On everywhere strongly logifiable algebras

Tommaso Moraschini Advisors: Josep Maria Font and Ramon Jansana

June 25, 2015

Contents

1. Strongly algebraizable logics

2. Everywhere strongly logifiable algebras

3. Consequences

Contents

1. Strongly algebraizable logics

2. Everywhere strongly logifiable algebras

3. Consequences

• A logic \mathcal{L} is algebraizable if

A logic *L* is algebraizable if there is a generalized quasi-variety
 K

► A logic *L* is algebraizable if there is a generalized quasi-variety *K* and two structural transformers

$$au : \mathcal{P}(Fm) \longleftrightarrow \mathcal{P}(Eq) \colon
ho$$

s.t.

► A logic *L* is algebraizable if there is a generalized quasi-variety *K* and two structural transformers

$$au : \mathcal{P}(\mathit{Fm}) \longleftrightarrow \mathcal{P}(\mathit{Eq}) :
ho$$

s.t.

$$\Gamma \vdash_{\mathcal{L}} \varphi \Longleftrightarrow \boldsymbol{\tau}(\Gamma) \vDash_{K} \boldsymbol{\tau}(\varphi)$$

► A logic *L* is algebraizable if there is a generalized quasi-variety *K* and two structural transformers

$$au : \mathcal{P}(\mathit{Fm}) \longleftrightarrow \mathcal{P}(\mathit{Eq}) :
ho$$

s.t.

$$\Gamma \vdash_{\mathcal{L}} \varphi \iff \tau(\Gamma) \vDash_{\mathcal{K}} \tau(\varphi)$$
$$x \approx y \rightrightarrows \models_{\mathcal{K}} \tau \rho(x, y).$$

► A logic *L* is algebraizable if there is a generalized quasi-variety *K* and two structural transformers

$$au : \mathcal{P}(\mathit{Fm}) \longleftrightarrow \mathcal{P}(\mathit{Eq}) :
ho$$

s.t.

$$\Gamma \vdash_{\mathcal{L}} \varphi \iff \tau(\Gamma) \vDash_{\mathcal{K}} \tau(\varphi)$$
$$x \approx y = \models_{\mathcal{K}} \tau \rho(x, y).$$

▶ In this case *K* is unique.

► A logic *L* is algebraizable if there is a generalized quasi-variety *K* and two structural transformers

$$au : \mathcal{P}(\mathit{Fm}) \longleftrightarrow \mathcal{P}(\mathit{Eq}) :
ho$$

s.t.

$$\Gamma \vdash_{\mathcal{L}} \varphi \Longleftrightarrow \tau(\Gamma) \vDash_{K} \tau(\varphi)$$
$$x \approx y = \models_{K} \tau \rho(x, y).$$

In this case K is unique. K is called the equivalent algebraic semantics of L.

► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.
- But in most well-known cases $Alg^*\mathcal{L}$ is a variety.

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.
- But in most well-known cases $Alg^*\mathcal{L}$ is a variety.

Examples:

• classical logic \longleftrightarrow Boolean algebras

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.
- But in most well-known cases $Alg^*\mathcal{L}$ is a variety.

- classical logic \longleftrightarrow Boolean algebras
- intuitionistic logic \longleftrightarrow Heyting algebras

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.
- But in most well-known cases $Alg^*\mathcal{L}$ is a variety.

- classical logic \longleftrightarrow Boolean algebras
- intuitionistic logic \longleftrightarrow Heyting algebras
- S4 modal logic \longleftrightarrow closure algebras

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.
- But in most well-known cases $Alg^*\mathcal{L}$ is a variety.

- classical logic \longleftrightarrow Boolean algebras
- intuitionistic logic \longleftrightarrow Heyting algebras
- S4 modal logic \longleftrightarrow closure algebras
- Hájek's basic logic \longleftrightarrow BL-algebras

- ► The equivalent algebraic semantics Alg^{*}L of an algebraizable logic L is in general a generalized quasi-variety.
- If L is finitary and p(x, y) can be chosen finite, then Alg^{*}L is a quasi-variety.
- But in most well-known cases $Alg^*\mathcal{L}$ is a variety.

