# On One Embedding of Heyting Algebras

Alexei Muravitsky

Northwestern State University alexeim@nsula.edu

## TACL 2015 Ischia Island

## Outline

- 1 Kuznetsov's remark on an embedding
- 2 Enrichable Heyting Algebras
- 3 Kuznetsov's Theorem
- 4 The Embedding
- 5 Localization of Enrichment
- 6 Expansions of Intuitionistic Logic
- Conclusive Step

#### Kuznetsov's Remark on an Embedding

Докл. Акад. Наук СССР Том 283 (1985), № 1

Soviet Math. Dokl. Vol. 32 (1985), No. 1

#### ON THE PROPOSITIONAL CALCULUS OF INTUITIONISTIC PROVABILITY

UDC 517.11:(51.01+519.48)

#### A. V. KUZNETSOV

A. Yu. Muravitskiĭ drew my attention to:

COROLLARY 2. Every pseudo-Boolean algebra  $\mathfrak{A}$  is a subalgebra of some  $\Delta$ -enrichable pseudo-Boolean algebra in the variety generated by  $\mathfrak{A}$ .

## Enrichable Elment, Enrichable Heyting Algebra

#### Definition: enrichable element, enrichable Heyting algebra

An element *a* of Heyting algebra  $\mathfrak{A}$  is said to be **enriched** by an element  $a^*$  (or  $a^*$  **enriches** *a*) if the following conditions are fulfilled:

An element  $a \in |\mathfrak{A}|$  is **enrichable** if there exists an element  $b \in |\mathfrak{A}|$  that enriches *a*. A Heyting algebra is **enrichable** if each element of it is enrichable.

#### Note

Given a Heyting algebra  $\mathfrak{A}$  and  $a \in |\mathfrak{A}|$ , it has been observed that if a is enriched by b and by c, then b = c

## Kuznetsov's Theorem

Two propositional languages:  $\mathcal{L}_a$  and  $\mathcal{L}_m$ 

- The propositional variables  $Var = \{p_0, p_1, \ldots\}$
- $\mathcal{L}_a$ -formulas  $(A, B, \ldots) := A \in Var|(A \land B)|(A \lor B)|(A \to B)| \neg A$
- $\mathcal{L}_m$ -formulas  $(\alpha, \beta, \ldots) := \alpha \in Var|(\alpha \land \beta)|(\alpha \lor \beta)|(\alpha \to \beta)|\neg \alpha|\Box \alpha$
- Int denotes intuitionistic propositional logic in L<sub>a</sub>
- KM denotes proof-intuitionistic logic in *L*<sub>m</sub>

## Kuznetsov's Theorem

$$\mathbf{KM} + A \vdash B \iff \mathbf{Int} + A \vdash B.$$

## Kuznetsov's Corollary 1

Every variety of Heyting algebras is generated by its enrichable members.

## The Existence of embedding derived from the Kuznetsov Theorem

## Keznetsov's Corollary 2

Any Heyting algebra is embedded into an enrichable one so that these algebras separately generate one and the same variety.

## Proof [Muravitsky 1988]

- Step 1: Let us take a Heyting algebra  $\mathfrak{A}$  and let K be the enrichable Heyting algebras of HSP( $\mathfrak{A}$ ).
- Step 2:  $\mathfrak{A} \in \mathsf{HSP}(K)$  [Kuznetsov's Corollary 1]
- Step 3:  $\mathfrak{A} \in SHP(K)$  [since any Heyting algebra has CEP]
- Step 4: "algebra ... is enrichable" is a property that can be expressed by a conjunction of Horn positive formulas. Hence each of these formulas is stable under formation of direct products and homomorphic images. Therefore,  $HP(K) \subseteq K$ .
- Step 5: Conclusion:  $\mathfrak{A}$  is embedded into an enrichable Heyting algebra  $\mathfrak{B}$  such that  $HSP(\mathfrak{A}) = HSP(\mathfrak{B})$ .

