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» In this case K is unique. K is called the equivalent algebraic
semantics of L.
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» But in most well-known cases Alg* is a variety.
Examples:
e classical logic «— Boolean algebras
e intuitionistic logic «+— Heyting algebras

e 54 modal logic <— closure algebras

Hajek's basic logic «+— BL-algebras

full Lambek calculus «— residuated lattices
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This posed the following:

Variety problem

Find logically meaningful sufficient conditions under which an
algebraizable logic is strongly algebraizable too.

Definition
1. L is selfextensional when the relation 4k is a congruence.

2. L is Fregean when the relation {{p,¥) : p, " 4k, I 9} is a
congruence for every I'.
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Variety problem

Theorem (Czelakowski and Pigozzi)

1. If £ is a finitary Fregean logic with the uniterm DDT, then it is
strongly algebraizable wrt a variety of Hilbert algebras expanded
with compatible operators.

2. If £ is a finitary protoalgebraic Fregean logic with a conjunction,
then it is strongly algebraizable wrt a variety of Browerian
algebras expanded with compatible operators.

Theorem (Font and Jansana)

Let £ be a finitary selfextensional logic. If £ has either a
conjunction or the uniterm DDT, then AlgL is a variety.
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Everywhere strongly logifiable algebras

Problem

Aim of the talk:

» Introduce the finite algebras that behave in the best possible
way from the point of view of algebraizability theory.

» Characterize them with purely algebraic concepts.

» Draw some conclusion on the variety problem.

Definition

A finite non-trivial algebra A is everywhere strongly logifiable if the
matrix (A, F) determines a strongly algebraizable logic with
equivalent algebraic semantics V(A), for every F € P(A) \ {0, A}.
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Lemma J

Primal algebras are everywhere strongly logifiable.

Let A be a non-trivial primal algebra.
» Pick F € P(A) ~ {0, A}.
» Choose any 1 € F and 0 ¢ F.
» Consider the functions 0: A — A and <i>: A> —» A s.t.

1 ifaeF 1 ifa=bhb
O = =
(a) { 0 otherwise a<> b { 0 otherwise.

By primality O(x) and x <> y are term functions.
» The logic of (A, F) is algebraizable with equivalent algebraic
semantics V(A) via
7(x) = {B(x) = 1(x)} and p(x,y) = {x <> y}.
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Recall that...

Definition

1. An algebra A is constantive if for every a € A there is a term
a(x) that represents the constant function with value a.

2. An algebra A is n-permutable for n > 2 if

¢ if i is even

n otherwise

¢vn:010---00nwhere9;:{

for every ¢,n € ConA.
3. A variety V is n-permutable when so are its members.

4. A variety V is point regular if there is a constant 1 such that for
every A€ V and 6,¢ € A:

if 1/60 =1/¢, then 6 = ¢.
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Everywhere strongly logifiable algebras

Algebraic characterization

Theorem

Let A be a non-trivial finite algebra. The following conditions are
equivalent:

(i) A is everywhere strongly logifiable.

(i) The logic of (A,{a}) is strongly algebraizable with equivalent
algebraic semantics V(A), for every a € A.

(iii) A is simple, without proper subalgebras and V(A) is minimal
and point regular.

(iv) A'is simple, constantive and V(A) is congruence distributive
and n-permutable for some n > 2.
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Remark

If

the logic of (A, {a}) is strongly algebraizable with equivalent
algebraic semantics V(A) for every a € A,

then

A is simple, without proper subalgebras and V(A) is minimal and
point regular.

e A is constantive.

e V(A) is the equivalent algebraic semantics of the logic £
determined by (A, {a}). Hence V(A) is point regular.

o Aissimple: {{a}, A} = FisA = ConA.
e V(A) = Q(A). Hence V(A)s C ISP,(A) = I{A}. Hence V(A) is
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Remark

If

A is simple, constantive and V(A) is congruence distributive and
n-permutable for some n > 2,

then

the logic of (A, F) is strongly algebraizable with equivalent
algebraic semantics V(A) for every F € P(A) \ {0, A}.

e There are 1 € F and 0 ¢ F such that Al 1y is polynomially
equivalent to the two-element Boolean algebra.

e For every different a, b € A there is a polynomial p,, such that

pab[A] = {07 1} and Pab(a) 7& pab(b)‘
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Sketch of the proof

» Let F ={a1,...,an} and consider the terms

x <>y = \{pap(x) > pab(y) : a,b € A and a # b}
0(x) = \/ (/\ {pa,.,,(x) & Pap(ai(x)) 1 b€ AN {a,-}}).

i<n
» It is easy to prove that:
I'tr o= {0() = 1(7) :v € '} Fa O(p) = 1p)
x~y=E,0x <> y) = 1(x <> y).

» L is algebraizable with equivalent algebraic semantics Q(A)
through the structural transformers

7(x) = {0(x) = 1(x)} and p(x,y) = {x <> y}.
» By Jonsson's lemma Q(A) = V(A).
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Let A be finite and non-trivial. A is everywhere strongly logifiable if
and only if A has no proper subalgebra and there is a € A such that
the logic £ of (A, {a}) has theorems and Alg*L = V(A).

W

Corollary

Let A be (finite and non-trivial) without proper subalgebras and a
constant 1. For the logic £ of (A, {1}) the following are equivalent:

(i) The class Alg*Z is a variety.

(i) A/£2{1} is everywhere strongly logifiable.
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» If A is everywhere strongly logifiable, then for every
F € P(A) ~ {0, A} the algebraizability of the logic of (A, F) is
witnessed by two single element structural transformers.

» In congruence permutable varieties the notion of a everywhere
strongly logifiable algebra coincides with the one of a primal
algebra.

» For two-element algebras the notion of an everywhere strongly
logifiable algebra and the one of a primal algebra coincide.
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A counterexample

Example
> Pick a finite bounded poset (A, <,0,1) such that |A| > 3.
» Consider A= (A, —,A,{a: a e A}) where

M 1 ifx<y Ax 1 ifx=1
Y= y otherwise "1 0 otherwise

for every x,y € A.
» A is everywhere strongly logifiable.

» A is not primal:

lda U ({1} x A) U (A x {1})

is the universe of a subalgebra of A x A.
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Consequences

Some questions

» In general the equivalent algebraic semantics of an
algebraizable logic is a (generalized) quasi-variety.

» Readily falsifiable criteria for the logic of (A, F) to be
algebraizable. Assuming conditions on A?

» More on the analogy with primal algebras...
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Thank you!
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