Measurable Preorders and Complexity

Thomas Seiller!
Proofs, Programs, Systems — Paris 7 University

seiller@ihes.fr

TACL 2015
June 26th, 2015

IPartially supported by ANR-12-JS02-006-01 COQUAS.
June 26th, 2015 1/12

Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and algebras. J

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015 2/12

Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of)
algebras (modulo isomorphisms).

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 2/12

Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of)
algebras (modulo isomorphisms).

o Two important motivations:

> obtain a uniform mathematical approach to CT
> gain new proof methods from mathematics

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 2/12

Contents of the talk

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of)
algebras (modulo isomorphisms).

o Two important motivations:

> obtain a uniform mathematical approach to CT
> gain new proof methods from mathematics

@ At the intersection between two lines of work:

> Implicit Computational Complexity, especially approaches using linear logic.
> Interaction Graphs. A quantitative version of Girard’s Geometry of
Interaction;

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 2/12

Proofs as Programs — Curry-Howard — correspondence

Proof Theory Computer Science
Proof Program
Proof Data
Cut rule Application
Cut Elimination | Execution (Computation)
Formulas Types

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 3/12

Proofs as Programs — Curry-Howard — correspondence

Integers: nat:=v¥X X —-X)—-> X —-X)

Functions from integers to integers: nat — nat

If [n] is a (cut-free) proof of nat, and [f] a proof of nat — nat, we can define
the proof [f1[n]:

1]

natnat F nat
F nat
The cut elimination procedure applied to [f1[n] corresponds (step by step) to
the computation of f(n). The cut-free proof it produces is equal to [f(n)].

cut

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 3/12

Linear Logic and Implicit Computational Complexity

e Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra A := @ (ARA® ---®A

. -
17

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 4/12

Linear Logic and Implicit Computational Complexity

e Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra A := @ (ARA® ---®A

a -
I

o Linear logic is obtained by just “pulling back” this decomposition into the
syntax, i.e. the usual implication A = B becomes !A — B;

-

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 4/12

Linear Logic and Implicit Computational Complexity

e Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra A := @ (ARA® ---®A

a -
I

o Linear logic is obtained by just “pulling back” this decomposition into the
syntax, i.e. the usual implication A = B becomes !A — B;

A

o LL for Complexity. The rules governing the modality ! can be modified to
define sub-systems characterising complexity classes. E.g. Elementary
Linear Logic (ELL), Light Linear Logic (LLL).

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 4/12

Linear Logic and Implicit Computational Complexity

e Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra A := @ (ARA® ---®A

a -
I

o Linear logic is obtained by just “pulling back” this decomposition into the
syntax, i.e. the usual implication A = B becomes !A — B;

A

o LL for Complexity. The rules governing the modality ! can be modified to
define sub-systems characterising complexity classes. E.g. Elementary
Linear Logic (ELL), Light Linear Logic (LLL).

Proofs of Inat —onat in ELL are exactly the functions computable in elementary time.)

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 4/12

Linear Logic and Implicit Computational Complexity

e Normal functors (Girard). A model of programs as functors, in which
functors representing programs are analytical, i.e. can be factored through
a linear functor on a kind of tensor algebra A := @ (ARA® ---®A

a -
I

o Linear logic is obtained by just “pulling back” this decomposition into the
syntax, i.e. the usual implication A = B becomes !A — B;

A

o LL for Complexity. The rules governing the modality ! can be modified to
define sub-systems characterising complexity classes. E.g. Elementary
Linear Logic (ELL), Light Linear Logic (LLL).

Proofs of Inat —onat in ELL are exactly the functions computable in elementary time.)

Proofs of Inat —o nat in LLL are exactly the functions computable in polynomial time.)

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 4/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

[Logic | CS | 1G
Proof Program Graph
Proof Data Graph

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ 1G
Proof Program Graph
Proof Data Graph
Cut Rule Application Common Vertices

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ 1G
Proof Program Graph
Proof Data Graph
Cut Rule Application Common Vertices
Cut elim. Computation (Alt.) Paths

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ 1G
Proof Program Graph
7+ Nat = Nat f:nat —nat ey
ese e¢e
Proof Data Graph
Cut Rule Application Common Vertices
Cut elim. Computation (Alt.) Paths

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ 1G
Proof Program Graph
7+ Nat = Nat f:nat —nat ey
ese e¢e
Proof Data Graph
pHNat n:nat e
Cut Rule Application Common Vertices
Cut elim. Computation (Alt.) Paths

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ G
Proof Program Graph
7+ Nat = Nat f:nat —nat ey
ese e¢e
Proof Data Graph
pHNat n:nat e
Cut Rule Application Common Vertices
cut(r,p) - Nat f(n) VYR
L p— o o
I I
O O
Cut elim. Computation (Alt.) Paths

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

5/12

Interaction Graphs

It is a model of programs/proofs and their dynamics.

\ Logic \ CS \ G
Proof Program Graph
7+ Nat = Nat f:nat —nat ey
ese e¢e
Proof Data Graph
pHNat n:nat e
Cut Rule Application Common Vertices
cut(r,p) - Nat f(n) VYR
L p— o o
I I
O O
Cut elim. Computation (Alt.) Paths

cut(m, p) ~ pu+ Nat

f(n)~ m:nat

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

5/12

cut(m, p) ~ pu+ Nat

f(n)~ m:nat

Logic CS 1G
Proof Program Graphing
7+ Nat = Nat f:nat —nat ey
ese e<¢e
Proof Data Graphing
pHNat n:nat e
Cut Rule Application Common “Vertices”
cut(r,p) - Nat f(n) VN
o — e o o
I I
O O
Cut elim. Computation (Alt.) Paths

vooU

This yields models of (fragments of) Linear Logic using realizability techniques.

