Undecidability in abstract algebraic logic

Tommaso Moraschini
Advisors: Josep Maria Font and Ramon Jansana

U
N
B Universitat de Barcelona

June 21, 2015

Contents

1. The problem
2. Basic logic of a variety
3. A logic for commutative rings
4. Diophantine equations

Contents

1. The problem
2. Basic logic of a variety
3. A logic for commutative rings
4. Diophantine equations

The problem

- Abstract algebraic logics classifies logics into two hierarchies:

The problem

- Abstract algebraic logics classifies logics into two hierarchies:

Leibniz hierarchy \longmapsto definability of equivalence and of truth predicates

Frege hierarchy \longmapsto replacement properties

The problem

- Abstract algebraic logics classifies logics into two hierarchies:

Leibniz hierarchy \longmapsto definability of equivalence and of truth predicates

Frege hierarchy \longmapsto replacement properties

- Can we classify mechanically logics of Hilbert-style calculi in these hierarchies?

The problem

- Abstract algebraic logics classifies logics into two hierarchies:

> Leibniz hierarchy \longmapsto definability of equivalence and of truth predicates

Frege hierarchy \longmapsto replacement properties

- Can we classify mechanically logics of Hilbert-style calculi in these hierarchies?
- We begin by the Leibniz hierarchy.

Definability of equivalence

- Given an algebra \boldsymbol{A}, the Leibniz congruence of $F \subseteq A$ is

$$
\Omega^{\boldsymbol{A}} F:=\max \left\{\theta \in \operatorname{Con} \boldsymbol{A}: F=\bigcup_{a \in F} a / \theta\right\}
$$

Definability of equivalence

- Given an algebra \boldsymbol{A}, the Leibniz congruence of $F \subseteq A$ is

$$
\Omega^{\boldsymbol{A}} F:=\max \left\{\theta \in \operatorname{Con} \boldsymbol{A}: F=\bigcup_{a \in F} a / \theta\right\}
$$

$\Omega^{\boldsymbol{A}} F$ represents equivalence from the point of view of F.

Definability of equivalence

- Given an algebra \boldsymbol{A}, the Leibniz congruence of $F \subseteq A$ is

$$
\Omega^{\boldsymbol{A}} F:=\max \left\{\theta \in \operatorname{Con} \boldsymbol{A}: F=\bigcup_{a \in F} a / \theta\right\} .
$$

$\Omega^{A} F$ represents equivalence from the point of view of F.

- A logic \mathcal{L} is protoalgebraic if equivalence is definable

Definability of equivalence

- Given an algebra \boldsymbol{A}, the Leibniz congruence of $F \subseteq A$ is

$$
\Omega^{\boldsymbol{A}} F:=\max \left\{\theta \in \operatorname{Con} \boldsymbol{A}: F=\bigcup_{a \in F} a / \theta\right\} .
$$

$\Omega^{A} F$ represents equivalence from the point of view of F.

- A logic \mathcal{L} is protoalgebraic if equivalence is definable, i.e., if there is a set of formulas $\Delta(x, y, \bar{z})$ such that for every model $\langle\boldsymbol{A}, F\rangle$ of \mathcal{L} :

$$
\langle a, b\rangle \in \Omega^{A} F \Longleftrightarrow \Delta(a, b, \bar{c}) \subseteq F \text { for every } \bar{c} \in A .
$$

Definability of equivalence

- Given an algebra \boldsymbol{A}, the Leibniz congruence of $F \subseteq A$ is

$$
\Omega^{\boldsymbol{A}} F:=\max \left\{\theta \in \operatorname{Con} \boldsymbol{A}: F=\bigcup_{a \in F} a / \theta\right\} .
$$

$\Omega^{A} F$ represents equivalence from the point of view of F.

- A logic \mathcal{L} is protoalgebraic if equivalence is definable, i.e., if there is a set of formulas $\Delta(x, y, \bar{z})$ such that for every model $\langle\boldsymbol{A}, F\rangle$ of \mathcal{L} :

$$
\langle a, b\rangle \in \Omega^{A} F \Longleftrightarrow \Delta(a, b, \bar{c}) \subseteq F \text { for every } \bar{c} \in A
$$

- A logic \mathcal{L} is equivalential if it is protoalgebraic and $\Delta(x, y)$ has only variables x, y.

