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Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and algebras. J
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Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of)
algebras (modulo isomorphisms).

o Two important motivations:

> obtain a uniform mathematical approach to CT
> gain new proof methods from mathematics

@ At the intersection between two lines of work:

> Implicit Computational Complexity, especially approaches using linear logic.
> Interaction Graphs. A quantitative version of Girard’s Geometry of
Interaction;
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Proofs as Programs — Curry-Howard — correspondence

Proof Theory Computer Science
Proof Program
Proof Data
Cut rule Application
Cut Elimination | Execution (Computation)
Formulas Types
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Proofs as Programs — Curry-Howard — correspondence

Integers: nat:=v¥X X —-X)—-> X —-X)

Functions from integers to integers: nat — nat

If [n] is a (cut-free) proof of nat, and [f] a proof of nat — nat, we can define
the proof [f1[n]:

1 ]

natnat F nat
F nat
The cut elimination procedure applied to [f1[n] corresponds (step by step) to
the computation of f(n). The cut-free proof it produces is equal to [f(n)].

cut
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Linear Logic and Implicit Computational Complexity

e Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra A := @ (ARA® ---®A
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o Linear logic is obtained by just “pulling back” this decomposition into the
syntax, i.e. the usual implication A = B becomes !A — B;

A

o LL for Complexity. The rules governing the modality ! can be modified to
define sub-systems characterising complexity classes. E.g. Elementary
Linear Logic (ELL), Light Linear Logic (LLL).

Proofs of Inat —onat in ELL are exactly the functions computable in elementary time. )

Proofs of Inat —o nat in LLL are exactly the functions computable in polynomial time. )
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Interaction Graphs

It is a model of programs/proofs and their dynamics.
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Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ G
Proof Program Graph
7+ Nat = Nat f:nat —nat ey
ese e¢e
Proof Data Graph
pHNat n:nat e
Cut Rule Application Common Vertices
cut(r,p) - Nat f(n) VYR
L p— o o
I I
O O
Cut elim. Computation (Alt.) Paths

cut(m, p) ~ pu+ Nat

f(n)~ m:nat
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cut(m, p) ~ pu+ Nat

f(n)~ m:nat

Logic CS 1G
Proof Program Graphing
7+ Nat = Nat f:nat —nat ey
ese e<¢e
Proof Data Graphing
pHNat n:nat e
Cut Rule Application Common “Vertices”
cut(r,p) - Nat f(n) VN
o — e o o
I I
O O
Cut elim. Computation (Alt.) Paths

vooU

This yields models of (fragments of) Linear Logic using realizability techniques.
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Basic hypothesis: Programs as graphings. So... what’s a graphing?
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2
m
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Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.

o Consider that vertices are measurable sets, e.g. intervals.

[T

cos(0)

-

[0,1] [1,2] [3,4] [4,5]
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Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how the edges map sources to targets.

1
x—5-x 3

x— (x—1)% +2 cos()
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Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:
@ A measure space (X, %, );
@ A monoid Q;
@ A monoid m of measurable maps X — X — called a microcosm;
o A type of graphing (e.g. deterministic, probabilistic);
@ A measurable map m : Q — R3¢ U {o0}.
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Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:
@ A measure space (X, %, 1);
@ A monoid €;
@ A monoid m of measurable maps X — X — called a microcosm;
o A type of graphing (e.g. deterministic, probabilistic);

@ A measurable map m : Q — R3q U {o0}.
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A Complexity-through-Realizability Theory

o Principle. Characterise complexity classes by the type Words%)l} of

predicates over binary words in a given model (this type always exists).
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o Principle. Characterise complexity classes by the type Words%)l} of

predicates over binary words in a given model (this type always exists).

2)

01 ° Bool.

@ Deterministic case. Consider an element A of the type !Words?
> Then A defines a language defined as

{ro | A::[to] = true}

> The above type thus defines a complexity class.
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A Complexity-through-Realizability Theory

o Principle. Characterise complexity classes by the type Words%)l} of

predicates over binary words in a given model (this type always exists).
@ Deterministic case. Consider an element A of the type !Words%)l} —o Bool.
> Then A defines a language defined as

{ro | A::[to] = true}
> The above type thus defines a complexity class.

@ General case. Consider an element A of the type !Words%)l) —o NBool.

» Define a notion of test T (elements of the model);
> A defines a language w.r.t. T

{o|A:[w] L T}

where L is an “orthogonality relation” used to define types.
> The above type then defines a complexity class w.r.t. T.
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Summary of Results

We can define microcosms

mpcmgC:---CMeCNCP

in order to obtain the following characterisations.

Microcosm | Mdet  pgndet  pqndet M?;Ob Logic Machines
mp REG REG REG SToc MALL 2-way Automata (2FA)
my D, Ny, CONp, Py (...) k-heads 2FA
Moo L NL CONL PL (...) multihead-head 2FA (2MHFA)
n P P P pP? (... 2MHFA + Pushdown Stack
p P NP CONP PP? ELL Ptime Turing Machines

Conjecture: microcosms correspond to complexity constraints.
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The conjecture, formally

@ We define an equivalence relation on microcosms.

o Notation: we pick a type of graphings (e.g. probabilistic) and a test, and
write Pred(m) the set of languages accepted by elements of

!Words%)l) —o NBool w.r.t. the chosen test.

Theorem
If m=n, then Pred(m) = Pred(n). J

Conjecture
The converse holds, i.e. Pred(m) = Pred(n) implies m = n. J

If this conjecture holds, it would provide new proof techniques for separation
through (co)homological invariants, e.g. ¢®-Betti numbers:

Pred(m) = Pred(n) = m = n = P(m) = P(n) > 2(P(m)) = ¢ (P(m))

where Z2(m) = {(x,y) | 3m € m,m(x) =y} is a “measurable preorder”.
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Conclusion

@ A good “working hypothesis”:
> homogeneous approach of complexity theory (CT) (diff. computational
paradigms, higher-order functions)
> inherits the advantages of logic-based approaches to CT, e.g.
machine-independent, possibility of computing complexity bounds statically
@ Not a miraculous technique for separation results:
> “Borel Equivalence Relations” are well-studied (ergodic theory, descriptive set
theory), however measurable preorders are not (in particular, no 02 Betti
numbers in this case);
> Need to characterise complexity classes in the right way;
> However, it is not naturally seen as a “natural proof™.
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In a nutshell

The purpose is to relate two problems:
o Mathematics. Are two spaces X,Y homotopy equivalent?
> Difficult to answer negatively;

o C.S. Are two complexity classes A,B equal?

> Difficult to answer negatively;
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In a nutshell

The purpose is to relate two problems:
o Mathematics. Are two spaces X,Y homotopy equivalent?

> Difficult to answer negatively;
> Some proof methods available (e.g. (co)homological invariants).

o C.S. Are two complexity classes A,B equal?

> Difficult to answer negatively;
> No proof methods available, c.f. Natural Proofs.
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