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Running Example



• Two contestants {A, B} 

• Three judges {J1, J2, J3} 

• Judge J1 prefers A > B 

• Judge J2 prefers B > A 

• Judge J3 wants to vote for the winner

A B

A
B B

A Simple Game



Matrix Representation
J1 J2 \ J3 A B

AA 1,0,1 1,0,0

AB 1,0,1 0,1,1

BA 1,0,1 0,1,1

BB 0,1,0 0,1,1



J1 J2 J3 \ J4 J5 AA AB BA BB

AAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 1,1,0,0,1

AAB 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

ABA 1,0,0,1,1 1,0,0,1,1 1,0,0,0,1 0,1,1,1,0

ABB 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

BAB 1,1,0,1,1 0,0,1,0,0 0,0,1,1,0 0,0,1,1,0

BBA 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BBB 0,1,1,0,0 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

Five Judges



Representation vs Model
• Normal-form matrix representations are good to 

calculate properties of games, e.g. equilibria 

• Not so good for modelling the ‘goals’ of players



Modelling Language
• Formal (precise and subject to manipulation) 

• Expressive (can capture different ‘situations’) 

• Faithful (captures precisely the game) 

• High level (we can understand) 

• Modular (whole built of individual parts)



Modelling Players



Player Context

• If judges 1 and 2 fix their moves, say A and B, that 
defines a context for judge 3 

• If judge 3 chooses A then A wins 

• If judge 3 chooses B then B wins 

• Context = a function from moves to outcomes



Player Context
• Assume a player is choosing moves in X having in 

mind an outcome in R 

• This player’s contexts are functions f : X ⟶ R 

• When all other opponents have fixed their moves, 
this defines a context for the player 

• Note: In a particular game, for particular 
opponents, some contexts might not arise



J1 J2 \ J3 A B

AA 1,0,1 [A] 1,0,0 [A]

AB 1,0,1 [A] 0,1,1 [B]

BA 1,0,1 [A] 0,1,1 [B]

BB 0,1,0 [B] 0,1,1 [B]

Player Context

• In this game there are three possible contexts for 
judge 3 (which are they?)



Player
• Assume players are choosing moves in X having in 

mind an outcome in R 

• Players will be modelled as mappings from 
contexts to good moves 
 
                       (X ⟶ R) ⟶ P(X)  

• Slogan: To know a player is to know his optimal 
moves in any possible context



Our Three Judges
• X = R = {A, B} 

• Judge 1 is argmax : (X ⟶ R) ⟶ P(X) with respect 
to the ordering A > B

• Judge 2 is argmax : (X ⟶ R) ⟶ P(X) with respect 
to the ordering B > A

• Judge 3 is fix : (X ⟶ R) ⟶ P(X) 
 
                    fix(p) = { x : p(x) = x }



Implementing in Haskell

 type Player r x = (x -> r) -> [x] 
 data Cand = A | B deriving (Eq,Ord,Enum,Show)  
 type Judge x = Player Cand x 
 
 cand = enumFrom A  -- List of candidates [A, B,..] 
 
 -- Judge that prefer A > B 
 argmax1 :: Judge Cand 
 argmax1 p = [ x | x <- cand, p x == minimum (map p cand) ] 
 
 -- Judge that prefer B > A 
 argmax2 :: Judge Cand 
 argmax2 p = [ x | x <- cand, p x == maximum (map p cand) ] 
 
 -- Judge that wants to vote for the winner 
 fix :: Judge Cand 
 fix p = [ x | x <- cand, p x == x ]



Our Three Judges
• Shouldn’t Judge 1 be the constant mapping  
 
                   J1(p) = { A } 

• Shouldn’t Judge 2 be the constant mapping  
 
                   J2(p) = { B } 

• No! We are defining the player irrespective of the 
concrete context, which includes the game itself!!



Modelling Games



The Outcome Function
• Outcome function = map from moves to outcome  
 
                     X1 x … x Xn ⟶ R 

• Suppose we change the rules of the game so that 
the candidate with least votes wins 
✴ If J1 wants A to win he better vote for B 
✴ If J2 wants B to win he better vote for A 
✴ No change to selection function representation!



Higher-order Game
• Number of players: n 

• Types: moves (X1,…, Xn) and outcome (R) 

• Selection functions for each player i = 1…n 
 
                     𝜀i  :  (Xi ⟶ R) ⟶ P(Xi) 

• An outcome function  
 
                     q  :  X1 x … x Xn ⟶ R



• Number of players: 3 

• X1 = X1 = X3 = R = { A , B } 

• Player 1, argmax : (X1 ⟶ R) ⟶ P(X1), with A > B 

• Player 2, argmax : (X2 ⟶ R) ⟶ P(X2), with B > A 

• Player 3, fix : (X3 ⟶ R) ⟶ P(X3) 

• q(x1, x2, x3) = majority(x1, x2, x3)

Example 1



• Number of players: 5 

• X1 = X1 = X3 = X4 = X5 = R = { A , B } 

• Player 1 and 5 are argmax, with A > B 

• Player 3 is argmax, with B > A 

• Player 2 and 4 are fix 

• q(x1, x2, x3, x4, x5) = majority(x1, x2, x3, x4, x5)

Example 2



Modelling Language
• Formal (precise and subject to manipulation) 

• Expressive (can capture different ‘situations’) 

• Faithful (captures precisely the game) 

• High level (we can understand) 

• Modular (whole built of individual parts)

✔

✔

✔

✔

✔



• Judge X wants A to win, if possible. Otherwise, he 
would rather vote with the winner. 