Definability of truth predicates

- The reduced models of a logic \mathcal{L} are

$$
\operatorname{Mod}^{*} \mathcal{L}=\left\{\langle\boldsymbol{A}, F\rangle: F \text { is a filter of } \mathcal{L} \text { and } \Omega^{\boldsymbol{A}} F=\mathrm{Id}_{\boldsymbol{A}}\right\} .
$$

Definability of truth predicates

- The reduced models of a logic \mathcal{L} are

$$
\operatorname{Mod}^{*} \mathcal{L}=\left\{\langle\boldsymbol{A}, F\rangle: F \text { is a filter of } \mathcal{L} \text { and } \Omega^{\boldsymbol{A}} F=\operatorname{Id}_{\boldsymbol{A}}\right\} .
$$

If $\langle\boldsymbol{A}, F\rangle$ is a matrix, then F can be thought as a truth predicate.

Definability of truth predicates

- The reduced models of a logic \mathcal{L} are

$$
\operatorname{Mod}^{*} \mathcal{L}=\left\{\langle\boldsymbol{A}, F\rangle: F \text { is a filter of } \mathcal{L} \text { and } \Omega^{\boldsymbol{A}} F=\mathrm{Id}_{\boldsymbol{A}}\right\} .
$$

If $\langle\boldsymbol{A}, F\rangle$ is a matrix, then F can be thought as a truth predicate.

- A logic \mathcal{L} is truth-equational if truth predicates in $\operatorname{Mod}^{*} \mathcal{L}$ are definable

Definability of truth predicates

- The reduced models of a logic \mathcal{L} are

$$
\operatorname{Mod}^{*} \mathcal{L}=\left\{\langle\boldsymbol{A}, F\rangle: F \text { is a filter of } \mathcal{L} \text { and } \Omega^{\boldsymbol{A}} F=\operatorname{Id}_{\boldsymbol{A}}\right\} .
$$

If $\langle\boldsymbol{A}, F\rangle$ is a matrix, then F can be thought as a truth predicate.

- A logic \mathcal{L} is truth-equational if truth predicates in $\operatorname{Mod}^{*} \mathcal{L}$ are definable, i.e., if there is a set of equations $\boldsymbol{\tau}(x)$ such that for every $\langle\boldsymbol{A}, F\rangle \in \operatorname{Mod}^{*} \mathcal{L}$:

$$
F=\{a \in A: \boldsymbol{A} \vDash \boldsymbol{\tau}(a)\} .
$$

The Leibniz hierarchy

Figure: Some classes of the Leibniz hierarchy.

Contents

1. The problem
2. Basic logic of a variety

3. A logic for commutative rings

4. Diophantine equations

Basic logic of a variety

Definition

Let V be a non-trivial variety. The basic logic \mathcal{L}_{V} of V is determined by the following class of matrices:

$$
\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \in \mathrm{V} \text { and } F \subseteq A\}
$$

Basic logic of a variety

Definition

Let V be a non-trivial variety. The basic logic \mathcal{L}_{V} of V is determined by the following class of matrices:

$$
\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \in \mathrm{V} \text { and } F \subseteq A\}
$$

- Given $\Gamma \cup\{\varphi\} \subseteq F m$, we will write $\Gamma \vdash_{\mathrm{V}} \varphi$ as a shortening for $\Gamma \vdash_{\mathcal{L}_{\mathrm{V}}} \varphi$.

Basic logic of a variety

Definition

Let V be a non-trivial variety. The basic logic \mathcal{L}_{V} of V is determined by the following class of matrices:

$$
\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \in \mathrm{V} \text { and } F \subseteq A\}
$$

- Given $\Gamma \cup\{\varphi\} \subseteq F m$, we will write $\Gamma \vdash_{\mathrm{V}} \varphi$ as a shortening for $\Gamma \vdash_{\mathcal{L}_{\mathfrak{V}}} \varphi$.

Lemma

Let V be a non-trivial variety and $\Gamma \cup\{\varphi\} \subseteq F m$.

