Measurable Preorders and Complexity

Thomas Seiller¹ Proofs, Programs, Systems – Paris 7 University

seiller@ihes.fr

TACL 2015 June 26th, 2015

T. Seiller (PPS)

Measurable Preorders and Complexity

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and algebras.

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of) algebras (modulo isomorphisms).

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of) algebras (modulo isomorphisms).

- Two important motivations:
 - obtain a uniform mathematical approach to CT
 - gain new proof methods from mathematics

A D D A A B D A B D A B

Present a new approach to (implicit) computational complexity theory.

Slogan

There is a correspondence between complexity constraints and (some kinds of) algebras (modulo isomorphisms).

- Two important motivations:
 - obtain a uniform mathematical approach to CT
 - gain new proof methods from mathematics
- At the intersection between two lines of work:
 - ▶ Implicit Computational Complexity, especially approaches using linear logic.
 - Interaction Graphs. A quantitative version of Girard's Geometry of Interaction;

Proofs as Programs - Curry-Howard - correspondence

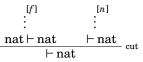
Proof Theory	Computer Science
Proof	Program
Proof	Data
Cut rule	Application
Cut Elimination	Execution (Computation)
Formulas	Types

< E

・ロ・・ 日本・ ・ 日・

Proofs as Programs - Curry-Howard - correspondence

- Integers: nat := $\forall X \ (X \to X) \to (X \to X)$
- Functions from integers to integers: $nat \rightarrow nat$
- If [*n*] is a (cut-free) proof of nat, and [*f*] a proof of nat → nat, we can define the proof [*f*][*n*]:



• The cut elimination procedure applied to [f][n] corresponds (step by step) to the computation of f(n). The cut-free proof it produces is equal to [f(n)].

• Normal functors (Girard). A model of programs as functors, in which functors representing programs are analytical, i.e. can be factored through a linear functor on a kind of tensor algebra $A := \bigoplus_{k \leq 0} A \otimes A \otimes \cdots \otimes A$

Image: A math a math

• Normal functors (Girard). A model of programs as functors, in which functors representing programs are analytical, i.e. can be factored through a linear functor on a kind of tensor algebra $A := \bigoplus_{k \le 0} A \otimes A \otimes \cdots \otimes A$

• **Linear logic** is obtained by just "pulling back" this decomposition into the syntax, i.e. the usual implication $A \Rightarrow B$ becomes $!A \multimap B$;

• Normal functors (Girard). A model of programs as functors, in which functors representing programs are analytical, i.e. can be factored through a linear functor on a kind of tensor algebra $A := \bigoplus_{k \le 0} A \otimes A \otimes \cdots \otimes A$

- **Linear logic** is obtained by just "pulling back" this decomposition into the syntax, i.e. the usual implication $A \Rightarrow B$ becomes $!A \multimap B$;
- LL for Complexity. The rules governing the modality ! can be modified to define sub-systems characterising complexity classes. E.g. Elementary Linear Logic (ELL), Light Linear Logic (LLL).

• Normal functors (Girard). A model of programs as functors, in which functors representing programs are analytical, i.e. can be factored through a linear functor on a kind of tensor algebra $A := \bigoplus_{k \le 0} A \otimes A \otimes \cdots \otimes A$

- **Linear logic** is obtained by just "pulling back" this decomposition into the syntax, i.e. the usual implication $A \Rightarrow B$ becomes $!A \multimap B$;
- LL for Complexity. The rules governing the modality ! can be modified to define sub-systems characterising complexity classes. E.g. Elementary Linear Logic (ELL), Light Linear Logic (LLL).

Proofs of !nat --> nat in ELL are exactly the functions computable in elementary time.

• Normal functors (Girard). A model of programs as functors, in which functors representing programs are analytical, i.e. can be factored through a linear functor on a kind of tensor algebra $A := \bigoplus_{k \leq 0} A \otimes A \otimes \cdots \otimes A$

- **Linear logic** is obtained by just "pulling back" this decomposition into the syntax, i.e. the usual implication $A \Rightarrow B$ becomes $!A \multimap B$;
- LL for Complexity. The rules governing the modality ! can be modified to define sub-systems characterising complexity classes. E.g. Elementary Linear Logic (ELL), Light Linear Logic (LLL).

