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THE PROBLEM

� Perhaps one of the most intriguing open problems in Modal Logic
is the following:

PROBLEM. Do the logics of the form K + 2np→ 2mp have the

�nite model property? �

Wolter F., Zakharyaschev M. Handbook of Modal Logic. Modal

decision problems. � Elsevier, 2007.

This problem appears already in the 1960s in papers by Segerberg
and Soboci�nski.

K + 22p→ 222p is the simplest case where FMP is unknown.
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Known cases

Km
n = K + 2mp→ 2np

In some cases the FMP is known:

m = n is trivial

K4 = K1
2

K2
1 � the density logic.

m ≤ 1 or n ≤ 1 FMP via �ltration [Gabbay, 1972]
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The pretransitive case: m < n

De�nition

A logic L is called pretransitive (or conically expressive), if there
exists a formula χ(p) with a single variable p such that for any
Kripke model M with M |= L and for any w in M we have:

M,w |= χ(p)⇔ ∀u(wR∗u⇒M,u |= p),

where R∗ is the transitive re�exive closure of the acceptability
relation on M .

By 2∗ϕ we mean χ(ϕ), ♦∗ϕ = ¬2∗¬ϕ.

For n > m ≥ 1, all logics Kmn are pretransitive:

if L ` 2p→ 22p, 2∗ϕ = ϕ ∧2ϕ;

if L ` 22p→ 222p, 2∗ϕ = ϕ ∧2ϕ ∧22ϕ;

if L ` 2mp→ 2np, 2∗ϕ = 2≤n−1ϕ = ϕ ∧2ϕ ∧ · · · ∧2n−1ϕ



Lemma (Shehtman, 2009)

L is pretransitive i� for some m ≥ 0 it contains the formula of

m-transitivity 2≤mp→ 2m+1p, where

2≤mϕ =

m∧
i=0

2iϕ.

K≤m = K + 2≤mp→ 2m+1p

F |= K≤m ⇔ R0 ∪R1 ∪ · · · ∪ Rm is transitive.

Problem

For logics K≤m = K + 2≤mp→ 2m+1p, the FMP is also unknown
for all m > 1 (the weakly transitive logic
K≤1 = wK4 = K + 2p ∧ p→ 22p is known to have the FMP).



Plan of the attack on the problem

To get the FMP we need to conquer 3 in�nities:

1 in�nite clusters [K & Sh, 2011]

2 in�nite branching [K & Sh, 2015] (given that the depth is
�nite)

3 in�nite depth � future work
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Known results with symmetry

If we add the symmetry axiom for 2∗ then the FMP is known:

K≤m + p→ 2∗♦∗p FMP via minimal �ltration
[Jansana, 1994]

Km
n + p→ 2∗♦∗p FMP via �ltration through special

equivalence
[K&Sh, TACL 2011]



We de�ne the following formulas:

B1 = p1 → 2∗♦∗p1,

Bn+1 = pn+1 → 2∗(♦∗pn+1 ∨Bn).

Proposition

If L is a pretransitive logic and F � L, then

F � Bn ⇔ h(F ) ≤ n.

where h(F ) is the depth of frame F .

Theorem

If L is a pretransitive logic then

1 L+B1 ⊇ L+B2 ⊇ L+B3 ⊇ . . . ⊇ L.

2 If L is consistent then L+B1 (and all L+Bn) are consistent.

3 If L is canonical then all L+Bn are canonical



Finite depth

Theorem

If L is a pretransitive logic then

1 L+B1 ⊇ L+B2 ⊇ L+B3 ⊇ . . . ⊇ L.

2 If L is consistent then L+B1 (and all L+Bn) are consistent.

3 If L is canonical then all L+Bn are canonical

Corollary

Logics Km
n +Bk and K≤m +Bk for n > m ≥ 1 are Kripke complete.

NOTE B1 is the symmetry axiom for 2∗. So case k = 1 is already
known.