Basic logic of a variety

Definition

Let V be a non-trivial variety. The basic logic \mathcal{L}_{V} of V is determined by the following class of matrices:

$$
\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \in \mathrm{V} \text { and } F \subseteq A\}
$$

- Given $\Gamma \cup\{\varphi\} \subseteq F m$, we will write $\Gamma \vdash_{\mathrm{V}} \varphi$ as a shortening for $\Gamma \vdash_{\mathcal{L}_{V}} \varphi$.

Lemma

Let V be a non-trivial variety and $\Gamma \cup\{\varphi\} \subseteq F m$.

1. $\operatorname{Alg} \mathcal{L}_{\mathrm{V}}=\mathrm{V}$.

Basic logic of a variety

Definition

Let V be a non-trivial variety. The basic logic \mathcal{L}_{V} of V is determined by the following class of matrices:

$$
\{\langle\boldsymbol{A}, F\rangle: \boldsymbol{A} \in \mathrm{V} \text { and } F \subseteq A\}
$$

- Given $\Gamma \cup\{\varphi\} \subseteq F m$, we will write $\Gamma \vdash_{\mathrm{V}} \varphi$ as a shortening for $\Gamma \vdash_{\mathcal{L}_{\mathrm{V}}} \varphi$.

Lemma

Let V be a non-trivial variety and $\Gamma \cup\{\varphi\} \subseteq F m$.

1. $\operatorname{Alg} \mathcal{L}_{\mathrm{V}}=\mathrm{V}$.
2. $\Gamma \vdash_{\mathrm{V}} \varphi$ if and only if there is $\gamma \in \Gamma$ such that $\mathrm{V} \models \gamma \approx \varphi$.

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit $C R$ we will use the logic $\mathcal{L}_{\mathrm{CR}}$.

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit CR we will use the logic $\mathcal{L}_{\mathrm{CR}}$. Then we need:

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit $C R$ we will use the logic $\mathcal{L}_{\mathrm{CR}}$. Then we need:

- An explicit and finite axiomatization of $\mathcal{L}_{\mathrm{CR}}$.

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit $C R$ we will use the logic $\mathcal{L}_{\mathrm{CR}}$. Then we need:

- An explicit and finite axiomatization of $\mathcal{L}_{\mathrm{CR}}$.

Unfortunately, in general:

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit CR we will use the logic $\mathcal{L}_{\mathrm{CR}}$. Then we need:

- An explicit and finite axiomatization of $\mathcal{L}_{\mathrm{CR}}$.

Unfortunately, in general:

- No clever way to axiomatize \mathcal{L}_{V} out of a base for V .

Strategy and problems

- We want to reproduce Hilbert's tenth problem into the one of classifying logics of Hilbert calculi in the Leibniz hierarchy.

To speak about the variety of commutative rings with unit $C R$ we will use the logic $\mathcal{L}_{\mathrm{CR}}$. Then we need:

- An explicit and finite axiomatization of $\mathcal{L}_{\mathrm{CR}}$.

Unfortunately, in general:

- No clever way to axiomatize \mathcal{L}_{V} out of a base for V .
- Even if V is finitely based, \mathcal{L}_{V} need not to be finitely axiomatizable.

Some examples

- The idea of converting equational bases into Hilbert rules does not work.

Some examples

- The idea of converting equational bases into Hilbert rules does not work.

Let $S L$ be the variety of semilattices.

Some examples

- The idea of converting equational bases into Hilbert rules does not work.

Let $S L$ be the variety of semilattices. The rules

$$
x \dashv \vdash x \wedge x \quad x \wedge y \dashv \vdash y \wedge x \quad x \wedge(y \wedge z) \dashv \vdash(x \wedge y) \wedge z
$$

define a logic \mathcal{R} strictly weaker than $\mathcal{L}_{\text {SL }}$.

Some examples

- The idea of converting equational bases into Hilbert rules does not work.