Proofs of !nat - onat in ELL are exactly the functions computable in elementary time.

Proofs of !nat - nat in LLL are exactly the functions computable in polynomial time.

It is a model of **programs/proofs** and their **dynamics**.

It is a model of **programs/proofs** and their **dynamics**.

Logic	Logic CS IG			
Proof	Program	Graph		
Proof	Data	a Graph		

It is a model of **programs/proofs** and their **dynamics**.

Logic	CS	IG	
Proof	Program	Graph	
Proof	Data	Graph	
Cut Rule	Application	Common Vertices	

It is a model of **programs/proofs** and their **dynamics**.

Logic	CS	IG	
Proof	Program	Graph	
Proof	Data	Graph	
Cut Rule	Application	Common Vertices	
Cut elim.	Computation	(Alt.) Paths	

It is a model of **programs/proofs** and their **dynamics**.

Logic	CS IG		
Proof	Program	Graph	
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	· , · · · · · · ·	
Proof	Data	Graph	
Cut Rule	Application	Common Vertices	
Cut elim.	Computation	(Alt.) Paths	

It is a model of **programs/proofs** and their **dynamics**.

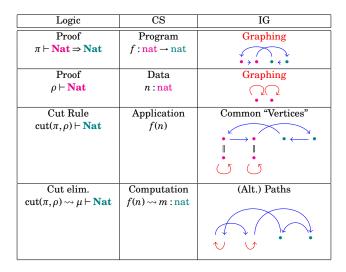
Logic	CS	IG		
Proof	Program	Graph		
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	· , · · · · · · · ·		
Proof	Data	Graph		
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$\hat{\mathcal{O}}$		
Cut Rule	Application	Common Vertices		
Cut elim.	Computation	(Alt.) Paths		

It is a model of **programs/proofs** and their **dynamics**.

Logic	CS	IG		
Proof	Program	Graph		
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$			
Proof	Data	Graph		
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$\dot{\mathbf{C}}$		
Cut Rule	Application	Common Vertices		
$\operatorname{cut}(\pi,\rho) \vdash \operatorname{Nat}$	f(n)			
Cut elim.	Computation	(Alt.) Paths		

It is a model of **programs/proofs** and their **dynamics**.

Logic	CS	CS IG		
Proof	Program	Graph		
$\pi \vdash \mathbf{Nat} \Rightarrow \mathbf{Nat}$	$f: \mathbf{nat} \to \mathbf{nat}$	• • • • • •		
Proof	Data	Graph		
$\rho \vdash \mathbf{Nat}$	<i>n</i> : nat	$\dot{\mathbf{C}}$		
Cut Rule	Application	Common Vertices		
$\operatorname{cut}(\pi, \rho) \vdash \operatorname{Nat}$	f(n)			
Cut elim.	Computation	(Alt.) Paths		
$\operatorname{cut}(\pi,\rho) \rightsquigarrow \mu \vdash \mathbf{Nat}$	$f(n) \rightsquigarrow m : \mathbf{nat}$			

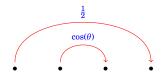


This yields models of (fragments of) Linear Logic using realizability techniques.

Basic hypothesis: Programs as graphings. So... what's a graphing?

Basic hypothesis: Programs as graphings. So... what's a graphing?

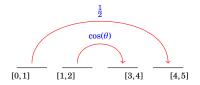
• Pick a directed graph, add weights (from a monoid $\Omega)$ on the edges.



< □ > < □ > < □ > < □ >

Basic hypothesis: Programs as graphings. So... what's a graphing?

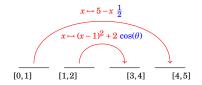
- Pick a directed graph, add weights (from a monoid Ω) on the edges.
- Consider that vertices are measurable sets, e.g. intervals.