- classical logic \longleftrightarrow Boolean algebras
- intuitionistic logic \longleftrightarrow Heyting algebras
- S4 modal logic \longleftrightarrow closure algebras
- Hájek's basic logic \longleftrightarrow BL-algebras
- full Lambek calculus \longleftrightarrow residuated lattices

Definition

A logic is strongly algebraizable if it is algebraizable and its equivalent algebraic semantics is a variety.

Definition

A logic is strongly algebraizable if it is algebraizable and its equivalent algebraic semantics is a variety.

This posed the following:

Definition

A logic is strongly algebraizable if it is algebraizable and its equivalent algebraic semantics is a variety.

This posed the following:

Variety problem

Find logically meaningful sufficient conditions under which an algebraizable logic is strongly algebraizable too.

Definition

A logic is strongly algebraizable if it is algebraizable and its equivalent algebraic semantics is a variety.

This posed the following:

Variety problem

Find logically meaningful sufficient conditions under which an algebraizable logic is strongly algebraizable too.

Definition

1. \mathcal{L} is selfextensional when the relation $\dashv \vdash_{\mathcal{L}}$ is a congruence.

Definition

A logic is strongly algebraizable if it is algebraizable and its equivalent algebraic semantics is a variety.

This posed the following:

Variety problem

Find logically meaningful sufficient conditions under which an algebraizable logic is strongly algebraizable too.

Definition

- 1. \mathcal{L} is selfextensional when the relation $\dashv \vdash_{\mathcal{L}}$ is a congruence.
- 2. \mathcal{L} is Fregean when the relation $\{\langle \varphi, \psi \rangle : \varphi, \Gamma \dashv \vdash_{\mathcal{L}} \Gamma, \psi\}$ is a congruence for every Γ .

Theorem (Czelakowski and Pigozzi)

1. If \mathcal{L} is a finitary Fregean logic with the uniterm DDT, then it is strongly algebraizable wrt a variety of Hilbert algebras expanded with compatible operators.

Theorem (Czelakowski and Pigozzi)

- 1. If \mathcal{L} is a finitary Fregean logic with the uniterm DDT, then it is strongly algebraizable wrt a variety of Hilbert algebras expanded with compatible operators.
- 2. If \mathcal{L} is a finitary protoalgebraic Fregean logic with a conjunction, then it is strongly algebraizable wrt a variety of Browerian algebras expanded with compatible operators.

Theorem (Czelakowski and Pigozzi)

- 1. If \mathcal{L} is a finitary Fregean logic with the uniterm DDT, then it is strongly algebraizable wrt a variety of Hilbert algebras expanded with compatible operators.
- 2. If \mathcal{L} is a finitary protoalgebraic Fregean logic with a conjunction, then it is strongly algebraizable wrt a variety of Browerian algebras expanded with compatible operators.

Theorem (Font and Jansana)

Let \mathcal{L} be a finitary selfextensional logic. If \mathcal{L} has either a conjunction or the uniterm DDT, then Alg \mathcal{L} is a variety.

Contents

1. Strongly algebraizable logics

2. Everywhere strongly logifiable algebras

3. Consequences

Aim of the talk:

Aim of the talk:

Introduce the finite algebras that behave in the best possible way from the point of view of algebraizability theory.

Aim of the talk:

- Introduce the finite algebras that behave in the best possible way from the point of view of algebraizability theory.
- Characterize them with purely algebraic concepts.

Aim of the talk:

- Introduce the finite algebras that behave in the best possible way from the point of view of algebraizability theory.
- Characterize them with purely algebraic concepts.
- Draw some conclusion on the variety problem.

Aim of the talk:

- Introduce the finite algebras that behave in the best possible way from the point of view of algebraizability theory.
- Characterize them with purely algebraic concepts.
- Draw some conclusion on the variety problem.

Definition

A finite non-trivial algebra \boldsymbol{A} is everywhere strongly logifiable if the matrix $\langle \boldsymbol{A}, F \rangle$ determines a strongly algebraizable logic with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$, for every $F \in \mathcal{P}(A) \setminus \{\emptyset, A\}$.

Lemma

Primal algebras are everywhere strongly logifiable.

Lemma

Primal algebras are everywhere strongly logifiable.

Let **A** be a non-trivial primal algebra.

Lemma

Primal algebras are everywhere strongly logifiable.

Let **A** be a non-trivial primal algebra.

• Pick
$$F \in \mathcal{P}(A) \smallsetminus \{\emptyset, A\}$$
.

