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Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan
There is a correspondence between complexity constraints and algebras.

Two important motivations:

Ï obtain a uniform mathematical approach to CT
Ï gain new proof methods from mathematics

At the intersection between two lines of work:

Ï Implicit Computational Complexity, especially approaches using linear logic.
Ï Interaction Graphs. A quantitative version of Girard’s Geometry of

Interaction;
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Proofs as Programs – Curry-Howard – correspondence

Proof Theory Computer Science
Proof Program
Proof Data

Cut rule Application
Cut Elimination Execution (Computation)

Formulas Types
. . . . . .
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Proofs as Programs – Curry-Howard – correspondence

Integers: nat :=∀X (X →X)→ (X →X)

Functions from integers to integers: nat→ nat

If [n] is a (cut-free) proof of nat, and [f ] a proof of nat→ nat, we can define
the proof [f ][n]:

...
[f ]

nat` nat

...
[n]

` nat
cut` nat

The cut elimination procedure applied to [f ][n] corresponds (step by step) to
the computation of f (n). The cut-free proof it produces is equal to [f (n)].
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Linear Logic and Implicit Computational Complexity

Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra !A :=⊕

kÉ0 A⊗A⊗·· ·⊗A

A

!A

B
f

f ◦

Linear logic is obtained by just “pulling back” this decomposition into the
syntax, i.e. the usual implication A⇒B becomes !A(B;
LL for Complexity. The rules governing the modality ! can be modified to
define sub-systems characterising complexity classes. E.g. Elementary
Linear Logic (ELL), Light Linear Logic (LLL).

Proofs of !nat( nat in ELL are exactly the functions computable in elementary time.

Proofs of !nat( nat in LLL are exactly the functions computable in polynomial time.
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Interaction Graphs
It is a model of programs/proofs and their dynamics.

Logic CS IG
Proof Program Graph

π`Nat⇒Nat f : nat→ nat
• • • •

Proof Data Graph

ρ `Nat n : nat
• •

Cut Rule Application Common Vertices
cut(π,ρ)`Nat f (n)

• •
• •

• •

Cut elim. Computation (Alt.) Paths
cut(π,ρ) µ`Nat f (n) m : nat

• •
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Logic CS IG
Proof Program Graphing

π`Nat⇒Nat f : nat→ nat
• • • •

Proof Data Graphing
ρ `Nat n : nat

• •
Cut Rule Application Common “Vertices”

cut(π,ρ)`Nat f (n)
• •
• •

• •

Cut elim. Computation (Alt.) Paths
cut(π,ρ) µ`Nat f (n) m : nat

• •

This yields models of (fragments of) Linear Logic using realizability techniques.
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Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?

Pick a directed graph, add weights (from a monoid Ω) on the edges.

Consider that vertices are measurable sets, e.g. intervals.

Decide how the edges map sources to targets.
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x 7→ 5−x 1
2
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Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?

Pick a directed graph, add weights (from a monoid Ω) on the edges.

Consider that vertices are measurable sets, e.g. intervals.

Decide how (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:

A measure space (X,B,µ);

A monoid Ω;

A monoid m of measurable maps X →X – called a microcosm;

A type of graphing (e.g. deterministic, probabilistic);

A measurable map m :Ω→RÊ0 ∪ {∞}.
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A Complexity-through-Realizability Theory

Principle. Characterise complexity classes by the type Words(2)
{0,1} of

predicates over binary words in a given model (this type always exists).

Deterministic case. Consider an element A of the type !Words(2)
{0,1}(Bool.

Ï Then A defines a language defined as

{w | A :: [w]= true}

Ï The above type thus defines a complexity class.

General case. Consider an element A of the type !Words(2)
{0,1}(NBool.

Ï Define a notion of test T (elements of the model);
Ï A defines a language w.r.t. T

{w | A :: [w]‹ T}

where ‹ is an “orthogonality relation” used to define types.
Ï The above type then defines a complexity class w.r.t. T.
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Summary of Results

We can define microcosms

m1 ⊂m2 ⊂ ·· · ⊂m∞ ⊂ n⊂ p

in order to obtain the following characterisations.

Microcosm Mdet
m Mndet

m Mndet
m M

prob
m Logic Machines

m1 REG REG REG STOC MALL 2-way Automata (2FA)
...

...
...

...
...

...
...

mk Dk Nk CONk Pk (. . . ) k-heads 2FA
...

...
...

...
...

...
...

m∞ L NL CONL PL (. . . ) multihead-head 2FA (2MHFA)
n P P P P? (. . . ) 2MHFA + Pushdown Stack
p P NP CONP PP? ELL Ptime Turing Machines

Conjecture: microcosms correspond to complexity constraints.
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The conjecture, formally

We define an equivalence relation on microcosms.

Notation: we pick a type of graphings (e.g. probabilistic) and a test, and
write Pred(m) the set of languages accepted by elements of
!Words(2)

{0,1}(NBool w.r.t. the chosen test.

Theorem
If m≡ n, then Pred(m)= Pred(n).

Conjecture
The converse holds, i.e. Pred(m)= Pred(n) implies m≡ n.

If this conjecture holds, it would provide new proof techniques for separation
through (co)homological invariants, e.g. `(2)-Betti numbers:

Pred(m)= Pred(n)⇒m≡ n⇒P (m)'P (n)
!⇒`(2)(P (m))= `(2)(P (m))

where P (m)= {(x,y) | ∃m ∈m,m(x)= y} is a “measurable preorder”.
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Conclusion

A good “working hypothesis”:
Ï homogeneous approach of complexity theory (CT) (diff. computational

paradigms, higher-order functions)
Ï inherits the advantages of logic-based approaches to CT, e.g.

machine-independent, possibility of computing complexity bounds statically

Not a miraculous technique for separation results:
Ï “Borel Equivalence Relations” are well-studied (ergodic theory, descriptive set

theory), however measurable preorders are not (in particular, no `(2)-Betti
numbers in this case);

Ï Need to characterise complexity classes in the right way;
Ï However, it is not naturally seen as a “natural proof”.
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In a nutshell

The purpose is to relate two problems:
Mathematics. Are two spaces X,Y homotopy equivalent?

Ï Difficult to answer negatively;

Ï Some proof methods available (e.g. (co)homological invariants).

C.S. Are two complexity classes A,B equal?
Ï Difficult to answer negatively;

Ï No proof methods available, c.f. Natural Proofs.
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