T. Seiller (PPS) Measurable Preorders and Complexity

June 26th, 2015

6/12

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?

Measurable Preorders and Complexity

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.

1

2
m
L] L] L[]]

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 7/12

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.

o Consider that vertices are measurable sets, e.g. intervals.

[T

cos(0)

-

[0,1] [1,2] [3,4] [4,5]

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 7/12

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how the edges map sources to targets.

1
x—5-x 3

x— (x—1)% +2 cos()

-

[0,1] [1,2] [3,4] [4,5]

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015

7/12

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:
@ A measure space (X, %,);
@ A monoid Q;
@ A monoid m of measurable maps X — X — called a microcosm;
o A type of graphing (e.g. deterministic, probabilistic);
@ A measurable map m : Q — R3¢ U {o0}.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 7/12

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:
@ A measure space (X, %,);
@ A monoid €;
@ A monoid m of measurable maps X — X — called a microcosm;
o A type of graphing (e.g. deterministic, probabilistic);

@ A measurable map m : QQ — R U {oo}.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 7/12

Basics

Basic hypothesis: Programs as graphings. So... what’s a graphing?
@ Pick a directed graph, add weights (from a monoid Q) on the edges.
o Consider that vertices are measurable sets, e.g. intervals.

@ Decide how (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:
@ A measure space (X, %, 1);
@ A monoid €;
@ A monoid m of measurable maps X — X — called a microcosm;
o A type of graphing (e.g. deterministic, probabilistic);

@ A measurable map m : Q — R3q U {o0}.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 7/12

A Complexity-through-Realizability Theory

o Principle. Characterise complexity classes by the type Words%)l} of

predicates over binary words in a given model (this type always exists).

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 8/12

A Complexity-through-Realizability Theory

o Principle. Characterise complexity classes by the type Words%)l} of

predicates over binary words in a given model (this type always exists).

2)

01 ° Bool.

@ Deterministic case. Consider an element A of the type !Words?
> Then A defines a language defined as

{ro | A::[to] = true}

> The above type thus defines a complexity class.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 8/12

A Complexity-through-Realizability Theory

o Principle. Characterise complexity classes by the type Words%)l} of

predicates over binary words in a given model (this type always exists).
@ Deterministic case. Consider an element A of the type !Words%)l} —o Bool.
> Then A defines a language defined as

{ro | A::[to] = true}
> The above type thus defines a complexity class.

@ General case. Consider an element A of the type !Words%)l) —o NBool.

» Define a notion of test T (elements of the model);
> A defines a language w.r.t. T

{o|A:[w] L T}

where L is an “orthogonality relation” used to define types.
> The above type then defines a complexity class w.r.t. T.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 8/12

Summary of Results

We can define microcosms

mpcmgC:---CMeCNCP

in order to obtain the following characterisations.

Microcosm | Mdet pgndet pqndet M?;Ob Logic Machines
mp REG REG REG SToc MALL 2-way Automata (2FA)
my D, Ny, CONp, Py (...) k-heads 2FA
Moo L NL CONL PL (...) multihead-head 2FA (2MHFA)
n P P P pP? (... 2MHFA + Pushdown Stack
p P NP CONP PP? ELL Ptime Turing Machines

Conjecture: microcosms correspond to complexity constraints.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 9/12

The conjecture, formally

@ We define an equivalence relation on microcosms.

o Notation: we pick a type of graphings (e.g. probabilistic) and a test, and
write Pred(m) the set of languages accepted by elements of

!Words%)l) —o NBool w.r.t. the chosen test.

Theorem
If m=n, then Pred(m) = Pred(n). J

Conjecture
The converse holds, i.e. Pred(m) = Pred(n) implies m = n. J

If this conjecture holds, it would provide new proof techniques for separation
through (co)homological invariants, e.g. ¢®-Betti numbers:

Pred(m) = Pred(n) = m = n = P(m) = P(n) > 2(P(m)) = ¢ (P(m))

where Z2(m) = {(x,y) | 3m € m,m(x) =y} is a “measurable preorder”.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 10/12

Conclusion

@ A good “working hypothesis”:
> homogeneous approach of complexity theory (CT) (diff. computational
paradigms, higher-order functions)
> inherits the advantages of logic-based approaches to CT, e.g.
machine-independent, possibility of computing complexity bounds statically
@ Not a miraculous technique for separation results:
> “Borel Equivalence Relations” are well-studied (ergodic theory, descriptive set
theory), however measurable preorders are not (in particular, no 02 Betti
numbers in this case);
> Need to characterise complexity classes in the right way;
> However, it is not naturally seen as a “natural proof™.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 11/12

In a nutshell

The purpose is to relate two problems:
o Mathematics. Are two spaces X,Y homotopy equivalent?
> Difficult to answer negatively;

o C.S. Are two complexity classes A,B equal?

> Difficult to answer negatively;

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 12/12

In a nutshell

The purpose is to relate two problems:
o Mathematics. Are two spaces X,Y homotopy equivalent?

> Difficult to answer negatively;
> Some proof methods available (e.g. (co)homological invariants).

o C.S. Are two complexity classes A,B equal?

> Difficult to answer negatively;

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 12/12

In a nutshell

The purpose is to relate two problems:
o Mathematics. Are two spaces X,Y homotopy equivalent?

> Difficult to answer negatively;
> Some proof methods available (e.g. (co)homological invariants).

o C.S. Are two complexity classes A,B equal?

> Difficult to answer negatively;
> No proof methods available, c.f. Natural Proofs.

T. Seiller (PPS) Measurable Preorders and Complexity June 26th, 2015 12/12