・ロト ・日ト・モート

Basic hypothesis: Programs as graphings. So... what's a graphing?

- Pick a directed graph, add weights (from a monoid Ω) on the edges.
- Consider that vertices are measurable sets, e.g. intervals.
- Decide *how* the edges map sources to targets.



Basic hypothesis: Programs as graphings. So... what's a graphing?

- Pick a directed graph, add weights (from a monoid Ω) on the edges.
- Consider that vertices are measurable sets, e.g. intervals.
- Decide *how* (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:

- A measure space (X, \mathcal{B}, μ) ;
- A monoid Ω;
- A monoid \mathfrak{m} of measurable maps $X \rightarrow X$ called a **microcosm**;
- A type of graphing (e.g. deterministic, probabilistic);
- A measurable map $m: \Omega \to \mathbf{R}_{\geq 0} \cup \{\infty\}$.

Basic hypothesis: Programs as graphings. So... what's a graphing?

- Pick a directed graph, add weights (from a monoid Ω) on the edges.
- Consider that vertices are measurable sets, e.g. intervals.
- Decide *how* (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:

- A measure space (X, \mathcal{B}, μ) ;
- A monoid Ω;
- A monoid \mathfrak{m} of measurable maps $X \rightarrow X$ called a **microcosm**;
- A type of graphing (e.g. deterministic, probabilistic);
- A measurable map $m: \Omega \to \mathbb{R}_{\geq 0} \cup \{\infty\}$.

Basic hypothesis: Programs as graphings. So... what's a graphing?

- Pick a directed graph, add weights (from a monoid Ω) on the edges.
- Consider that vertices are measurable sets, e.g. intervals.
- Decide *how* (i.e. which element of m) the edges map sources to targets.

The parameters of the interpretations:

- A measure space (X, \mathcal{B}, μ) ;
- A monoid Ω;
- A monoid \mathfrak{m} of measurable maps $X \rightarrow X$ called a **microcosm**;
- A **type** of graphing (e.g. deterministic, probabilistic);
- A measurable map $m: \Omega \to \mathbb{R}_{\geq 0} \cup \{\infty\}$.

A Complexity-through-Realizability Theory

• **Principle.** Characterise complexity classes by the type **Words**⁽²⁾_{0,1} of predicates over binary words in a given model (this type always exists).

A Complexity-through-Realizability Theory

- **Principle.** Characterise complexity classes by the type $Words_{\{0,1\}}^{(2)}$ of predicates over binary words in a given model (this type always exists).
- Deterministic case. Consider an element A of the type $!Words_{\{0,1\}}^{(2)} \multimap Bool$.
 - ▶ Then A defines a language defined as

 $\{\mathfrak{w} \mid A :: [\mathfrak{w}] = \mathtt{true}\}$

▶ The above type thus defines a complexity class.

A Complexity-through-Realizability Theory

- **Principle.** Characterise complexity classes by the type $Words_{\{0,1\}}^{(2)}$ of predicates over binary words in a given model (this type always exists).
- Deterministic case. Consider an element A of the type $!Words_{\{0,1\}}^{(2)} \rightarrow Bool.$
 - Then A defines a language defined as

 $\{\mathfrak{w} \mid A :: [\mathfrak{w}] = \mathtt{true}\}$

- The above type thus defines a complexity class.
- General case. Consider an element A of the type $|Words_{\{0,1\}}^{(2)} \rightarrow NBool$.
 - ▶ Define a notion of *test T* (elements of the model);
 - ► A defines a language w.r.t. T

 $\{\mathfrak{w} \mid A :: [\mathfrak{w}] \perp T\}$

where $\boldsymbol{\lambda}~$ is an "orthogonality relation" used to define types.

▶ The above type then defines a complexity class w.r.t. *T*.

Summary of Results

We can define microcosms

 $\mathfrak{m}_1 \subset \mathfrak{m}_2 \subset \cdots \subset \mathfrak{m}_\infty \subset \mathfrak{n} \subset \mathfrak{p}$

in order to obtain the following characterisations.