Lemma

Primal algebras are everywhere strongly logifiable.

Let **A** be a non-trivial primal algebra.

- Pick $F \in \mathcal{P}(A) \setminus \{\emptyset, A\}$.
- Choose any $1 \in F$ and $0 \notin F$.

Is there any everywhere strongly logifiable algebra?

Lemma

Primal algebras are everywhere strongly logifiable.

Let **A** be a non-trivial primal algebra.

- Pick $F \in \mathcal{P}(A) \setminus \{\emptyset, A\}$.
- Choose any $1 \in F$ and $0 \notin F$.
- Consider the functions $\Box: A \to A$ and $\triangleleft \triangleright: A^2 \to A$ s.t.

$$\Box(a) \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } a \in F \\ 0 & \text{otherwise} \end{array} \right. \quad a \lhd \triangleright \ b \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{array} \right.$$

Is there any everywhere strongly logifiable algebra?

Lemma

Primal algebras are everywhere strongly logifiable.

Let **A** be a non-trivial primal algebra.

- Pick $F \in \mathcal{P}(A) \smallsetminus \{\emptyset, A\}$.
- Choose any $1 \in F$ and $0 \notin F$.
- Consider the functions $\Box: A \to A$ and $\triangleleft \triangleright: A^2 \to A$ s.t.

$$\Box(a) \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } a \in F \\ 0 & \text{otherwise} \end{array} \right. \quad a \lhd \triangleright \ b \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{array} \right.$$

By primality $\Box(x)$ and $x \triangleleft \triangleright y$ are term functions.

Is there any everywhere strongly logifiable algebra?

Lemma

Primal algebras are everywhere strongly logifiable.

Let **A** be a non-trivial primal algebra.

- Pick $F \in \mathcal{P}(A) \smallsetminus \{\emptyset, A\}$.
- Choose any $1 \in F$ and $0 \notin F$.
- Consider the functions $\Box: A \to A$ and $\triangleleft \triangleright: A^2 \to A$ s.t.

$$\Box(a) \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } a \in F \\ 0 & \text{otherwise} \end{array} \right. \quad a \lhd \triangleright \ b \coloneqq \left\{ \begin{array}{ll} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{array} \right.$$

By primality $\Box(x)$ and $x \triangleleft \triangleright y$ are term functions.

► The logic of (A, F) is algebraizable with equivalent algebraic semantics V(A) via

$$\boldsymbol{\tau}(x) = \{\Box(x) \approx \mathbf{1}(x)\} \text{ and } \boldsymbol{\rho}(x,y) = \{x \lhd \triangleright y\}.$$

Definition

1. An algebra **A** is constantive if for every $a \in A$ there is a term a(x) that represents the constant function with value a.

Definition

- 1. An algebra **A** is constantive if for every $a \in A$ there is a term a(x) that represents the constant function with value a.
- 2. An algebra **A** is *n*-permutable for $n \ge 2$ if

$$\phi \lor \eta = \theta_1 \circ \cdots \circ \theta_n$$
 where $\theta_i = \begin{cases} \phi & \text{if } i \text{ is even} \\ \eta & \text{otherwise} \end{cases}$

for every $\phi, \eta \in \mathsf{Con} \mathbf{A}$.

Definition

- 1. An algebra **A** is constantive if for every $a \in A$ there is a term a(x) that represents the constant function with value a.
- 2. An algebra **A** is *n*-permutable for $n \ge 2$ if

$$\phi \lor \eta = \theta_1 \circ \cdots \circ \theta_n$$
 where $\theta_i = \begin{cases} \phi & \text{if } i \text{ is even} \\ \eta & \text{otherwise} \end{cases}$

for every $\phi, \eta \in \mathsf{Con} \mathbf{A}$.

3. A variety V is *n*-permutable when so are its members.

Definition

- 1. An algebra **A** is constantive if for every $a \in A$ there is a term a(x) that represents the constant function with value a.
- 2. An algebra **A** is *n*-permutable for $n \ge 2$ if

$$\phi \lor \eta = \theta_1 \circ \dots \circ \theta_n$$
 where $\theta_i = \begin{cases} \phi & \text{if } i \text{ is even} \\ \eta & \text{otherwise} \end{cases}$

for every $\phi, \eta \in \mathsf{Con} \mathbf{A}$.

