Higher-Order Game Theory

Paulo Oliva Queen Mary University of London

> TACL 2015 23 June, Ischia, Italy

Joint work with...

Martin Escardo

Jules Hedges

Evguenia Sprits

Philipp Zahn

Viktor Winschel

Plan

- 1. Players
- 2. Games
- 3. Equilibria
- 4. Monads

Running Example

A Simple Game

- Two contestants {A, B}
- Three judges $\{J_1, J_2, J_3\}$
- Judge J_1 prefers A > B
- Judge J_2 prefers B > A

• Judge J_3 wants to vote for the winner

Matrix Representation

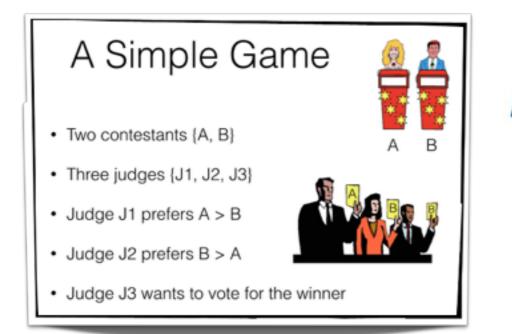
$J_1 J_2 \setminus J_3$	A	B
AA	1,0,1	1,0,0
AB	1,0,1	0,1,1
BA	1,0,1 0,1,1	
BB	0,1,0	0,1,1

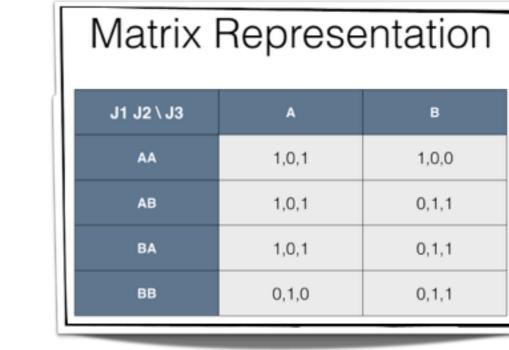
Five Judges

J ₁ J ₂ J ₃ \ J ₄ J ₅	AA	AB	BA	BB
AAA	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	1,1,0,0,1
AAB	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	0,0,1,1,0
ABA	1,0,0,1,1	1,0,0,1,1	1,0,0,0,1	0,1,1,1,0
ABB	1,0,0,1,1	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0
BAA	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	0,0,1,1,0
BAB	1,1,0,1,1	0,0,1,0,0	0,0,1,1,0	0,0,1,1,0
BBA	1,0,0,1,1	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0
BBB	0,1,1,0,0	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0

Representation vs Model

- Normal-form matrix **representations** are good to calculate properties of games, e.g. equilibria
- Not so good for **modelling** the 'goals' of players





Modelling Language

- Formal (precise and subject to manipulation)
- **Expressive** (can capture different 'situations')
- Faithful (captures precisely the game)
- High level (we can understand)
- **Modular** (whole built of individual parts)

Modelling Players

Player Context

- If judges 1 and 2 fix their moves, say A and B, that defines a **context** for judge 3
- If judge 3 chooses A then A wins
- If judge 3 chooses B then B wins
- Context = a function from moves to outcomes

Player Context

- Assume a player is choosing moves in X having in mind an outcome in R
- This player's contexts are functions $f : X \longrightarrow R$
- When all other opponents have fixed their moves, this defines a context for the player
- **Note**: In a particular game, for particular opponents, some contexts might not arise

Player Context

J1 J2 \ J3	A B	
AA	1,0,1 [A]	1,0,0 [A]
AB	1,0,1 [A]	0,1,1 [B]
BA	1,0,1 [A]	0,1,1 [B]
BB	0,1,0 [B]	0,1,1 [B]

 In this game there are three possible contexts for judge 3 (which are they?)

- Assume players are choosing moves in X having in mind an outcome in R
- Players will be modelled as mappings from contexts to good moves

 $(X \longrightarrow R) \longrightarrow P(X)$

 Slogan: To know a player is to know his optimal moves in any possible context

Our Three Judges

- $X = R = \{A, B\}$
- Judge 1 is argmax : $(X \rightarrow R) \rightarrow P(X)$ with respect to the ordering A > B
- Judge 2 is argmax : $(X \rightarrow R) \rightarrow P(X)$ with respect to the ordering B > A
- Judge 3 is fix : $(X \rightarrow R) \rightarrow P(X)$

 $fix(p) = \{ x : p(x) = x \}$

```
type Player r x = (x \rightarrow r) \rightarrow [x]
data Cand = A | B deriving (Eq,Ord,Enum,Show)
type Judge x = Player Cand x
cand = enumFrom A -- List of candidates [A, B,..]
-- Judge that prefer A > B
argmax1 :: Judge Cand
argmax1 p = [ x | x <- cand, p x == minimum (map p cand) ]
-- Judge that prefer B > A
argmax2 :: Judge Cand
argmax2 p = [ x | x <- cand, p x == maximum (map p cand) ]
-- Judge that wants to vote for the winner
fix :: Judge Cand
fix p = [x | x < - cand, p x == x]
```

Implementing in Haskell

Our Three Judges

• Shouldn't Judge 1 be the constant mapping

 $J_1(p) = \{ A \}$

• Shouldn't Judge 2 be the constant mapping

 $J_2(p) = \{ B \}$

• No! We are defining the player irrespective of the concrete context, which includes the game itself!!