Main theorem

Theorem

For all n > m ≥ 1, h ≥ 1, Km
n +Bh and K≤m +Bh have the FMP.

We prove it using �ltration. But we need to �lter the model several
times using di�erent equivalences.

Corollary

Let L be one of the logics Km
n , K≤m, n > m ≥ 1.

L has the FMP i� L =
⋂
h≥1

(L +Bh) .
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Filtration with �ne tuning

Let Ψ be a set of formulas, closed under subformulas. We de�ne
equivalence relation on model M = (W,R, V )

x ≡Ψ y ⇔ ∀A ∈ Ψ(M,x |= A⇔M,y |= A).

Consider ∼ ⊆ ≡Ψ.
Model M ′ = (W/ ∼, R′, V ′) is (∼,Ψ)-�ltration of M = (W,R, V )
if

[x]R′[y]⇔ ∃x′ ∼ x∃y′ ∼ y(x′Ry′)

V ′(p) = {[x] | x ∈ V (p)}



Steps of the proof:

1. Filter to make all R∗-clusters �nite.

2. Filter the upper level so that all cones of depth 2 are �nite.

...

i. Filter the i-th level so that all cones of depth i are �nite.

...

h. Filter the bottom level.
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Make all clusters �nite

Consider an R∗-cluster V . For r ∈ V we de�ne

H(r) = {α |α is a loop in r} .
H(r) is a monoid with concatenation operation.
Function of taking the length of loop l : H(r)→ Z is a
homomorphism of monoids.
De�ne H](r) = l(H(r)).
Let k = n−m and Z/kZ be a cyclic group of order k.
f : Z→ Z/kZ is the standard epimorphism.

Lemma

f(H](r)) is a subgroup of Z/kZ.

Hence f(H](r)) = {0, d, 2d, . . .} for d is the minimal positive

element of f(H]) and for any α ∈ H(r) l(α)
... d.

Lemma

Group f(H](r)) do not depend on r.
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Make all clusters �nite-2

We de�ne ≈d on V :

x ≈d y ⇔ there is a path of length l ∈ dZ.

∼ = ≈d ∩ ≡Ψ .

Lemma

Let M ′ = (F ′, V ′) be the (∼,Ψ)-�ltration of M . Then F ′ is an
(m,n)-frame. All R∗-clusters are �nite of size no greater then

2d·|Ψ|.



Steps of the proof:

1. Filter to make all R∗-clusters �nite.

2. Filter the upper level so that all cones of depth 2 are �nite.

...

i. Filter the i-th level so that all cones of depth i are �nite.
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h. Filter the bottom level.



Filtrating i-th level

Let M1 is the model after 1st �ltration with �nite clusters. In M2

all cones of depth 2 are �nite. And so on.
Let us show how to get Mi.



Steps of the proof:
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Filtrating level i

level i: L(i) = {x | h(F x) = i};

X = {x ∈W | h(F x) > i}, Y = Li(F ), Z = {x ∈W | h(F x) < i}.

Suppose x ∈ Y , C is the cluster of x. Put for z ∈ Z, ψ ∈ Ψ:

Pz = R−1(z) ∩ C; Pψ := {y ∈ C |M,y � ψ}.

A(x) := (C,R�C, (Pz)z∈Z , (Pψ)ψ∈Ψ), x).

x ∼ y � A(x) ∼= A(y)

If the size of any cluster is bounded by N , then Y/∼ is �nite:

|Y/∼| ≤ N · 2N×N · 2N×|Ψ| · 2N×|Z| ·N
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Main lemma

Lemma

Let L be one of the logics Km
n , K≤m, n > m ≥ 1. If a formula is

satis�able in an L-frame of �nite depth h, then it is satis�able in a

�nite L-frame of depth h; the size of the �nite frame is bounded by

22. .
.
2l
}
h,

where l is the length of the formula.



Grazie!
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