- 3. A variety V is *n*-permutable when so are its members.
- 4. A variety V is point regular if there is a constant 1 such that for every $A \in V$ and $\theta, \phi \in A$:

if
$$1/\theta = 1/\phi$$
, then $\theta = \phi$.

Theorem

Theorem

Let \boldsymbol{A} be a non-trivial finite algebra. The following conditions are equivalent:

(i) \boldsymbol{A} is everywhere strongly logifiable.

Theorem

- (i) **A** is everywhere strongly logifiable.
- (ii) The logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$, for every $a \in A$.

Theorem

- (i) **A** is everywhere strongly logifiable.
- (ii) The logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$, for every $a \in A$.
- (iii) **A** is simple, without proper subalgebras and $\mathbb{V}(\mathbf{A})$ is minimal and point regular.

Theorem

- (i) **A** is everywhere strongly logifiable.
- (ii) The logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$, for every $a \in A$.
- (iii) **A** is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.
- (iv) **A** is simple, constantive and $\mathbb{V}(\mathbf{A})$ is congruence distributive and *n*-permutable for some $n \geq 2$.

Remark

lf

```
the logic of \langle \boldsymbol{A}, \{a\} \rangle is strongly algebraizable with equivalent algebraic semantics \mathbb{V}(\boldsymbol{A}) for every a \in A, then
```

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

Remark

lf

```
the logic of \langle \boldsymbol{A}, \{a\} \rangle is strongly algebraizable with equivalent algebraic semantics \mathbb{V}(\boldsymbol{A}) for every a \in A, then
```

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

Remark

lf

the logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $a \in A$, then

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

• A is constantive.

 V(A) is the equivalent algebraic semantics of the logic L determined by ⟨A, {a}⟩.

Remark

lf

the logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $a \in A$, then

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

• A is constantive.

 V(A) is the equivalent algebraic semantics of the logic L determined by ⟨A, {a}⟩. Hence V(A) is point regular.

Remark

lf

the logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $a \in A$, then

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

- V(A) is the equivalent algebraic semantics of the logic L determined by ⟨A, {a}⟩. Hence V(A) is point regular.
- **A** is simple:

Remark

lf

the logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $a \in A$, then

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

- V(A) is the equivalent algebraic semantics of the logic L determined by ⟨A, {a}⟩. Hence V(A) is point regular.
- **A** is simple: $\{\{a\}, A\} = \mathcal{F}i_{\mathcal{L}}\mathbf{A} \cong \text{Con}\mathbf{A}$.

Remark

lf

the logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $a \in A$, then

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

- V(A) is the equivalent algebraic semantics of the logic L determined by ⟨A, {a}⟩. Hence V(A) is point regular.
- **A** is simple: $\{\{a\}, A\} = \mathcal{F}i_{\mathcal{L}}\mathbf{A} \cong \text{Con}\mathbf{A}$.
- $\mathbb{V}(\boldsymbol{A}) = \mathbb{Q}(\boldsymbol{A})$. Hence $\mathbb{V}(\boldsymbol{A})_{si} \subseteq \mathbb{ISP}_u(\boldsymbol{A}) = \mathbb{I}\{\boldsymbol{A}\}$.

Remark

lf

the logic of $\langle \boldsymbol{A}, \{a\} \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $a \in A$, then

A is simple, without proper subalgebras and $\mathbb{V}(A)$ is minimal and point regular.

- V(A) is the equivalent algebraic semantics of the logic L determined by ⟨A, {a}⟩. Hence V(A) is point regular.
- **A** is simple: $\{\{a\}, A\} = \mathcal{F}i_{\mathcal{L}}\mathbf{A} \cong \text{Con}\mathbf{A}$.
- $\mathbb{V}(\boldsymbol{A}) = \mathbb{Q}(\boldsymbol{A})$. Hence $\mathbb{V}(\boldsymbol{A})_{si} \subseteq \mathbb{ISP}_u(\boldsymbol{A}) = \mathbb{I}\{\boldsymbol{A}\}$. Hence $\mathbb{V}(\boldsymbol{A})$ is minimal.

Remark

lf

A is simple, constantive and $\mathbb{V}(\mathbf{A})$ is congruence distributive and *n*-permutable for some $n \geq 2$,

then

the logic of $\langle \boldsymbol{A}, F \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $F \in \mathcal{P}(A) \smallsetminus \{\emptyset, A\}$.

