

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, PML = ’:1§MA'

13
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Positive Modal Logic

s L={AV,0,T, 1}

Definition

A positive modal algebra is an L-algebra A = (A, AR VA TR, ¢4, 1,0), such that
(A, A VA, 1,0) is a bounded distributive lattice and 04, 0? are two unary modal
connectives satisfying:

1. Ofa A b) =T A 0%; 2. 0A(aVvA b) = 0%a vA O”b;
3. DA 0% < 0A(an?b); 4. O%a VA b) < O% VA O”b;
5. 0%1=1; 6. 00 =0.

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, PML = ’:1§MA'

= PML is not truth-equational neither protoalgebraic.

13
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Positive Modal Logic

s L={AV,0,T, 1}

Definition
A positive modal algebra is an L-algebra A = (A, AR VA TR, ¢4, 1,0), such that
(A, A VA, 1,0) is a bounded distributive lattice and 04, 0? are two unary modal
connectives satisfying:

1. Ofa A b) =T A 0%; 2. 0A(aVvA b) = 0%a vA O”b;

3. DA 0% < 0A(an?b); 4. O%a VA b) < O% VA O”b;

5. 0% =1; 6. 00 =0.

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, PML = ’:1§MA'

= PML is not truth-equational neither protoalgebraic.
= For every A € PMA, FipmL(A) = Filt(A).

13
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Positive Modal Logic

s L={AV,0,T, 1}

Definition
A positive modal algebra is an L-algebra A = (A, AP VA, TR, A, 1,0), such that
(A, A VA, 1,0) is a bounded distributive lattice and 04, 0? are two unary modal
connectives satisfying:

1. Ofa A b) =T A 0%; 2. 0A(aVvA b) = 0%a vA O”b;

3. DA 0% < 0A(an?b); 4. O%a VA b) < O% VA O”b;

5. 0% =1; 6. 00 =0.

The class of all positive modal algebras will be denoted by PMA.

Definition

PML is the logic preserving degrees of truth wrt. PMA, i.e, PML = ’:1§MA'

= PML is not truth-equational neither protoalgebraic.
= For every A € PMA, FipmL(A) = Filt(A).
= Alg*(PML) C Alg(PML) = PMA.

13
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Positive Modal Logic

Leibniz and Suszko PML-filters

Definition

Let A € PMA. A lattice filter F € Filt(A) is open, if it is closed under 0J, i.e., for
every a € A, if a € F, then 0?a € F.
The set of all open lattice filters of A will be denoted by Filt(A).

14
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Positive Modal Logic

Leibniz and Suszko PML-filters

Definition

Let A € PMA. A lattice filter F € Filt(A) is open, if it is closed under 0J, i.e., for
every a € A, if a € F, then 0?a € F.

The set of all open lattice filters of A will be denoted by Filt(A).

Theorem

Let A € PMA. The Leibniz and Suszko PML-filters of A coincide with the open
lattice filters of A. That is,

Figm(A) = Figm(A) = Filto(A) .

| A\

14



Preliminaries Leibniz and Suszko filters Strong version of a sententional logic Non-protoalgebraic examples
000 00000 00 0®000000

Positive Modal Logic

Leibniz and Suszko PML-filters

Definition

Let A € PMA. A lattice filter F € Filt(A) is open, if it is closed under 0J, i.e., for
every a € A, if a € F, then 0?a € F.

The set of all open lattice filters of A will be denoted by Filt(A).

Theorem

Let A € PMA. The Leibniz and Suszko PML-filters of A coincide with the open
lattice filters of A. That is,

| A\

Figm(A) = Figm(A) = Filto(A) .

Strong version of PML

PML™" s the logic preserving truth wrt. PMA, i.e., PMLT =FELy.

14
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Dunn-Belnap’s Logic

= L=(ANV,7,T,1)
Definition
A De Morgan algebra is an L-algebra A = (A, A VA =40, 1) such that:
(i) The reduct (A, A%, VA) is a distributive lattice;
(i) The De Morgan laws hold, that is, =*(a V2 b) = (—"a A® =b) and
—\A(a A4 b) = (—\Aa VA —|Ab);

(iii) The unary operation —=* is idempotent, that is, a = =*—"2;

(iv) 1 and 0 are the top and bottom elements, respectively, that is, x VA1 =1 and
xA\*0=0.
The class of all De Morgan algebras will be denoted by DMA.