Microcosm	$\mathbb{M}_m^{\mathrm{det}}$	$\mathbb{M}_m^{\mathrm{ndet}}$	$\mathbb{M}_m^{\mathrm{ndet}}$	$\mathbb{M}_m^{\mathrm{prob}}$	Logic	Machines
\mathfrak{m}_1	Reg	Reg	Reg	STOC	MALL	2-way Automata (2FA)
:	•	·	·	:	:	
				:		:
\mathfrak{m}_k	D_k	\mathbf{N}_k	con_k	\mathbf{P}_k	()	k-heads 2FA
	•					
:	:	:	:	:	:	:
\mathfrak{m}_{∞}	L	NL	coNL	PL	()	multihead-head 2FA (2MHFA)
n	Р	Р	Р	P?	()	2MHFA + Pushdown Stack
p	Р	NP	coNP	PP?	ELL	Ptime Turing Machines

Conjecture: microcosms correspond to complexity constraints.

The conjecture, formally

- We define an equivalence relation on microcosms.
- Notation: we pick a type of graphings (e.g. probabilistic) and a test, and write Pred(m) the set of languages accepted by elements of $!Words^{(2)}_{\{0,1\}} \multimap NBool$ w.r.t. the chosen test.

Theorem

If $\mathfrak{m} \equiv \mathfrak{n}$, then $Pred(\mathfrak{m}) = Pred(\mathfrak{n})$.

Conjecture

The converse holds, i.e. $Pred(\mathfrak{m}) = Pred(\mathfrak{n})$ implies $\mathfrak{m} \equiv \mathfrak{n}$.

If this conjecture holds, it would provide new proof techniques for separation through (co)homological invariants, e.g. $\ell^{(2)}$ -Betti numbers:

$$\operatorname{Pred}(\mathfrak{m}) = \operatorname{Pred}(\mathfrak{n}) \Rightarrow \mathfrak{m} \equiv \mathfrak{n} \Rightarrow \mathscr{P}(\mathfrak{m}) \simeq \mathscr{P}(\mathfrak{n}) \stackrel{!}{\Rightarrow} \ell^{(2)}(\mathscr{P}(\mathfrak{m})) = \ell^{(2)}(\mathscr{P}(\mathfrak{m}))$$

where $\mathscr{P}(\mathfrak{m}) = \{(x, y) \mid \exists m \in \mathfrak{m}, m(x) = y\}$ is a "measurable preorder".

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

- A good "working hypothesis":
 - homogeneous approach of complexity theory (CT) (diff. computational paradigms, higher-order functions)
 - inherits the advantages of logic-based approaches to CT, e.g. machine-independent, possibility of computing complexity bounds statically
- Not a miraculous technique for separation results:
 - "Borel Equivalence Relations" are well-studied (ergodic theory, descriptive set theory), however measurable preorders are not (in particular, no l⁽²⁾-Betti numbers in this case);
 - Need to characterise complexity classes in the right way;
 - However, it is not naturally seen as a "natural proof".

In a nutshell

The purpose is to relate two problems:

- Mathematics. Are two spaces *X*, *Y* homotopy equivalent?
 - Difficult to answer negatively;
- C.S. Are two complexity classes A, B equal?
 - Difficult to answer negatively;

In a nutshell

The purpose is to relate two problems:

- Mathematics. Are two spaces *X*, *Y* homotopy equivalent?
 - Difficult to answer negatively;
 - Some proof methods available (e.g. (co)homological invariants).
- **C.S.** Are two complexity classes *A*, *B* equal?
 - Difficult to answer negatively;

In a nutshell

The purpose is to relate two problems:

- Mathematics. Are two spaces *X*, *Y* homotopy equivalent?
 - Difficult to answer negatively;
 - Some proof methods available (e.g. (co)homological invariants).
- **C.S.** Are two complexity classes *A*, *B* equal?
 - Difficult to answer negatively;
 - ▶ No proof methods available, c.f. Natural Proofs.