Remark

lf

A is simple, constantive and $\mathbb{V}(\mathbf{A})$ is congruence distributive and *n*-permutable for some $n \geq 2$,

then

the logic of $\langle \boldsymbol{A}, F \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $F \in \mathcal{P}(A) \smallsetminus \{\emptyset, A\}$.

There are 1 ∈ F and 0 ∉ F such that A |_{0,1} is polynomially equivalent to the two-element Boolean algebra.

Remark

lf

A is simple, constantive and $\mathbb{V}(\mathbf{A})$ is congruence distributive and *n*-permutable for some $n \geq 2$,

then

the logic of $\langle \boldsymbol{A}, F \rangle$ is strongly algebraizable with equivalent algebraic semantics $\mathbb{V}(\boldsymbol{A})$ for every $F \in \mathcal{P}(A) \smallsetminus \{\emptyset, A\}$.

- There are 1 ∈ F and 0 ∉ F such that A|_{0,1} is polynomially equivalent to the two-element Boolean algebra.
- For every different $a, b \in A$ there is a polynomial p_{ab} such that

$$p_{ab}[A] = \{0, 1\} \text{ and } p_{ab}(a) \neq p_{ab}(b).$$

• Let $F = \{a_1, \ldots, a_n\}$ and consider the terms

$$\begin{aligned} x \lhd \triangleright y &\coloneqq \bigwedge \{ p_{ab}(x) \leftrightarrow p_{ab}(y) : a, b \in A \text{ and } a \neq b \} \\ \Box(x) &\coloneqq \bigvee_{i \leq n} \Big(\bigwedge \Big\{ p_{a_i b}(x) \leftrightarrow p_{a_i b}(a_i(x)) : b \in A \smallsetminus \{a_i\} \Big\} \Big). \end{aligned}$$

• Let $F = \{a_1, \ldots, a_n\}$ and consider the terms

$$x \triangleleft \triangleright y \coloneqq \bigwedge \{ p_{ab}(x) \leftrightarrow p_{ab}(y) : a, b \in A \text{ and } a \neq b \}$$
$$\Box(x) \coloneqq \bigvee_{i \leq n} \Big(\bigwedge \Big\{ p_{a_i b}(x) \leftrightarrow p_{a_i b}(a_i(x)) : b \in A \setminus \{a_i\} \Big\} \Big).$$

It is easy to prove that:

$$\begin{split} & \Gamma \vdash_{\mathcal{L}} \varphi \Longleftrightarrow \{ \Box(\gamma) \approx \mathbf{1}(\gamma) : \gamma \in \Gamma \} \vDash_{\boldsymbol{A}} \Box(\varphi) \approx \mathbf{1}(\varphi) \\ & x \approx y \rightrightarrows \models_{\boldsymbol{A}} \Box(x \triangleleft \rhd y) \approx \mathbf{1}(x \triangleleft \rhd y). \end{split}$$

• Let $F = \{a_1, \ldots, a_n\}$ and consider the terms

$$x \triangleleft \triangleright y \coloneqq \bigwedge \{ p_{ab}(x) \leftrightarrow p_{ab}(y) : a, b \in A \text{ and } a \neq b \}$$
$$\Box(x) \coloneqq \bigvee_{i \leq n} \Big(\bigwedge \Big\{ p_{a_i b}(x) \leftrightarrow p_{a_i b}(a_i(x)) : b \in A \setminus \{a_i\} \Big\} \Big).$$

It is easy to prove that:

$$\begin{split} & \Gamma \vdash_{\mathcal{L}} \varphi \Longleftrightarrow \{ \Box(\gamma) \approx \mathbf{1}(\gamma) : \gamma \in \Gamma \} \vDash_{\boldsymbol{A}} \Box(\varphi) \approx \mathbf{1}(\varphi) \\ & x \approx y \rightrightarrows \models_{\boldsymbol{A}} \Box(x \triangleleft \rhd y) \approx \mathbf{1}(x \triangleleft \rhd y). \end{split}$$

L is algebraizable with equivalent algebraic semantics Q(A)
 through the structural transformers

$$\tau(x) = \{\Box(x) \approx 1(x)\} \text{ and } \rho(x, y) = \{x \triangleleft \rhd y\}.$$