Let $S L$ be the variety of semilattices. The rules

$$
x \dashv \vdash x \wedge x \quad x \wedge y \dashv \vdash y \wedge x \quad x \wedge(y \wedge z) \dashv \vdash(x \wedge y) \wedge z
$$

define a logic \mathcal{R} strictly weaker than $\mathcal{L}_{\mathrm{SL}}$. Why?

Some examples

- The idea of converting equational bases into Hilbert rules does not work.

Let $S L$ be the variety of semilattices. The rules

$$
x \dashv \vdash x \wedge x \quad x \wedge y \dashv \vdash y \wedge x \quad x \wedge(y \wedge z) \dashv \vdash(x \wedge y) \wedge z
$$

define a logic \mathcal{R} strictly weaker than $\mathcal{L}_{\mathrm{SL}}$. Why? The matrix

$$
\left\langle\boldsymbol{Z}_{2},\{0\}\right\rangle \text { where } \boldsymbol{Z}_{2}=\langle\{0,1\},+\rangle
$$

is a reduced model of \mathcal{R}.

Some examples

- The idea of converting equational bases into Hilbert rules does not work.

Let $S L$ be the variety of semilattices. The rules

$$
x \dashv \vdash x \wedge x \quad x \wedge y \dashv \vdash y \wedge x \quad x \wedge(y \wedge z) \dashv \vdash(x \wedge y) \wedge z
$$

define a logic \mathcal{R} strictly weaker than $\mathcal{L}_{\mathrm{SL}}$. Why? The matrix

$$
\left\langle\boldsymbol{Z}_{2},\{0\}\right\rangle \text { where } \boldsymbol{Z}_{2}=\langle\{0,1\},+\rangle
$$

is a reduced model of \mathcal{R}. A complete axiomatization of $\mathcal{L}_{\mathrm{SL}}$ is obtained by adding:

$$
\begin{gathered}
u \wedge x \dashv \vdash u \wedge(x \wedge x) \quad u \wedge(x \wedge y) \dashv \vdash u \wedge(y \wedge x) \\
u \wedge(x \wedge(y \wedge z)) \dashv \vdash u \wedge((x \wedge y) \wedge z)
\end{gathered}
$$

Some examples

- Finitely based varieties can have a non-finitely axiomatizable logic.

Some examples

- Finitely based varieties can have a non-finitely axiomatizable logic.

Let $C M$ be the variety of commutative magmas.

Some examples

- Finitely based varieties can have a non-finitely axiomatizable logic.

Let CM be the variety of commutative magmas.
It has a finite base: $x \cdot y \approx y \cdot x$.

Some examples

- Finitely based varieties can have a non-finitely axiomatizable logic.

Let CM be the variety of commutative magmas.
It has a finite base: $x \cdot y \approx y \cdot x$.
$\mathcal{L}_{\mathrm{CM}}$ is not finitely axiomatizable:

Some examples

- Finitely based varieties can have a non-finitely axiomatizable logic.

Let CM be the variety of commutative magmas.
It has a finite base: $x \cdot y \approx y \cdot x$.
$\mathcal{L}_{\mathrm{CM}}$ is not finitely axiomatizable:

- Let Σ be a finite set of deductions holding in $\mathcal{L}_{\mathrm{CM}}$.

Some examples

- Finitely based varieties can have a non-finitely axiomatizable logic.

Let CM be the variety of commutative magmas.
It has a finite base: $x \cdot y \approx y \cdot x$.
$\mathcal{L}_{\mathrm{CM}}$ is not finitely axiomatizable:

- Let Σ be a finite set of deductions holding in $\mathcal{L}_{\mathrm{CM}}$.
- There is a natural $n \geq 2$ that bounds the number of occurrences of (possibly equal) variables in terms appearing in the rules of Σ.

Some examples

Then consider the algebra $\boldsymbol{A}=\langle\{0,1,2, \ldots, n\}, \cdot\rangle$ with a binary operation such that $1 \cdot 2:=2$ and $2 \cdot 1:=1$ and

$$
a \cdot b=b \cdot a:= \begin{cases}a & \text { if } a \neq n \text { and } b=0 \\ 0 & \text { if } a=n \text { and } b=0 \\ a & \text { if } b=a-1 \text { and } a \geq 3 \\ a-1 & \text { if } b=a-2 \text { and } a \geq 3 \\ 1 & \text { otherwise }\end{cases}
$$

for every $a, b \in A$ such that $\{a, b\} \neq\{1,2\}$.

