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Social Choice Theory

Theoretical study of collective decision making

Main question:

how to combine individual opinions (preferences, judgments...) into
one collective opinion (preference, judgment) in a fair way?

Examples:

Political elections
Judgments in a court of law
Opinion poolings
. . .

Various branches:

Preference aggregation
Judgment aggregation
Opinion pooling
. . .
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Arrow’s Impossibility Theorem

The beginning of modern social choice theory

C : set of candidates

N: set of individuals

L: set of linear orders on C

f : LN → L social welfare function (SWF)

Properties of SWFs:

Pareto

independence of irrelevant alternatives (IIA)

dictatorship

Arrow’s Impossibility Theorem

Let |N| < ω, |C | ≥ 3. Then

Pareto, IIA |= dictatorship.
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The Ultrafilter Method

Decisive coalitions

Pareto and IIA =⇒ decisive coalitions form an (ultra)filter

Properness, upward directedness
√

intersection property: non-trivial!

If N finite,

all ultrafilters are principal =⇒ one generator: the dictator

all filters are finitely generated =⇒ the oligarchs
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Generalisations

Technically:

Impossibility theorems ⇒ characterization theorems

Ultrafilter argument applies to

judgment aggregation
opinion pooling

Model-theoretic approach: rational aggregators as ultraproducts

Algebraic approach: rational aggregators as (Boolean algebras,
MV-algebras) homomorphisms

Philosophically:

The subjunctive interpretation of logical connectives helps to escape the
impossibility theorems
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A unifying approach: AAL

Abstract Algebraic Logic (AAL)

theory for uniform algebraization of logics

Logics: S = (Fm,`S) (consequence relations: first-class citizens)

every logic S canonically associated with class of algebras AlgS

metalogical properties of S studies via AlgS

Selfextensional Logics

Logics S s.t. a`S is a congruence of Fm.

Characterised as the logics admitting a possible world semantics
(subjunctive interpretation of logical connectives)

Examples: classical, intuitionistic, modal≤,  Lukasiewicz≤

Selfextensional logics as natural environment for judgment aggregation!
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For any selfextensional logic S

Fm: formulas

X ⊆ Fm: agenda

X̄ : S-closure of X

A : X → B: attitude function
~A ∈ (BX )N : attitude profile

F : (BX )N → BX : attitude aggregator

A is rational if it can be extended to a homomorphism
Ā : Fm/≡ → B of S-algebras.

~A ∈ (BX )N is rational if (∀i ∈ N)(Ai is rational).

F is rational if (∀rational ~A ∈ dom(F ))(F (~A) is rational).

F is universal if dom(F ) = (BX )N .
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Decision criteria and systematicity

Def. Decision Criterion for F

f : BN → B s.t. ∀~A ∈ dom(F ), ∀ϕ ∈ X ,

F (~A)(ϕ) = f (~A(ϕ)). (1)

Strong Systematicity

F is strongly systematic if ∃f (decision for F ) s.t. ∀~A ∈ dom(F ),

X̄ BN
~A
//

B
F (~A)   

f
��
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Main Theorem

Let F be a rational, universal and strongly systematic attitude aggregator.
Then the decision criterion of F is a homomorphism of S-algebras.

Let f : BN → B be a homomorphism of S-algebras. Then the function
F : (BX )N → BX defined by F (~A)(ϕ) = f (~A(ϕ)) is a rational, universal
and strongly systematic attitude aggregator.
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