• Let $F = \{a_1, \ldots, a_n\}$ and consider the terms

$$x \triangleleft \triangleright y \coloneqq \bigwedge \{ p_{ab}(x) \leftrightarrow p_{ab}(y) : a, b \in A \text{ and } a \neq b \}$$
$$\Box(x) \coloneqq \bigvee_{i \leq n} \Big(\bigwedge \Big\{ p_{a_i b}(x) \leftrightarrow p_{a_i b}(a_i(x)) : b \in A \setminus \{a_i\} \Big\} \Big).$$

It is easy to prove that:

$$\begin{split} \Gamma \vdash_{\mathcal{L}} \varphi &\iff \{\Box(\gamma) \approx \mathbf{1}(\gamma) : \gamma \in \Gamma\} \vDash_{\boldsymbol{A}} \Box(\varphi) \approx \mathbf{1}(\varphi) \\ x \approx y \rightleftharpoons \models_{\boldsymbol{A}} \Box(x \triangleleft \rhd y) \approx \mathbf{1}(x \triangleleft \rhd y). \end{split}$$

► L is algebraizable with equivalent algebraic semantics Q(A) through the structural transformers

$$\boldsymbol{\tau}(x) = \{\Box(x) \approx \mathbf{1}(x)\} \text{ and } \boldsymbol{\rho}(x,y) = \{x \lhd \rhd y\}.$$

• By Jónsson's lemma
$$\mathbb{Q}(\mathbf{A}) = \mathbb{V}(\mathbf{A})$$
.

Contents

1. Strongly algebraizable logics

2. Everywhere strongly logifiable algebras

3. Consequences

Corollary

Let **A** be finite and non-trivial.

Corollary

Let \boldsymbol{A} be finite and non-trivial. \boldsymbol{A} is everywhere strongly logifiable if and only if \boldsymbol{A} has no proper subalgebra and there is $a \in A$ such that the logic \mathcal{L} of $\langle \boldsymbol{A}, \{a\} \rangle$ has theorems and Alg^{*} $\mathcal{L} = \mathbb{V}(\boldsymbol{A})$.

Corollary

Let \boldsymbol{A} be finite and non-trivial. \boldsymbol{A} is everywhere strongly logifiable if and only if \boldsymbol{A} has no proper subalgebra and there is $a \in A$ such that the logic \mathcal{L} of $\langle \boldsymbol{A}, \{a\} \rangle$ has theorems and $\operatorname{Alg}^* \mathcal{L} = \mathbb{V}(\boldsymbol{A})$.

Corollary

Let \boldsymbol{A} be (finite and non-trivial) without proper subalgebras and a constant 1.

Corollary

Let \boldsymbol{A} be finite and non-trivial. \boldsymbol{A} is everywhere strongly logifiable if and only if \boldsymbol{A} has no proper subalgebra and there is $a \in A$ such that the logic \mathcal{L} of $\langle \boldsymbol{A}, \{a\} \rangle$ has theorems and $\operatorname{Alg}^* \mathcal{L} = \mathbb{V}(\boldsymbol{A})$.

Corollary

Let \boldsymbol{A} be (finite and non-trivial) without proper subalgebras and a constant 1. For the logic \mathcal{L} of $\langle \boldsymbol{A}, \{1\} \rangle$ the following are equivalent:

Corollary

Let \boldsymbol{A} be finite and non-trivial. \boldsymbol{A} is everywhere strongly logifiable if and only if \boldsymbol{A} has no proper subalgebra and there is $a \in A$ such that the logic \mathcal{L} of $\langle \boldsymbol{A}, \{a\} \rangle$ has theorems and $\operatorname{Alg}^* \mathcal{L} = \mathbb{V}(\boldsymbol{A})$.

Corollary

Let \boldsymbol{A} be (finite and non-trivial) without proper subalgebras and a constant 1. For the logic \mathcal{L} of $\langle \boldsymbol{A}, \{1\} \rangle$ the following are equivalent: (i) The class Alg^{*} \mathcal{L} is a variety.

Corollary

Let \boldsymbol{A} be finite and non-trivial. \boldsymbol{A} is everywhere strongly logifiable if and only if \boldsymbol{A} has no proper subalgebra and there is $a \in A$ such that the logic \mathcal{L} of $\langle \boldsymbol{A}, \{a\} \rangle$ has theorems and $\operatorname{Alg}^* \mathcal{L} = \mathbb{V}(\boldsymbol{A})$.