Definition

B is the logic preserving degrees of truth wrt. DMA, i.e, B =S, ,.

15
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(i) The De Morgan laws hold, that is, =*(a V2 b) = (—"a A® =b) and
—\A(a A4 b) = (—\Aa VA —|Ab);

(iii) The unary operation —=* is idempotent, that is, a = =*—"2;

(iv) 1 and 0 are the top and bottom elements, respectively, that is, x VA1 =1 and
xA\*0=0.
The class of all De Morgan algebras will be denoted by DMA.

Definition

B is the logic preserving degrees of truth wrt. DMA, i.e, B =S, ,.

= 3 is not truth-equational neither protoalgebraic.

15
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Dunn-Belnap’s Logic

Leibniz and Suszko B-filters

Definition

Let A€ DMA. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a —AbeF, thenbeF.
The set of all implicative filters of A will be denoted by Filt_. (A).

16
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Dunn-Belnap’s Logic

Leibniz and Suszko B-filters

Definition
Let A€ DMA. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a =" b€ F, then b € F.

The set of all implicative filters of A will be denoted by Filt_. (A).

| A

Theorem

Let A € DMA. The Leibniz B-filters of A coincide with the implicative lattice filters of
A. That is,

Fiz(A) = Filt_, (A) .

m The Suszko B-filters are a strict subset of the Leibniz B-filters.

16
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Dunn-Belnap’s Logic

Leibniz and Suszko B-filters

Definition
Let A€ DMA. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a =" b€ F, then b € F.

The set of all implicative filters of A will be denoted by Filt_. (A).

| A

Theorem

Let A € DMA. The Leibniz B-filters of A coincide with the implicative lattice filters of
A. That is,

Fiz(A) = Filt_, (A) .

m The Suszko B-filters are a strict subset of the Leibniz B-filters.

Strong version of B

BT is the logic preserving truth wrt. DMA, ie., BT =FLya.

16
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Lukasiewicz infinite-valued logic preserving degrees of truth

s L=(AV,—,0,T,1)

Definition

An MV-algebra is an L-algebra A = (A, A, VA, =4 ©%,1,0) such that:
(i) A'is an integral commutative residuated lattice;

(i) aA* b= a @ (a =4 b);

(i) (@a—=?2b)VA(b—="a)=1;

(iv) ((a—="0) =40) = a.

The class of all MV-algebras algebras will be denoted by MV.

Definition

LS is the logic preserving degrees of truth wrt. MV, ie, £S = |=1\SAV.

17
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17
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(i) (@a—=?2b)VA(b—="a)=1;

(iv) ((a—="0) =40) = a.

The class of all MV-algebras algebras will be denoted by MV.

Definition

LS is the logic preserving degrees of truth wrt. MV, ie, £S = |=1\SAV.

= £ 5 is not truth-equational neither protoalgebraic.
= For every Ac MV, Fi, < (A) = Filt(A).

= Alg*(LS) = Alg(LS) = MV.

17
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Lukasiewicz infinite-valued logic preserving degrees of truth

Leibniz and Suszko t5 -filters

Definition

Let A€ MV. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a —" b€ F, then b€ F.
The set of all implicative filters of A will be denoted by Filt_, (A).

18
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Lukasiewicz infinite-valued logic preserving degrees of truth

Leibniz and Suszko t5 -filters

Definition

Let A€ MV. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a —" b€ F, then b€ F.

The set of all implicative filters of A will be denoted by Filt_, (A).

| A

Theorem

Let A€ MV. The Leibniz L5 -filters of A coincide with the implicative lattice filters of
A. That is,

Fij < (A) = Filt_,(A) .

= The Suszko L5 filters are a strict subset of the Leibniz £5 -filters.

18
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Let A€ MV. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a —" b€ F, then b€ F.

The set of all implicative filters of A will be denoted by Filt_, (A).

| A

Theorem

Let A€ MV. The Leibniz L5 -filters of A coincide with the implicative lattice filters of
A. That is,

Fij < (A) = Filt_,(A) .

= The Suszko L5 filters are a strict subset of the Leibniz £5 -filters.