         𝜀X(p) = if A ∈ Img(p) then p-1({A}) else fix(p)  

• Judge Y is happy if either the best or worse 
candidate wins.  

         𝜀Y(p) = argmax(p) ⋃ argmin(p)

Aggregate Preferences



Modelling 
Equilibrium Concepts



Equilibrium Strategies

J1 J2 \ J3 A B

AA 1,0,1 1,0,0
AB 1,0,1 0,1,1
BA 1,0,1 0,1,1
BB 0,1,0 0,1,1

• Judge J1 prefers A > B 

• Judge J2 prefers B > A 

• Judge J3 wants to vote for the winner

J1 J2 \ J3 A B

AA 1,0,1 1,0,0
AB 1,0,1 0,1,1
BA 1,0,1 0,1,1
BB 0,1,0 0,1,1



(Classic) Nash Equilibrium
• Let the payoff function of player i be  
 
qi : X1 x … x Xn ⟶ Real 

• A choice of moves is in equilibrium if no player 
has an incentive to deviate from his/her choice 

• Player i has no incentive to deviate if 
 
   qi(x1,…,xn) ≥ qi(x1,…,y,…,xn), for all y in Xi



J1 J2 J3 \ J4 J5 AA AB BA BB

AAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 1,1,0,0,1

AAB 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

ABA 1,0,0,1,1 1,0,0,1,1 1,0,0,0,1 0,1,1,1,0

BAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

ABB 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BAB 1,1,0,1,1 0,0,1,0,0 0,0,1,1,0 0,0,1,1,0

BBA 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BBB 0,1,1,0,0 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

Five Judges



Nash Going High
• Player i has no incentive to deviate if 
 
   qi(x1,…,xn) ≥ qi(x1,…,y,…,xn), for all y ∈ Xi 

• Equivalent to  
 
    xi ∈ argmax (𝜆y.qi(x1,…,y,…,xn)) 

• (Higher-order) player i has no incentive to deviate if  
 
    xi ∈ 𝜀i (𝜆y.q(x1,…,y,…,xn))



 -- Unilateral context 
 cont :: ([Cand] -> Cand) -> [Cand] -> Int -> Cand -> Cand 
 cont q xs i x = q $ (take i xs) ++ [x] ++ (drop (i+1) xs) 

 -- Equilibrium checking = Global player 
 global :: [Judge Cand] -> Judge [Cand]  
 global js q = [ xs | xs <- plays,  
                      all (good xs) (zip [0..] js) ] 
 where 
  n = length js 
  plays = sequence (replicate n cand) 
  good xs (i,e) = elem (xs !! i) (e (cont q xs i))

Equilibrium Checker



Monads



Player’s Strategy

• Player’s description 
 
                        (X ⟶ R) ⟶ P(X)  

• Player’s strategy  
 
                          (X ⟶ R) ⟶ X 



Monads



Selection Monad
• Fix R. The type mapping  
 
                       J X = (X ⟶ R) ⟶ X  
 
is a strong monad

 data J r x = J { selection :: (x -> r) -> x } 
 
 monJ :: J r x -> (x -> J r y) -> J r y 
 monJ e f = J (\p -> b p (a p)) 
    where 
       a p = selection e $ (\x -> p (b p x)) 
       b p x = selection (f x) p  
 
 instance Monad (J r) where 
    return x = J(\p -> x) 
    e >>= f = monJ e f



Product of Selection Functions
• Strong monads support two operations  
 
                  (T X) x (T Y) ⟶ T (X x Y)  

• So we have two “products” of type  
 
                  (J X) x (J Y) ⟶ J (X x Y) 

• Game theoretic interpretation: 
A way of combining players’ strategies!



Iterated Product

• One product (J X) x (J Y) ⟶ J (X x Y) can be 
iterated 
 
                     𝛱i J Xi ⟶ J 𝛱i Xi 

• Backward induction: Calculates sub-game perfect 
equilibria of sequential games (Escardó/O’2012) 



Where all this came 
from…



Topology
• Theorem[Tychonoff].  

Countable product of compact sets is compact 

• Searchable sets = sets + selection function 

                         (X ⟶ Bool) ⟶ X 

• Searchable sets = compact sets 

• Theorem[Escardo].  
Countable product of searchable sets is searchable 

Proof. Countable product of selection functions



Logic
• T = Gödel’s calculus of primitive recursive 

functionals 

• Bar recursion BR: Spector (1962) computational 
interpretation of countable choice 

• Interpretation of classical analysis into T + BR 

• Theorem[Escardó/O.’2014] BR is T-equivalent to 
iterated product of selection function



Categories & Algebras
• Given any strong monad T and a T-algebra R then 

                       JT X  =  (X ⟶ R) ⟶ T X 

    is also a strong monad 

• Currently playing with different T’s 

1. (finite) power-set monad (Herbrand interpretation) 

2. distribution monad (mixed strategies)
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