Corollary

Let A be (finite and non-trivial) without proper subalgebras and a constant 1. For the logic L of ⟨A, {1}⟩ the following are equivalent:
(i) The class Alg*L is a variety.
(ii) A/Ω{1} is everywhere strongly logifiable.

Some properties

If A is everywhere strongly logifiable, then for every F ∈ P(A) \ {Ø, A} the algebraizability of the logic of ⟨A, F⟩ is witnessed by two single element structural transformers.

Some properties

- If A is everywhere strongly logifiable, then for every F ∈ P(A) \ {Ø, A} the algebraizability of the logic of ⟨A, F⟩ is witnessed by two single element structural transformers.
- In congruence permutable varieties the notion of a everywhere strongly logifiable algebra coincides with the one of a primal algebra.

Some properties

- If A is everywhere strongly logifiable, then for every F ∈ P(A) \ {Ø, A} the algebraizability of the logic of ⟨A, F⟩ is witnessed by two single element structural transformers.
- In congruence permutable varieties the notion of a everywhere strongly logifiable algebra coincides with the one of a primal algebra.
- ► For two-element algebras the notion of an everywhere strongly logifiable algebra and the one of a primal algebra coincide.

Example

• Pick a finite bounded poset $\langle A, \leq, 0, 1 \rangle$ such that $|A| \geq 3$.

Example

- Pick a finite bounded poset $\langle A, \leq, 0, 1 \rangle$ such that $|A| \geq 3$.
- Consider $\mathbf{A} = \langle A, \rightarrow, \Delta, \{a : a \in A\} \rangle$ where

$$x \to y := \left\{ egin{array}{ccc} 1 & ext{if } x \leq y \\ y & ext{otherwise} \end{array} & \Delta x := \left\{ egin{array}{ccc} 1 & ext{if } x = 1 \\ 0 & ext{otherwise} \end{array}
ight.$$

for every $x, y \in A$.

Example

- Pick a finite bounded poset $\langle A, \leq, 0, 1 \rangle$ such that $|A| \geq 3$.
- Consider $\mathbf{A} = \langle A, \rightarrow, \Delta, \{a : a \in A\} \rangle$ where

$$x \to y \coloneqq \left\{ egin{array}{cc} 1 & ext{if } x \leq y \\ y & ext{otherwise} \end{array}
ight. \Delta x \coloneqq \left\{ egin{array}{cc} 1 & ext{if } x = 1 \\ 0 & ext{otherwise} \end{array}
ight.$$

for every $x, y \in A$.

• A is everywhere strongly logifiable.

Example

- Pick a finite bounded poset $\langle A, \leq, 0, 1 \rangle$ such that $|A| \geq 3$.
- Consider $\mathbf{A} = \langle A, \rightarrow, \Delta, \{a : a \in A\} \rangle$ where

$$x \to y := \left\{ egin{array}{ccc} 1 & ext{if } x \leq y \\ y & ext{otherwise} \end{array} & \Delta x := \left\{ egin{array}{ccc} 1 & ext{if } x = 1 \\ 0 & ext{otherwise} \end{array}
ight.$$

for every $x, y \in A$.

- A is everywhere strongly logifiable.
- A is not primal:

$$\mathsf{Id}_A \cup (\{1\} \times A) \cup (A \times \{1\})$$

is the universe of a subalgebra of $\boldsymbol{A} \times \boldsymbol{A}$.

 In general the equivalent algebraic semantics of an algebraizable logic is a (generalized) quasi-variety.

- In general the equivalent algebraic semantics of an algebraizable logic is a (generalized) quasi-variety.
- ► Readily falsifiable criteria for the logic of (*A*, *F*) to be algebraizable.

- In general the equivalent algebraic semantics of an algebraizable logic is a (generalized) quasi-variety.
- ► Readily falsifiable criteria for the logic of (A, F) to be algebraizable. Assuming conditions on A?

- In general the equivalent algebraic semantics of an algebraizable logic is a (generalized) quasi-variety.
- ► Readily falsifiable criteria for the logic of (A, F) to be algebraizable. Assuming conditions on A?
- More on the analogy with primal algebras...

Thank you!