Modelling Games

The Outcome Function

• Outcome function = map from moves to outcome

$X_1 \times \ldots \times X_n \longrightarrow R$

- Suppose we change the rules of the game so that the candidate with least votes wins
 - * If J_1 wants A to win he better vote for B
 - * If J_2 wants B to win he better vote for A
 - * No change to selection function representation!

Higher-order Game

- <u>Number of players</u>: n
- <u>Types</u>: moves $(X_1, ..., X_n)$ and outcome (R)
- <u>Selection functions</u> for each player i = 1...n

 $\mathcal{E}_i \ : \ (X_i \longrightarrow R) \longrightarrow P(X_i)$

• An outcome function

 $q : X_1 \times \ldots \times X_n \longrightarrow R$

Example 1

- Number of players: 3
- $X_1 = X_1 = X_3 = R = \{A, B\}$
- Player 1, argmax : $(X_1 \rightarrow R) \rightarrow P(X_1)$, with A > B
- Player 2, argmax : $(X_2 \rightarrow R) \rightarrow P(X_2)$, with B > A
- Player 3, fix : $(X_3 \rightarrow R) \rightarrow P(X_3)$
- $q(x_1, x_2, x_3) = majority(x_1, x_2, x_3)$

Example 2

- Number of players: 5
- $X_1 = X_1 = X_3 = X_4 = X_5 = R = \{A, B\}$
- Player 1 and 5 are argmax, with A > B
- Player 3 is argmax, with B > A
- Player 2 and 4 are fix
- $q(x_1, x_2, x_3, x_4, x_5) = majority(x_1, x_2, x_3, x_4, x_5)$

Modelling Language

- Formal (precise and subject to manipulation)
- Expressive (can capture different 'situations')
- Faithful (captures precisely the game)
- High level (we can understand)
- Modular (whole built of individual parts)

Aggregate Preferences

 Judge X wants A to win, if possible. Otherwise, he would rather vote with the winner.

 $\varepsilon^{X}(p) = \text{if } A \in \text{Img}(p) \text{ then } p^{-1}(\{A\}) \text{ else fix}(p)$

 Judge Y is happy if either the best or worse candidate wins.

 $\varepsilon^{\gamma}(p) = \operatorname{argmax}(p) \cup \operatorname{argmin}(p)$

Modelling Equilibrium Concepts

Equilibrium Strategies

- Judge J_1 prefers A > B
- Judge J_2 prefers B > A
- Judge J_3 wants to vote for the winner

$J_1 J_2 \setminus J_3$	Α	B	
AA	1,0,1	1,0,0	
AB	1,0,1	0,1,1	
BA	1,0,1	0,1,1	
BB	0,1,0	0,1,1	

(Classic) Nash Equilibrium

• Let the payoff function of player i be

- $q_i: X_1 \times \ldots \times X_n \longrightarrow Real$
- A choice of moves is in equilibrium if no player has an incentive to deviate from his/her choice
- Player i has no incentive to deviate if

 $q_i(x_1,\ldots,x_n) \geq q_i(x_1,\ldots,y,\ldots,x_n), \text{ for all } y \text{ in } X_i$

Five Judges

J ₁ J ₂ J ₃ \ J ₄ J ₅	AA	AB	BA	BB
AAA	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	1,1,0,0,1
AAB	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	0,0,1,1,0
ABA	1,0,0,1,1	1,0,0,1,1	1,0,0,0,1	0,1,1,1,0
BAA	1,1,0,1,1	1,1,0,1,1	1,1,0,0,1	0,0,1,1,0
ABB	1,0,0,1,1	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0
BAB	1,1,0,1,1	0,0,1,0,0	0,0,1,1,0	0,0,1,1,0
BBA	1,0,0,1,1	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0
BBB	0,1,1,0,0	0,1,1,0,0	0,1,1,1,0	0,1,1,1,0

Nash Going High

• Player i has no incentive to deviate if

 $q_i(x_1,\ldots,x_n)\geq q_i(x_1,\ldots,y,\ldots,x_n), \text{ for all } y\in X_i$

