On Completeness of Logics Enriched with Transitive Closure Modality

Ilya Shapirovsky¹ Evgeny Zolin²

 ¹ Institute for Information Transmission Problems, Russian Academy of Sciences
² Faculty of Mathematics and Mechanics, Moscow State University, Russia

Topology, Algebra, and Categories in Logic (TACL 2015) Ischia (Italy), June 22nd, 2015

Transitive closure modality

The transitive closure of a binary relation R is denoted by R^+ . Given a frame F = (W, R), we write $F^{(+)} = (W, R, R^+)$. For a class of frames \mathcal{F} , denote $\mathcal{F}^{(+)} = \{F^{(+)} \mid F \in \mathcal{F}\}$.

The extension of a normal unimodal logic **L** with the *transitive* closure modality \boxplus is the minimal normal bimodal logic L^{\boxplus} that contains **L** and the axioms:

$$\begin{array}{c} (\mathsf{A1}) & \boxplus p \to \Box p, \\ (\mathsf{A3}) & \Box p \land \boxplus (p \to \Box p) \to \boxplus p. \end{array} \end{array}$$

Fact

$$(W, R, S) \models (A1) \land (A2) \land (A3)$$
 iff $S = R^+$.

Fact

$$\mathsf{Frames}(\mathsf{L}^{\boxplus}) = \mathsf{Frames}(\mathsf{L})^{(+)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Question

Which properties transfer from L to L^{\boxplus} ?

In particular, are there general Kripke completeness results for L^{\oplus} ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question

Which properties transfer from L to L^{\boxplus} ?

In particular, are there general Kripke completeness results for L^{\boxplus} ?

Our result:

Kripke completeness, and moreover — the finite model property (FMP), are preserved in the case when

- L is canonical and
- L-frames admit what we call definable filtrations.

For a model M and a set of formulas Γ , $x \sim_{\Gamma} y \rightleftharpoons \forall A \in \Gamma \ (M, x \models A \Leftrightarrow M, y \models A).$

Definition (Filtration)

Let Γ be a finite sub-closed set of formulas. A Γ -filtration of M = (W, R, V) is a finite model $\widehat{M} = (\widehat{W}, \widehat{R}, \widehat{V})$ s.t. • $\widehat{W} = W/\sim$ for some equivalence relation \sim such that $\sim \subseteq \sim_{\Gamma}$, i.e., \sim respects all formulas from Γ 2 $\hat{x} \models p \Leftrightarrow x \models p$ for all $p \in \Gamma$ 3 $R^{\min} \subseteq \widehat{R} \subseteq R_{A}^{\max}$, where $\widehat{x} R^{\min} \widehat{v} \iff \exists x' \sim x \exists v' \sim v : x' R v'$ $\widehat{x} R^{\max}_A \widehat{y} \iff \forall$ formula $\Box B \in$ Sub(A) $(x \models \Box B \implies y \models B)$ If $\sim = \sim_{\Lambda}$ for some finite sub-closed set of formulas $\Delta \supset \Gamma$, then M is called a *definable* Γ -*filtration* of the model M.

Filtration lemma

$$\forall B \in \mathsf{\Gamma} \quad \left(M, x \models B \Leftrightarrow \widehat{M}, \widehat{x} \models B \right)$$

Definition

A class of frames \mathcal{F} admits (definable) filtration if, for every \mathcal{F} -model M and every finite sub-closed set of formulas Γ , there exists an \mathcal{F} -model \widehat{M} that is a (definable) Γ -filtration of M.

Observation

If a logic L is complete w.r.t. some class of frames that admits filtration, then L has the FMP.

Example (Lemmon, Scott, Segerberg, Gabbay)

Frames(L) admits definable filtration for the following logics L:

- K, T, K4, S4, B, S5, S4.1;
- $\mathbf{K} + \Box p \rightarrow \Box^m p$, for $m \ge 0$;
- $\mathbf{K} + \Box^m p \rightarrow \Box p$, for $m \ge 0$.

Theorem (Kikot + Sh + Zolin, 2014)

If a class of frames \mathcal{F} admits (definable) filtration, then the class $\mathcal{F}^{(+)}$ admits (definable) filtration too.