Question: How intimately are  $\mathfrak{A}$  and  $\mathfrak{B}$  related to one another? Which properties of  $\mathfrak{A}$  are preserved in  $\mathfrak{B}$ ?

## The Embedding

Tools for the embedding: Given a Heyting algebra  $\mathfrak{A}$ , let

- $\mu_{\mathfrak{A}}$  be the partially ordered set of the prime filters of the algebra  $\mathfrak{A}$ , arranged by set inclusion;
- $\mathcal{H}(\mathfrak{A})$  be the Heyting algebra of all upward sets of  $\mu_{\mathfrak{A}}$ ;
- $h: \mathfrak{A} \to \mathcal{H}(\mathfrak{A})$  be a Stone embedding.
- Next we define for any  $X \in \mathcal{H}(\mathfrak{A})$ ,

$$\Delta X = \{F \mid F \in \mu_{\mathfrak{A}}, (\forall F' \in \mu_{\mathfrak{A}}) (F \subset F' \Rightarrow F' \in X)\};$$

in particular,

$$\Delta h(x) = \{F \mid F \in \mu_{\mathfrak{A}}, (\forall F')(F \subset F' \Rightarrow x \in F')\}.$$

■ Let  $\mathcal{B}^{\triangle}(\mathfrak{A})$  be the subalgebra of  $\mathcal{H}(\mathfrak{A})$ , generated by the set  $\{h(x) \mid x \in \mathfrak{A}\} \cup \{\Delta h(x) \mid x \in \mathfrak{A}\}.$ 

## Definition of the embedding

Given a Heyting algebra  $\mathfrak{A}$ , we define the denumerable sequence of algebras as follows:

$$\mathfrak{A}_0 = \mathfrak{A}, \ \mathfrak{A}_{i+1} = \mathcal{B}^{\vartriangle}(\mathfrak{A}_i) \quad (i < \omega).$$

Along with the sequence  $\{\mathfrak{A}_i\}_{i < \omega}$ , we also have the embeddings:

$$\begin{aligned} \varphi_{ii} &: \mathfrak{A}_i \to \mathfrak{A}_i, i < \omega, \quad (\text{the identity embedding of } \mathfrak{A}_i) \\ \varphi_{i(i+1)} &: \mathfrak{A}_i \to \mathfrak{A}_{i+1}, i < \omega, \quad (\text{Stone embedding } h : \mathfrak{A}_i \to \mathcal{B}^{\vartriangle}(\mathfrak{A}_i)) \\ \varphi_{ij} &= \varphi_{i(i+1)} \circ \varphi_{(i+1)(i+2)} \circ \ldots \circ \varphi_{(j-1)j}, \text{ where } i < j. \end{aligned}$$

Thus the sequence  $\{\mathfrak{A}_i\}_{i < \omega}$  along with the embeddings  $\varphi_{ij}$ ,  $i \leq j$ , form a direct family. Let  $\vec{\mathfrak{A}}$  be the direct limit of this family.

## Properties of the embedding

- $\vec{\mathfrak{A}}$  is an enrichable Heyting algebra.
- Each  $\mathfrak{A}_i$  is embedded into  $\vec{\mathfrak{A}}$ .
- If  $\mathfrak{A}$  is finite, then  $\mathfrak{A}$  and  $\vec{\mathfrak{A}}$  are isomorphic.
- If  $\mathfrak{A}$  is countable, then  $\vec{\mathfrak{A}}$  is also countable.
- If  $\mathfrak{A}$  is subdirectly irreducible, so is  $\vec{\mathfrak{A}}$ .

The main question: Is it true that  $HSP(\mathfrak{A}) = HSP(\vec{\mathfrak{A}})$ ?