Some examples

Then consider the algebra $\boldsymbol{A}=\langle\{0,1,2, \ldots, n\}, \cdot\rangle$ with a binary operation such that $1 \cdot 2:=2$ and $2 \cdot 1:=1$ and

$$
a \cdot b=b \cdot a:= \begin{cases}a & \text { if } a \neq n \text { and } b=0 \\ 0 & \text { if } a=n \text { and } b=0 \\ a & \text { if } b=a-1 \text { and } a \geq 3 \\ a-1 & \text { if } b=a-2 \text { and } a \geq 3 \\ 1 & \text { otherwise }\end{cases}
$$

for every $a, b \in A$ such that $\{a, b\} \neq\{1,2\}$.

- $\langle\boldsymbol{A},\{0\}\rangle$ is a model of Σ (drawing subformula tree).

Some examples

Then consider the algebra $\boldsymbol{A}=\langle\{0,1,2, \ldots, n\}, \cdot\rangle$ with a binary operation such that $1 \cdot 2:=2$ and $2 \cdot 1:=1$ and

$$
a \cdot b=b \cdot a:= \begin{cases}a & \text { if } a \neq n \text { and } b=0 \\ 0 & \text { if } a=n \text { and } b=0 \\ a & \text { if } b=a-1 \text { and } a \geq 3 \\ a-1 & \text { if } b=a-2 \text { and } a \geq 3 \\ 1 & \text { otherwise }\end{cases}
$$

for every $a, b \in A$ such that $\{a, b\} \neq\{1,2\}$.

- $\langle\boldsymbol{A},\{0\}\rangle$ is a model of Σ (drawing subformula tree).
- $\langle\boldsymbol{A},\{0\}\rangle$ is not a model of $\mathcal{L}_{\mathrm{CM}}$.

Some examples

Then consider the algebra $\boldsymbol{A}=\langle\{0,1,2, \ldots, n\}, \cdot\rangle$ with a binary operation such that $1 \cdot 2:=2$ and $2 \cdot 1:=1$ and

$$
a \cdot b=b \cdot a:= \begin{cases}a & \text { if } a \neq n \text { and } b=0 \\ 0 & \text { if } a=n \text { and } b=0 \\ a & \text { if } b=a-1 \text { and } a \geq 3 \\ a-1 & \text { if } b=a-2 \text { and } a \geq 3 \\ 1 & \text { otherwise }\end{cases}
$$

for every $a, b \in A$ such that $\{a, b\} \neq\{1,2\}$.

- $\langle\boldsymbol{A},\{0\}\rangle$ is a model of Σ (drawing subformula tree).
- $\langle\boldsymbol{A},\{0\}\rangle$ is not a model of $\mathcal{L}_{\mathrm{CM}}$.
- Why?

Some examples

Then consider the algebra $\boldsymbol{A}=\langle\{0,1,2, \ldots, n\}, \cdot\rangle$ with a binary operation such that $1 \cdot 2:=2$ and $2 \cdot 1:=1$ and

$$
a \cdot b=b \cdot a:= \begin{cases}a & \text { if } a \neq n \text { and } b=0 \\ 0 & \text { if } a=n \text { and } b=0 \\ a & \text { if } b=a-1 \text { and } a \geq 3 \\ a-1 & \text { if } b=a-2 \text { and } a \geq 3 \\ 1 & \text { otherwise }\end{cases}
$$

for every $a, b \in A$ such that $\{a, b\} \neq\{1,2\}$.

