
Higher-Order
Game Theory

Paulo Oliva
Queen Mary University of London

TACL 2015
23 June, Ischia, Italy

Martin
Escardo

Jules
Hedges

Philipp
Zahn

Viktor
Winschel

Evguenia 
Sprits

Joint work with…

Plan
1. Players

2. Games

3. Equilibria

4. Monads

Running Example

• Two contestants {A, B}

• Three judges {J1, J2, J3}

• Judge J1 prefers A > B

• Judge J2 prefers B > A

• Judge J3 wants to vote for the winner

A B

A
B B

A Simple Game

Matrix Representation
J1 J2 \ J3 A B

AA 1,0,1 1,0,0

AB 1,0,1 0,1,1

BA 1,0,1 0,1,1

BB 0,1,0 0,1,1

J1 J2 J3 \ J4 J5 AA AB BA BB

AAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 1,1,0,0,1

AAB 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

ABA 1,0,0,1,1 1,0,0,1,1 1,0,0,0,1 0,1,1,1,0

ABB 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

BAB 1,1,0,1,1 0,0,1,0,0 0,0,1,1,0 0,0,1,1,0

BBA 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BBB 0,1,1,0,0 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

Five Judges

Representation vs Model
• Normal-form matrix representations are good to

calculate properties of games, e.g. equilibria

• Not so good for modelling the ‘goals’ of players

Modelling Language
• Formal (precise and subject to manipulation)

• Expressive (can capture different ‘situations’)

• Faithful (captures precisely the game)

• High level (we can understand)

• Modular (whole built of individual parts)

Modelling Players

Player Context

• If judges 1 and 2 fix their moves, say A and B, that
defines a context for judge 3

• If judge 3 chooses A then A wins

• If judge 3 chooses B then B wins

• Context = a function from moves to outcomes

Player Context
• Assume a player is choosing moves in X having in

mind an outcome in R

• This player’s contexts are functions f : X ⟶ R

• When all other opponents have fixed their moves,
this defines a context for the player

• Note: In a particular game, for particular
opponents, some contexts might not arise

J1 J2 \ J3 A B

AA 1,0,1 [A] 1,0,0 [A]

AB 1,0,1 [A] 0,1,1 [B]

BA 1,0,1 [A] 0,1,1 [B]

BB 0,1,0 [B] 0,1,1 [B]

Player Context

• In this game there are three possible contexts for
judge 3 (which are they?)

Player
• Assume players are choosing moves in X having in

mind an outcome in R

• Players will be modelled as mappings from
contexts to good moves 
 
 (X ⟶ R) ⟶ P(X)

• Slogan: To know a player is to know his optimal
moves in any possible context

Our Three Judges
• X = R = {A, B}

• Judge 1 is argmax : (X ⟶ R) ⟶ P(X) with respect
to the ordering A > B

• Judge 2 is argmax : (X ⟶ R) ⟶ P(X) with respect
to the ordering B > A

• Judge 3 is fix : (X ⟶ R) ⟶ P(X) 
 
 fix(p) = { x : p(x) = x }

Implementing in Haskell

 type Player r x = (x -> r) -> [x] 
 data Cand = A | B deriving (Eq,Ord,Enum,Show)  
 type Judge x = Player Cand x 
 
 cand = enumFrom A -- List of candidates [A, B,..] 
 
 -- Judge that prefer A > B 
 argmax1 :: Judge Cand 
 argmax1 p = [x | x <- cand, p x == minimum (map p cand)] 
 
 -- Judge that prefer B > A 
 argmax2 :: Judge Cand 
 argmax2 p = [x | x <- cand, p x == maximum (map p cand)] 
 
 -- Judge that wants to vote for the winner 
 fix :: Judge Cand 
 fix p = [x | x <- cand, p x == x]

Our Three Judges
• Shouldn’t Judge 1 be the constant mapping  
 
 J1(p) = { A }

• Shouldn’t Judge 2 be the constant mapping  
 
 J2(p) = { B }

• No! We are defining the player irrespective of the
concrete context, which includes the game itself!!

Modelling Games

The Outcome Function
• Outcome function = map from moves to outcome  
 
 X1 x … x Xn ⟶ R

• Suppose we change the rules of the game so that
the candidate with least votes wins
✴ If J1 wants A to win he better vote for B
✴ If J2 wants B to win he better vote for A
✴ No change to selection function representation!

Higher-order Game
• Number of players: n

• Types: moves (X1,…, Xn) and outcome (R)

• Selection functions for each player i = 1…n 
 
 𝜀i : (Xi ⟶ R) ⟶ P(Xi)

• An outcome function  
 
 q : X1 x … x Xn ⟶ R

• Number of players: 3

• X1 = X1 = X3 = R = { A , B }

• Player 1, argmax : (X1 ⟶ R) ⟶ P(X1), with A > B

• Player 2, argmax : (X2 ⟶ R) ⟶ P(X2), with B > A

• Player 3, fix : (X3 ⟶ R) ⟶ P(X3)

• q(x1, x2, x3) = majority(x1, x2, x3)

Example 1

• Number of players: 5

• X1 = X1 = X3 = X4 = X5 = R = { A , B }

• Player 1 and 5 are argmax, with A > B

• Player 3 is argmax, with B > A

• Player 2 and 4 are fix

• q(x1, x2, x3, x4, x5) = majority(x1, x2, x3, x4, x5)

Example 2

Modelling Language
• Formal (precise and subject to manipulation)

• Expressive (can capture different ‘situations’)

• Faithful (captures precisely the game)

• High level (we can understand)

• Modular (whole built of individual parts)

✔

✔

✔

✔

✔

• Judge X wants A to win, if possible. Otherwise, he
would rather vote with the winner.