Remarks:

- It must be clear that the answer to this question is affirmative if HSP(𝔅) = HSP(𝔅<sup>Δ</sup><sub>a</sub>), where 𝔅<sup>Δ</sup><sub>a</sub> is a subalgebra of ℋ(𝔅) generated by {h(x) | x ∈ |𝔅|} ∪ {△h(a)}, where a is any fixed element of 𝔅.
- 2 Since △h(a) enriches h(a) in A<sup>Δ</sup><sub>a</sub>, we have to focus on enrichment of one element of a given Heyting algebra in general setting.

## **Localization of Enrichment**

#### Defition: $\mathcal{E}$ -pair and relation $\mathcal{E}$

Given an algebra  $\mathfrak{A}$  and  $a, a^* \in \mathfrak{A}$ ,  $(a, a^*)$  is an  $\mathcal{E}$ -pair (in/of  $\mathfrak{A}$ ) if a is enriched by  $a^*$  in  $\mathfrak{A}$ . Then, we define:

$${\mathcal E}_{\mathfrak A}=\{(a,a^*)\mid (a,a^*) ext{ is an } {\mathcal E} ext{-pair in } {\mathfrak A}\}.$$

#### Definition: $\sim$ -negation, $\sim$ -expansion

A unary operation  $\sim x$  in a Heyting algebra is called **tilde-negation** (or  $\sim$ -**negation** for short) if the following identities hold:

A Heyting  $\mathfrak{A}$  with a  $\sim$ -negation is called a  $\sim$ -**expansion** of  $\mathfrak{A}$  and denoted by  $(\mathfrak{A}, \sim)$ . The abstract class of all  $\sim$ -expansions is denoted by K.

## Consequences from the two last definitions

## Proposition 1

Class K is a variety.

#### Proposition 2

Given a  $\sim$ -negation, ( $\sim 1, \sim 0$ ) is an  $\mathcal{E}$ -pair.

#### **Proposition 3**

Given a Heyting algebra  $\mathfrak{A}$ , if  $(a, a^*)$  is an  $\mathcal{E}$ -pair, then the operation

$$\sim x = (x \rightarrow a) \land a^*$$

is a  $\sim$ -negation in  $\mathfrak{A}$  so that  $a = \sim \mathbf{1}$  and  $a^* = \sim \mathbf{0}$ .



#### Definition: $\tau$ -expansion, $\tau$ --expansion, $\tau$ -reduct

Let  $\mathfrak{A}$  be a Heyting algebra. We enrich the signature of  $\mathfrak{A}$  with a nullary operation  $\tau$  and call  $\mathfrak{A}_{\tau} = (\mathfrak{A}, \tau)$  a  $\tau$ -**expansion** of  $\mathfrak{A}$ . The  $\sim$ -expansion of  $\mathfrak{A}_{\tau}$  satisfying in additional to the  $\sim$ -identities the identity  $\sim \mathbf{1} = \tau$  is called a  $\tau \sim$ -**expansion** (of  $\mathfrak{A}$ ). Accordingly, the equational class of all  $\tau \sim$ -expansions is denoted by  $K_{\tau}$ . If  $(\mathfrak{A}_{\tau}, \sim)$  is a  $\tau \sim$ -expansion, we call  $\mathfrak{A}_{\tau}$  a  $\tau$ -reduct of the former.