- $\langle\boldsymbol{A},\{0\}\rangle$ is a model of Σ (drawing subformula tree).
- $\langle\boldsymbol{A},\{0\}\rangle$ is not a model of $\mathcal{L}_{\mathrm{CM}}$.
- Why? It is reduced: if $a, b \in A \backslash\{0\}$ and $a<b$, we consider the polynomial

$$
p(x):=(\ldots((\ldots(\ldots((1 \cdot 2) \cdot 3) \cdot \ldots a) \cdots \cdot b-1) \cdot x) \cdots \cdot n) \cdot 0
$$

Some examples

Then consider the algebra $\boldsymbol{A}=\langle\{0,1,2, \ldots, n\}, \cdot\rangle$ with a binary operation such that $1 \cdot 2:=2$ and $2 \cdot 1:=1$ and

$$
a \cdot b=b \cdot a:= \begin{cases}a & \text { if } a \neq n \text { and } b=0 \\ 0 & \text { if } a=n \text { and } b=0 \\ a & \text { if } b=a-1 \text { and } a \geq 3 \\ a-1 & \text { if } b=a-2 \text { and } a \geq 3 \\ 1 & \text { otherwise }\end{cases}
$$

for every $a, b \in A$ such that $\{a, b\} \neq\{1,2\}$.

- $\langle\boldsymbol{A},\{0\}\rangle$ is a model of Σ (drawing subformula tree).
- $\langle\boldsymbol{A},\{0\}\rangle$ is not a model of $\mathcal{L}_{\mathrm{CM}}$.
- Why? It is reduced: if $a, b \in A \backslash\{0\}$ and $a<b$, we consider the polynomial

$$
p(x):=(\ldots((\ldots(\ldots((1 \cdot 2) \cdot 3) \cdot \ldots a) \cdots \cdot b-1) \cdot x) \cdots \cdot n) \cdot 0
$$

Then

$$
p(b)=0 \text { and } p(a) \neq 0
$$

Contents

1. The problem

2. Basic logic of a variety
3. A logic for commutative rings

4. Diophantine equations

A logic for commutative rings

Definition

Let $\mathcal{C R}$ be the logic axiomatized by the rules:

$$
\begin{gather*}
w+(u \cdot((x \cdot y) \cdot z)) \tag{A}\\
w+(u \cdot(x \cdot y)) \tag{B}\\
\text { H } \tag{C}\\
w+w+(u \cdot(x \cdot(y \cdot z)) \tag{D}\\
w+(u \cdot(x \cdot 1)) \tag{E}
\end{gather*} \vdash \vdash w+(u \cdot x)
$$

A logic for commutative rings

Definition

Let $\mathcal{C R}$ be the logic axiomatized by the rules:

$$
\begin{align*}
& w+(u \cdot((x \cdot y) \cdot z)) \dashv \vdash w+(u \cdot(x \cdot(y \cdot z)) \tag{A}\\
& w+(u \cdot(x \cdot y)) \dashv \vdash w+(u \cdot(y \cdot x)) \tag{B}\\
& w+(u \cdot(x \cdot 1)) \dashv \vdash+(u \cdot x) \tag{C}\\
& w+(u \cdot((x+y)+z)) \dashv \vdash w+(u \cdot(x+(y+z))) \tag{D}\\
& w+(u \cdot(x+y)) \dashv \vdash w+(u \cdot(y+x)) \tag{E}\\
& w+(u \cdot(x+0))-w+(u \cdot x) \tag{F}\\
& w+(u \cdot(x+-x)) \dashv \vdash w+(u \cdot 0) \tag{G}\\
& w+(u \cdot(x \cdot(y+z))) \dashv \vdash w+(u \cdot((x \cdot y)+(x \cdot z))) \tag{H}\\
& w+(u \cdot-(x+y)) \dashv \vdash w+(u \cdot(-x+-y)) \tag{I}\\
& w+(u \cdot-(x \cdot y)) \dashv \vdash w+(u \cdot(-x \cdot y)) \tag{L}\\
& w+(u \cdot-(x \cdot y)) \dashv \vdash w+(u \cdot(x \cdot-y)) \tag{M}\\
& 0+x \dashv \vdash x \tag{N}\\
& x+(1 \cdot y) \dashv \vdash x+y \tag{0}
\end{align*}
$$

Completeness

Theorem
The rules $\mathcal{C} \mathcal{R}$ axiomatize $\mathcal{L}_{\mathrm{CR}}$.

Completeness

Theorem
The rules $\mathcal{C R}$ axiomatize $\mathcal{L}_{\mathrm{CR}}$.
Proof.