• Equivalent to

 $x_i \in \operatorname{argmax} (\lambda y.q_i(x_1,...,y,...,x_n))$

• (Higher-order) player i has no incentive to deviate if

 $x_i \in \varepsilon_i (\lambda y.q(x_1,...,y,...,x_n))$

Equilibrium Checker

```
-- Unilateral context
cont :: ([Cand] -> Cand) -> [Cand] -> Int -> Cand -> Cand
cont q xs i x = q (take i xs) ++ [x] ++ (drop (i+1) xs)
— Equilibrium checking = Global player
global :: [Judge Cand] -> Judge [Cand]
global js q = [ xs | xs <- plays,</pre>
                     all (good xs) (zip [0.] js) ]
 where
     n = length js
     plays = sequence (replicate n cand)
     good xs (i,e) = elem (xs !! i) (e (cont q xs i))
```

Monads

Player's Strategy

Player's description

 $(X \longrightarrow R) \longrightarrow P(X)$

• Player's strategy

$$(X \longrightarrow R) \longrightarrow X$$

Monads

DEFINITION 1.2 (Strong monad). Let T be a meta-level unary operation on simple types, that we will call a type operator. A type operator T is called a strong monad if we have a family of closed terms

 $\eta_X : X \to TX$

$$(\cdot)^{\dagger} : (X \to TY) \to (TX \to TY)$$

satisfying the laws

(i)
$$(\eta_X)^{\dagger} = \operatorname{id}_{TX}$$

(ii) $g^{\dagger} \circ \eta_Y = g$
(iii) $(g^{\dagger} \circ f)^{\dagger} = g^{\dagger} \circ f^{\dagger}$
where $g: Y \to TR$ and $f: X \to TY$.

Selection Monad

• Fix R. The type mapping

 $\mathsf{J} \mathsf{X} = (\mathsf{X} \longrightarrow \mathsf{R}) \longrightarrow \mathsf{X}$

is a strong monad

```
data J r x = J { selection :: (x -> r) -> x }
monJ :: J r x -> (x -> J r y) -> J r y
monJ e f = J (\p -> b p (a p))
where
    a p = selection e $ (\x -> p (b p x))
    b p x = selection (f x) p
instance Monad (J r) where
    return x = J(\p -> x)
    e >>= f = monJ e f
```

Product of Selection Functions

• Strong monads support two operations

 $(\mathsf{T} \mathsf{X}) \times (\mathsf{T} \mathsf{Y}) \longrightarrow \mathsf{T} (\mathsf{X} \times \mathsf{Y})$

• So we have two "products" of type

 $(\mathsf{J}\;\mathsf{X})\times(\mathsf{J}\;\mathsf{Y})\to\mathsf{J}\;(\mathsf{X}\times\mathsf{Y})$

• Game theoretic interpretation: A way of combining players' strategies!

Iterated Product

sequence :: Monad m => [m a] -> m [a]

base Prelude, base Control.Monad

Evaluate each action in the sequence from left to right, and collect the results.

One product (J X) x (J Y) → J (X x Y) can be iterated

 $\Pi_i J X_i \longrightarrow J \Pi_i X_i$

 <u>Backward induction</u>: Calculates sub-game perfect equilibria of sequential games (Escardó/O'2012)

Where all this came from...

Topology

- Theorem[Tychonoff].
 Countable product of compact sets is compact
- **Searchable sets** = sets + selection function

 $(X \rightarrow Bool) \rightarrow X$

- **Searchable sets** = compact sets
- Theorem[Escardo].
 Countable product of searchable sets is searchable

Proof. Countable product of selection functions

Logic

- T = Gödel's calculus of primitive recursive functionals
- Bar recursion BR: Spector (1962) computational interpretation of countable choice
- Interpretation of classical analysis into T + BR
- Theorem[Escardó/O.'2014] BR is T-equivalent to iterated product of selection function

Categories & Algebras

• Given any strong monad T and a T-algebra R then

 $\mathsf{J}^{\intercal} \mathsf{X} \; = \; (\mathsf{X} \longrightarrow \mathsf{R}) \longrightarrow \mathsf{T} \mathsf{X}$

is also a **strong monad**

- Currently playing with different T's
 - 1. (finite) power-set monad (Herbrand interpretation)
 - 2. distribution monad (*mixed strategies*)

References

- Escardó and Oliva. Selection functions, bar recursion and backward induction. Mathematical Structures in Computer Science, 20(2):127-168, 2010
- Escardó and Oliva. Sequential games and optimal strategies. Proceedings of the Royal Society A, 467:1519-1545, 2011
- Hedges, Oliva, Sprits, Zahn, and Winschel. A higherorder framework for decision problems and games, ArXiv, http://arxiv.org/abs/1409.7411, 2014