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The problem

I Abstract algebraic logics classifies logics into two hierarchies:

Leibniz hierarchy 7−→ definability of equivalence
and of truth predicates

Frege hierarchy 7−→ replacement properties

I Can we classify mechanically logics of Hilbert-style calculi in
these hierarchies?

I We begin by the Leibniz hierarchy.
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Definability of equivalence

I Given an algebra A, the Leibniz congruence of F ⊆ A is

ΩAF := max{θ ∈ ConA : F =
⋃
a∈F

a/θ}.

ΩAF represents equivalence from the point of view of F .
I A logic L is protoalgebraic if equivalence is definable, i.e., if

there is a set of formulas ∆(x , y , z) such that for every model
〈A,F 〉 of L:

〈a, b〉 ∈ ΩAF ⇐⇒ ∆(a, b, c) ⊆ F for every c ∈ A.

I A logic L is equivalential if it is protoalgebraic and ∆(x , y) has
only variables x , y .
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Definability of truth predicates

I The reduced models of a logic L are

Mod∗L = {〈A,F 〉 : F is a filter of L and ΩAF = IdA}.

If 〈A,F 〉 is a matrix, then F can be thought as a truth
predicate.

I A logic L is truth-equational if truth predicates in Mod∗L are
definable, i.e., if there is a set of equations τ (x) such that for
every 〈A,F 〉 ∈ Mod∗L:

F = {a ∈ A : A � τ (a)}.
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The Leibniz hierarchy

regularly algebraizable

|| ""
algebraizable

|| ""

regularly weakly algebraizable

|| ""
equivalential

""

weakly algebraizable

|| ""

assertional

||
protoalgebraic truth-equational

Figure: Some classes of the Leibniz hierarchy.
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The problem Basic logic of a variety A logic for commutative rings Diophantine equations

Basic logic of a variety

Definition
Let V be a non-trivial variety. The basic logic LV of V is
determined by the following class of matrices:

{〈A,F 〉 : A ∈ V and F ⊆ A}.

I Given Γ ∪ {ϕ} ⊆ Fm, we will write Γ `V ϕ as a shortening for
Γ `LV ϕ.

Lemma
Let V be a non-trivial variety and Γ ∪ {ϕ} ⊆ Fm.
1. AlgLV = V.
2. Γ `V ϕ if and only if there is γ ∈ Γ such that V |= γ ≈ ϕ.
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The problem Basic logic of a variety A logic for commutative rings Diophantine equations

Strategy and problems

I We want to reproduce Hilbert’s tenth problem into the one of
classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit CR we
will use the logic LCR. Then we need:
I An explicit and finite axiomatization of LCR.

Unfortunately, in general:
I No clever way to axiomatize LV out of a base for V.
I Even if V is finitely based, LV need not to be finitely

axiomatizable.
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Some examples

I The idea of converting equational bases into Hilbert rules does
not work.

Let SL be the variety of semilattices. The rules

x a` x ∧ x x ∧ y a` y ∧ x x ∧ (y ∧ z) a` (x ∧ y) ∧ z

define a logic R strictly weaker than LSL. Why? The matrix

〈Z 2, {0}〉 where Z 2 = 〈{0, 1},+〉

is a reduced model of R. A complete axiomatization of LSL is
obtained by adding:

u ∧ x a` u ∧ (x ∧ x) u ∧ (x ∧ y) a` u ∧ (y ∧ x)

u ∧ (x ∧ (y ∧ z)) a` u ∧ ((x ∧ y) ∧ z)
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The problem Basic logic of a variety A logic for commutative rings Diophantine equations

Some examples

I Finitely based varieties can have a non-finitely axiomatizable
logic.

Let CM be the variety of commutative magmas.
It has a finite base: x · y ≈ y · x .
LCM is not finitely axiomatizable:
I Let Σ be a finite set of deductions holding in LCM.
I There is a natural n ≥ 2 that bounds the number of

occurrences of (possibly equal) variables in terms appearing in
the rules of Σ.
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Some examples

Then consider the algebra A = 〈{0, 1, 2, . . . , n}, ·〉 with a binary
operation such that 1 · 2 := 2 and 2 · 1 := 1 and

a · b = b · a :=


a if a 6= n and b = 0
0 if a = n and b = 0
a if b = a− 1 and a ≥ 3
a− 1 if b = a− 2 and a ≥ 3
1 otherwise

for every a, b ∈ A such that {a, b} 6= {1, 2}.