- The relation $\vdash^{\vdash_{\mathcal{R}}}$ is a congruence.

Completeness

Theorem

The rules $\mathcal{C R}$ axiomatize $\mathcal{L}_{\mathrm{CR}}$.

Proof.

- The relation $\vdash \vdash^{\mathcal{C R}}$ is a congruence. Then:

$$
\begin{aligned}
& \alpha \approx \beta \text { is in the base of } C R \Longrightarrow \alpha \dashv \vdash_{\mathcal{C R}} \beta \\
& \Longrightarrow \operatorname{AlgCR} \vDash \alpha \approx \beta \\
& \Longrightarrow A \lg \mathcal{C} \mathcal{R} \subseteq C R \text {. }
\end{aligned}
$$

Completeness

Theorem

The rules $\mathcal{C R}$ axiomatize $\mathcal{L}_{\mathrm{CR}}$.

Proof.

- The relation $\vdash \vdash^{\mathcal{C R}}$ is a congruence. Then:

$$
\begin{aligned}
& \alpha \approx \beta \text { is in the base of } C R \Longrightarrow \alpha \vdash_{\mathcal{C R}} \beta \\
& \Longrightarrow \operatorname{AlgCR} \vDash \alpha \approx \beta \\
& \Longrightarrow A \lg \mathcal{C} \mathcal{R} \subseteq C R \text {. }
\end{aligned}
$$

- Since $\langle\boldsymbol{A}, F\rangle$ is a model of $\mathcal{L}_{C R}$ for every $\boldsymbol{A} \in C R$, we conclude that $\mathcal{L}_{\mathrm{CR}} \leq \mathcal{C} \mathcal{R}$.

Completeness

Theorem

The rules $\mathcal{C R}$ axiomatize $\mathcal{L}_{\mathrm{CR}}$.

Proof.

- The relation $\vdash \vdash^{\mathcal{C R}}$ is a congruence. Then:

$$
\begin{aligned}
& \alpha \approx \beta \text { is in the base of } C R \Longrightarrow \alpha \vdash_{\mathcal{C R}} \beta \\
& \Longrightarrow \operatorname{AlgCR} \vDash \alpha \approx \beta \\
& \Longrightarrow A \operatorname{Alg} \mathcal{R} \subseteq C R \text {. }
\end{aligned}
$$

- Since $\langle\boldsymbol{A}, F\rangle$ is a model of $\mathcal{L}_{C R}$ for every $\boldsymbol{A} \in C R$, we conclude that $\mathcal{L}_{\mathrm{CR}} \leq \mathcal{C} \mathcal{R}$.
- Easy to check that $\mathcal{C R} \leq \mathcal{L}_{\mathrm{CR}}$.

Contents

1. The problem

2. Basic logic of a variety
3. A logic for commutative rings
4. Diophantine equations

From equations to logics

Definition

Given a Diophantine equation $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$, we pick two new variables x and y, a new binary symbol \leftrightarrow and consider the logic $\mathcal{L}(p \approx 0)$ axiomatized by the rules:

$$
\begin{gather*}
\quad \emptyset \vdash x \leftrightarrow x \tag{R}\\
x \leftrightarrow y \vdash y \leftrightarrow x \tag{S}\\
x \leftrightarrow y, y \leftrightarrow z \vdash x \leftrightarrow z \tag{T}\\
x \leftrightarrow y \vdash-x \leftrightarrow-y \tag{Re1}\\
x \leftrightarrow y, z \leftrightarrow u \vdash(x+z) \leftrightarrow(y+u) \tag{Re2}\\
x \leftrightarrow y, z \leftrightarrow u \vdash(x \cdot z) \leftrightarrow(y \cdot u) \tag{Re3}\\
x \leftrightarrow y, z \leftrightarrow u \vdash(x \leftrightarrow z) \leftrightarrow(y \leftrightarrow u) \tag{Re4}\\
p\left(z_{1}, \ldots, z_{n}\right) \leftrightarrow 0, x, x \leftrightarrow y \vdash y \tag{MP'}\\
p\left(z_{1}, \ldots, z_{n}\right) \leftrightarrow 0, x \vdash \vdash \leftrightarrow(x \leftrightarrow x), p\left(z_{1}, \ldots, z_{n}\right) \leftrightarrow 0 \tag{A3'}\\
p\left(z_{1}, \ldots, z_{n}\right) \leftrightarrow 0, x, y \vdash x \leftrightarrow y \tag{G'}
\end{gather*}
$$

plus the axioms of the form $\emptyset \vdash \alpha \leftrightarrow \beta$ for every $\alpha \dashv \vdash \beta \in \mathcal{C} \mathcal{R}$.