 𝜀X(p) = if A ∈ Img(p) then p-1({A}) else fix(p)

• Judge Y is happy if either the best or worse
candidate wins.

 𝜀Y(p) = argmax(p) ⋃ argmin(p)

Aggregate Preferences

Modelling
Equilibrium Concepts

Equilibrium Strategies

J1 J2 \ J3 A B

AA 1,0,1 1,0,0
AB 1,0,1 0,1,1
BA 1,0,1 0,1,1
BB 0,1,0 0,1,1

• Judge J1 prefers A > B

• Judge J2 prefers B > A

• Judge J3 wants to vote for the winner

J1 J2 \ J3 A B

AA 1,0,1 1,0,0
AB 1,0,1 0,1,1
BA 1,0,1 0,1,1
BB 0,1,0 0,1,1

(Classic) Nash Equilibrium
• Let the payoff function of player i be  
 
qi : X1 x … x Xn ⟶ Real

• A choice of moves is in equilibrium if no player
has an incentive to deviate from his/her choice

• Player i has no incentive to deviate if 
 
 qi(x1,…,xn) ≥ qi(x1,…,y,…,xn), for all y in Xi

J1 J2 J3 \ J4 J5 AA AB BA BB

AAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 1,1,0,0,1

AAB 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

ABA 1,0,0,1,1 1,0,0,1,1 1,0,0,0,1 0,1,1,1,0

BAA 1,1,0,1,1 1,1,0,1,1 1,1,0,0,1 0,0,1,1,0

ABB 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BAB 1,1,0,1,1 0,0,1,0,0 0,0,1,1,0 0,0,1,1,0

BBA 1,0,0,1,1 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

BBB 0,1,1,0,0 0,1,1,0,0 0,1,1,1,0 0,1,1,1,0

Five Judges

Nash Going High
• Player i has no incentive to deviate if 
 
 qi(x1,…,xn) ≥ qi(x1,…,y,…,xn), for all y ∈ Xi

• Equivalent to  
 
 xi ∈ argmax (𝜆y.qi(x1,…,y,…,xn))

• (Higher-order) player i has no incentive to deviate if  
 
 xi ∈ 𝜀i (𝜆y.q(x1,…,y,…,xn))

 -- Unilateral context 
 cont :: ([Cand] -> Cand) -> [Cand] -> Int -> Cand -> Cand 
 cont q xs i x = q $ (take i xs) ++ [x] ++ (drop (i+1) xs)

 -- Equilibrium checking = Global player 
 global :: [Judge Cand] -> Judge [Cand]  
 global js q = [xs | xs <- plays,  
 all (good xs) (zip [0..] js)] 
 where 
 n = length js 
 plays = sequence (replicate n cand) 
 good xs (i,e) = elem (xs !! i) (e (cont q xs i))

Equilibrium Checker

Monads

Player’s Strategy

• Player’s description 
 
 (X ⟶ R) ⟶ P(X)

• Player’s strategy  
 
 (X ⟶ R) ⟶ X

Monads

Selection Monad
• Fix R. The type mapping  
 
 J X = (X ⟶ R) ⟶ X  
 
is a strong monad

 data J r x = J { selection :: (x -> r) -> x } 
 
 monJ :: J r x -> (x -> J r y) -> J r y 
 monJ e f = J (\p -> b p (a p)) 
 where 
 a p = selection e $ (\x -> p (b p x)) 
 b p x = selection (f x) p  
 
 instance Monad (J r) where 
 return x = J(\p -> x) 
 e >>= f = monJ e f

Product of Selection Functions
• Strong monads support two operations  
 
 (T X) x (T Y) ⟶ T (X x Y)

• So we have two “products” of type  
 
 (J X) x (J Y) ⟶ J (X x Y)

• Game theoretic interpretation: 
A way of combining players’ strategies!

Iterated Product

• One product (J X) x (J Y) ⟶ J (X x Y) can be
iterated 
 
 𝛱i J Xi ⟶ J 𝛱i Xi

• Backward induction: Calculates sub-game perfect
equilibria of sequential games (Escardó/O’2012)

Where all this came
from…

Topology
• Theorem[Tychonoff].  

Countable product of compact sets is compact

• Searchable sets = sets + selection function

 (X ⟶ Bool) ⟶ X

• Searchable sets = compact sets

• Theorem[Escardo].  
Countable product of searchable sets is searchable

Proof. Countable product of selection functions

Logic
• T = Gödel’s calculus of primitive recursive

functionals

• Bar recursion BR: Spector (1962) computational
interpretation of countable choice

• Interpretation of classical analysis into T + BR

• Theorem[Escardó/O.’2014] BR is T-equivalent to
iterated product of selection function

Categories & Algebras
• Given any strong monad T and a T-algebra R then

 JT X = (X ⟶ R) ⟶ T X

 is also a strong monad

• Currently playing with different T’s

1. (finite) power-set monad (Herbrand interpretation)

2. distribution monad (mixed strategies)

References
• Escardó and Oliva. Selection functions, bar recursion

and backward induction. Mathematical Structures in
Computer Science, 20(2):127-168, 2010

• Escardó and Oliva. Sequential games and optimal
strategies. Proceedings of the Royal Society A,
467:1519-1545, 2011

• Hedges, Oliva, Sprits, Zahn, and Winschel. A higher-
order framework for decision problems and games,
ArXiv, http://arxiv.org/abs/1409.7411, 2014