I 〈A, {0}〉 is a model of Σ (drawing subformula tree).
I 〈A, {0}〉 is not a model of LCM.
I Why? It is reduced: if a, b ∈ Ar {0} and a < b, we consider

the polynomial

p(x) := (. . . ((. . . (. . . ((1 ·2) ·3) · . . . a) · · · ·b−1) · x) · · · ·n) ·0.
Then

p(b) = 0 and p(a) 6= 0.
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A logic for commutative rings

Definition
Let CR be the logic axiomatized by the rules:

w + (u · ((x · y) · z)) a` w + (u · (x · (y · z)) (A)

w + (u · (x · y)) a` w + (u · (y · x)) (B)

w + (u · (x · 1)) a` w + (u · x) (C)

w + (u · ((x + y) + z)) a` w + (u · (x + (y + z))) (D)

w + (u · (x + y)) a` w + (u · (y + x)) (E)

w + (u · (x + 0)) a` w + (u · x) (F)

w + (u · (x +−x)) a` w + (u · 0) (G)

w + (u · (x · (y + z))) a` w + (u · ((x · y) + (x · z))) (H)

w + (u · −(x + y)) a` w + (u · (−x +−y)) (I)

w + (u · −(x · y)) a` w + (u · (−x · y)) (L)

w + (u · −(x · y)) a` w + (u · (x · −y)) (M)

0 + x a` x (N)

x + (1 · y) a` x + y (O)
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Completeness

Theorem
The rules CR axiomatize LCR.

Proof.
I The relation a`CR is a congruence. Then:

α ≈ β is in the base of CR =⇒ α a`CR β
=⇒ AlgCR � α ≈ β

=⇒ AlgCR ⊆ CR.

I Since 〈A,F 〉 is a model of LCR for every A ∈ CR , we conclude
that LCR ≤ CR.

I Easy to check that CR ≤ LCR.
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From equations to logics

Definition
Given a Diophantine equation p(z1, . . . , zn) ≈ 0, we pick two new
variables x and y , a new binary symbol ↔ and consider the logic
L(p ≈ 0) axiomatized by the rules:

∅ `x ↔ x (R)

x ↔ y `y ↔ x (S)

x ↔ y , y ↔ z `x ↔ z (T)

x ↔ y ` − x ↔ −y (Re1)

x ↔ y , z ↔ u `(x + z)↔ (y + u) (Re2)

x ↔ y , z ↔ u `(x · z)↔ (y · u) (Re3)

x ↔ y , z ↔ u `(x ↔ z)↔ (y ↔ u) (Re4)

p(z1, . . . , zn)↔ 0, x , x ↔ y `y (MP’)

p(z1, . . . , zn)↔ 0, x a`x ↔ (x ↔ x), p(z1, . . . , zn)↔ 0 (A3’)

p(z1, . . . , zn)↔ 0, x , y `x ↔ y (G’)

plus the axioms of the form ∅ ` α↔ β for every α a` β ∈ CR.
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Main result

The key result is the following:

Lemma
Let p(z1, . . . , zn) ≈ 0 be a Diophantine equation. The following
conditions are equivalent:
(i) L(p ≈ 0) is finitely regularly algebraizable.
(ii) L(p ≈ 0) is truth-equational.
(iii) L(p ≈ 0) is protoalgebraic.
(iv) The equation p(z1, . . . , zn) ≈ 0 has an integer solution.

Theorem
Let K a level of the Leibniz hierarchy. The problem of determining
whether the logic of a finite Hilbert calculus in a finite language
belongs to K is undecidable.
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Frege hierarchy

fully Fregean

|| ""
Fregean

""

fully selfextensional

||
slefextensional

I With a different strategy:

Theorem
Let K a level of the Frege hierarchy. The problem of determining
whether the logic of a finite Hilbert calculus in a finite language
belongs to K is undecidable.
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Further work

I We saw that it is impossible to classify mechanically logics of
Hilbert calculi into the Leibniz and Frege hierarchies.

I Is it possible to do this for logics of a finite set of finite
matrices?

I For the Leibniz hierarchy yes.
I The Frege hiearchy seems more complicated, since it involves

semantic notions.
I We have a positive solution for selfextentionality and

Fregeanity, but the problem for their fully-versions in open.
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Finally...

Thank you!
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