Main result

The key result is the following:

Main result

The key result is the following:

Lemma

Let $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ be a Diophantine equation. The following conditions are equivalent:

Main result

The key result is the following:
Lemma
Let $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ be a Diophantine equation. The following conditions are equivalent:
(i) $\mathcal{L}(p \approx 0)$ is finitely regularly algebraizable.

Main result

The key result is the following:
Lemma
Let $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ be a Diophantine equation. The following conditions are equivalent:
(i) $\mathcal{L}(p \approx 0)$ is finitely regularly algebraizable.
(ii) $\mathcal{L}(p \approx 0)$ is truth-equational.

Main result

The key result is the following:
Lemma
Let $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ be a Diophantine equation. The following conditions are equivalent:
(i) $\mathcal{L}(p \approx 0)$ is finitely regularly algebraizable.
(ii) $\mathcal{L}(p \approx 0)$ is truth-equational.
(iii) $\mathcal{L}(p \approx 0)$ is protoalgebraic.

Main result

The key result is the following:

Lemma

Let $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ be a Diophantine equation. The following conditions are equivalent:
(i) $\mathcal{L}(p \approx 0)$ is finitely regularly algebraizable.
(ii) $\mathcal{L}(p \approx 0)$ is truth-equational.
(iii) $\mathcal{L}(p \approx 0)$ is protoalgebraic.
(iv) The equation $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ has an integer solution.

Main result

The key result is the following:

Lemma

Let $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ be a Diophantine equation. The following conditions are equivalent:
(i) $\mathcal{L}(p \approx 0)$ is finitely regularly algebraizable.
(ii) $\mathcal{L}(p \approx 0)$ is truth-equational.
(iii) $\mathcal{L}(p \approx 0)$ is protoalgebraic.
(iv) The equation $p\left(z_{1}, \ldots, z_{n}\right) \approx 0$ has an integer solution.

Theorem

Let K a level of the Leibniz hierarchy. The problem of determining whether the logic of a finite Hilbert calculus in a finite language belongs to K is undecidable.

Frege hierarchy

Frege hierarchy

- With a different strategy:

Frege hierarchy

- With a different strategy:

Theorem

Let K a level of the Frege hierarchy. The problem of determining whether the logic of a finite Hilbert calculus in a finite language belongs to K is undecidable.

Further work

- We saw that it is impossible to classify mechanically logics of Hilbert calculi into the Leibniz and Frege hierarchies.

Further work

- We saw that it is impossible to classify mechanically logics of Hilbert calculi into the Leibniz and Frege hierarchies.
- Is it possible to do this for logics of a finite set of finite matrices?

Further work

- We saw that it is impossible to classify mechanically logics of Hilbert calculi into the Leibniz and Frege hierarchies.
- Is it possible to do this for logics of a finite set of finite matrices?
- For the Leibniz hierarchy yes.

Further work

- We saw that it is impossible to classify mechanically logics of Hilbert calculi into the Leibniz and Frege hierarchies.
- Is it possible to do this for logics of a finite set of finite matrices?
- For the Leibniz hierarchy yes.
- The Frege hiearchy seems more complicated, since it involves semantic notions.

Further work

- We saw that it is impossible to classify mechanically logics of Hilbert calculi into the Leibniz and Frege hierarchies.
- Is it possible to do this for logics of a finite set of finite matrices?
- For the Leibniz hierarchy yes.
- The Frege hiearchy seems more complicated, since it involves semantic notions.
- We have a positive solution for selfextentionality and Fregeanity, but the problem for their fully-versions in open.

Finally...

Thank you!