Theorem (Kikot + Sh + Zolin, 2014)

If a class of frames \mathcal{F} admits (definable) filtration, then the class $\mathcal{F}^{(+)}$ admits (definable) filtration too.

Corollary

Suppose

• Frames(L) admits filtration

• L[#] is Kripke complete.

Then L^{\oplus} has the FMP.

Proof.

Indeed, let $\mathcal{F} = \text{Frames}(L)$. Then $\mathcal{F}^{(+)} = \text{Frames}(L^{\boxplus})$. So we only need completeness of L^{\boxplus} to obtain the FMP.

Theorem (Kikot + Sh + Zolin, 2014)

If a class of frames \mathcal{F} admits (definable) filtration, then the class $\mathcal{F}^{(+)}$ admits (definable) filtration too.

Corollary

Suppose

• Frames(L) admits filtration

• L^H is Kripke complete.

Then L^{\oplus} has the FMP.

Proof.

Indeed, let $\mathcal{F} = \text{Frames}(L)$. Then $\mathcal{F}^{(+)} = \text{Frames}(L^{\boxplus})$. So we only need completeness of L^{\boxplus} to obtain the FMP.

Prove the Kripke completeness, get the FMP for free!

Theorem (Main result)

Suppose

- L is canonical
- Frames(L) admits definable filtration

Then

- L[⊞] is Kripke complete
- Frames(L[⊞]) admits definable filtration

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(and hence L^{\boxplus} has the FMP).

Example

Let L be the density logic $K + \Box \Box p \rightarrow \Box p$ (or even $K + \Box^m p \rightarrow \Box p$ for some $m \ge 0$). Then L^{\boxplus} has the FMP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- L is canonical
- Frames(L) admits definable filtration
- L[⊞] is Kripke complete
- $Frames(L^{\boxplus})$ admits definable filtration

- L is canonical
- Frames(L) admits definable filtration
- L[⊞] is Kripke complete
- Frames(L[⊞]) admits definable filtration

(日) (伊) (日) (日) (日) (0) (0)

 L^{\boxplus} is not canonical in general. E.g. K^{\boxplus} is not canonical.

- L is canonical
- Frames(L) admits definable filtration
- L[⊞] is Kripke complete
- $Frames(L^{\boxplus})$ admits definable filtration

 L^{\oplus} is not canonical in general. E.g. K^{\oplus} is not canonical.

By the way, it seems that

 L^{\boxplus} is canonical iff \boxplus is expressible in L, i.e., L is *pretransitive* (e.g., L is K4, or $K + \Box p \rightarrow \Box \Box \Box p$, or $K + \Box \Box p \rightarrow \Box \Box \Box p$).

- L is canonical
- Frames(L) admits definable filtration
- L[⊞] is Kripke complete
- $Frames(L^{\boxplus})$ admits definable filtration

 L^{\boxplus} is not canonical in general. E.g. K^{\boxplus} is not canonical.

We cannot use our result to iterate this operation: the premise of the theorem for L is stronger than its conclusion for the resulting logic. Nevertheless...

Definition

A class of models \mathcal{M} admits (definable) filtration if, for every $M \in \mathcal{M}$ and every finite sub-closed set of formulas Γ , there exists a model $\widehat{M} \in \mathcal{M}$ that is a (definable) Γ -filtration of M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Observation

If the class Models(L) admits filtration, then L has the FMP.

Definition

A class of models \mathcal{M} admits (definable) filtration if, for every $M \in \mathcal{M}$ and every finite sub-closed set of formulas Γ , there exists a model $\widehat{M} \in \mathcal{M}$ that is a (definable) Γ -filtration of M.

Observation

If the class Models(L) admits filtration, then L has the FMP.

Theorem (Main result-2)

If the class of all L-models admits definable filtration, then the class of all L^{\oplus} -models admits definable filtration (so L^{\oplus} has the FMP).

Now we can use the new theorem to iterate the operation in the polymodal case.

Upcoming result

Suppose that Φ is a finite set of *n*-modal formulas such that

 $Models(K_n + \Phi)$ admits definable filtration.

Then the extension of the *PDL* with axioms Φ axiomatizing atomic modalities has the finite model property.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Thank you!

◆□ > < 個 > < E > < E > E 9 < 0</p>