The strong version of L5

(LX) is the Lukasiewicz infinite valued logic, i.e., (£5)" = too.
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Logics preserving degrees of truth from varieties of residuated lattices

s L=(\V,—,0,T)

Definition

An (integral commutative) residuated lattice is an L-algebra
A= (A AN VA =4 4 1) such that:
(i) The reduct (A, A® VA is a lattice;
(i) (A,®*,1) is a commutative monoid;
(iii) —A is the residuum of ®#, that is, for every a,b € A, a O c<biffc<a—?b;
(iv) 1 is the top element of A, that is, for every a € A, aVA1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.
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An (integral commutative) residuated lattice is an L-algebra
A= (A AN VA =4 4 1) such that:
(i) The reduct (A, A® VA is a lattice;
(i) (A,®*,1) is a commutative monoid;
(iii) —A is the residuum of ®#, that is, for every a,b € A, a O c<biffc<a—?b;
(iv) 1 is the top element of A, that is, for every a € A, aVA1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

= )=§L is not truth-equational neither protoalgebraic.
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Logics preserving degrees of truth from varieties of residuated lattices

s L=(\V,—,0,T)

Definition

An (integral commutative) residuated lattice is an L-algebra
A= (A AN VA =4 4 1) such that:
(i) The reduct (A, A® VA is a lattice;
(i) (A,®*,1) is a commutative monoid;
(iii) —A is the residuum of ®#, that is, for every a,b € A, a O c<biffc<a—?b;
(iv) 1 is the top element of A, that is, for every a € A, aVA1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

= )=§L is not truth-equational neither protoalgebraic.
= For every A € RL, Fi_< (A) = Filt(A).
RL
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Logics preserving degrees of truth from varieties of residuated lattices

s L=(\V,—,0,T)

Definition

An (integral commutative) residuated lattice is an L-algebra
A= (A N VA A 04 1) such that:

(i) The reduct (A, A® VA is a lattice;

(i) (A,©*,1) is a commutative monoid;
(iii) —*A is the residuum of ®*, that is, for every a,b € A, a®? c < b iff c < a =4 b;
(iv) 1 is the top element of A, that is, for every a € A, aVA1 = 1.

The class of all (integral commutative) residuated lattices will be denoted by RL.

= )=§L is not truth-equational neither protoalgebraic.
= For every A € RL, Fi_< (A) = Filt(A).
RL

= Alg*(F5,) = Alg(F5.) = RL.
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Logics preserving degrees of truth from varieties of residuated lattices

Leibniz and Suszko P%L-filters

Definition

Let A € RL. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a =" b€ F, then b € F.
The set of all implicative filters of A will be denoted by Filt_. (A).
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Definition

Let A € RL. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a =" b€ F, then b € F.

The set of all implicative filters of A will be denoted by Filt_. (A).

| A\

Theorem

Let A€ RL. The Leibniz #%L—filters of A coincide with the implicative lattice filters of
A. That is,

Fi’< (A) = Filt_,(A) .
RL

= The Suszko F5, filters are a strict subset of the Leibniz 5, -filters.
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Leibniz and Suszko P%L-filters

Definition

Let A € RL. A lattice filter F € Filt(A) is implicative, if it is closed under modus
ponens, i.e., for every a,b € A, if a,a =" b€ F, then b € F.

The set of all implicative filters of A will be denoted by Filt_. (A).

| A

Theorem

Let A€ RL. The Leibniz #%L—filters of A coincide with the implicative lattice filters of
A. That is,

Fi’< (A) = Filt_,(A) .
RL

= The Suszko F5, filters are a strict subset of the Leibniz 5, -filters.

The strong version of )=§L

* =Fke.

(E5L)T is the logic preserving truth wrt. RL, i.e, (%)
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Thank you!
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Original definition of Leibniz filters for protoalgebraic logics

Definition

Let S be a protoalgebraic logic and A an algebra. An S-filter F € FisA is a Leibniz
S-filter of A, if it is the least element of

[F]={G e FisA: 2*(F) = 2*(G)} .

Back to Leibniz filters.

23



	Preliminaries
	Leibniz and Suszko filters
	Truth-equational logics
	Isomorphism theorem for protoalgebraic logics

	Strong version of a sententional logic
	Non-protoalgebraic examples
	Positive Modal Logic
	Dunn-Belnap's Logic
	Lukasiewicz infinite-valued logic preserving degrees of truth
	Logics preserving degrees of truth from varieties of residuated lattices