#### Definition: packing, $\tau \sim$ -embrace, relation $\triangleleft$

Suppose  $\mathfrak{A}_{\tau}$  is a subalgebra of  $\mathfrak{B}_{\tau}$  and  $(\mathfrak{B}_{\tau}, \sim)$  is a  $\tau \sim$ -expansion generated by  $|\mathfrak{A}|$ . Then we say that  $\mathfrak{A}_{\tau}$  is packed in  $\mathfrak{B}_{\tau}$ , or  $\mathfrak{B}_{\tau}$  is a  $\tau \sim$ -embrace of  $\mathfrak{A}_{\tau}$ ; symbolically  $\mathfrak{A}_{\tau} \lhd \mathfrak{B}_{\tau}$ . If  $\mathfrak{A}_{\tau}$  is packed in  $\mathfrak{B}_{\tau}$  and  $(\mathfrak{A}_{\tau}, \sim)$ , regarded as a partial algebra w.r.t.  $\sim$ , is a relative subalgebra of a (full) algebra  $(\mathfrak{B}_{\tau}, \sim)$  (in the sense of G. Grätzer, Universal Algebra, § 13), we also say that  $(\mathfrak{A}_{\tau}, \sim)$  is packed in  $(\mathfrak{B}_{\tau}, \sim)$ , denoting this by  $(\mathfrak{A}_{\tau}, \sim) \lhd (\mathfrak{B}_{\tau}, \sim)$ .

#### Proposition 4

If  $\mathfrak{A}_{\tau} \lhd \mathfrak{B}_{\tau}$ , then  $\mathfrak{B}_{\tau}$  is generated by Heyting operations from  $|\mathfrak{A}_{\tau}| \cup \{\sim \tau\}$ .

## Two (important) examples

- **I** Given a  $\tau$ -expansion  $\mathfrak{A}_{\tau}$ ,  $\mathfrak{A}_{\tau}^{\Delta}$  is a  $\tau$ ~-embrace of the former.
- 2 Let Z be a 2-element Heyting algebra. Then  $\mathcal{E}_{Z} = \{(0, 1), ((1, 1))\}$ . Accordingly, we have two choices to define  $\sim$ :

#### Proposition 5

Any nontrivial subvariety of  $K_{\tau}$  contains  $Z_{\tau}$ .

#### Proposition 6

Any finite  $\mathfrak{A}_{\tau}$  is packed in itself. Hence,  $Z_{\tau}$  is packed in itself.

## **Expansions of Int**

Extending  $\mathcal{L}_a$ 

- The atomic formulas  $Atom = Var \cup \{\tau\}$
- $\mathcal{L}_{ au}$ -formulas  $(A, B, \ldots) := A \in Atom|(A \land B)|(A \lor B)|(A \to B)| \neg A$
- $\mathcal{L}_{\tau\sim}$ -formulas  $(\alpha, \beta, \ldots) := \alpha \in Atom|(\alpha \land \beta)|(\alpha \lor \beta)|(\alpha \lor \beta)|\neg \alpha| \sim \alpha$

## Expanding Int

- Int $_{ au}$  denotes intuitionistic propositional logic in  $\mathcal{L}_{ au}$
- Int $_{\tau\sim}$  denotes intuitionistic logic in  $\mathcal{L}_{\tau\sim}$  plus the following axioms:

1 
$$\sim p_0 \leftrightarrow (p_0 \to \tau) \land \sim \tau$$
,  
2  $(\sim \tau \to \tau) \to \tau$ ,  
3  $\sim \tau \to (p_0 \lor (p_0 \to \tau))$ ,  
4  $\tau \to \sim \tau$ .

#### Proposition 7

 $\operatorname{Int}_{\tau\sim} \vdash \alpha \iff \alpha$  is valid in any  $\tau\sim$ -expansion.

#### Proposition 8

For any  $\mathcal{L}_{\tau}$ -formulas A and B,

$$\operatorname{Int}_{\tau\sim} + A \vdash B \iff \operatorname{Int}_{\tau} + A \vdash B.$$

#### Corollary 8.1

Any variety of  $\tau$ -expansions is generated by those algebras of the variety which are  $\tau$ -reducts of a  $\tau$ --embraces.

#### Remark

In the proof of Corollary 8.1, we use that any variety of  $\tau$ -expansions contains  $\tau$ -reducts of some  $\tau$ ~-embraces, for example,  $Z_{\tau}$ .

#### Corollary 8.2

Any  $\tau$ -expansion  $\mathfrak{A}_{\tau}$  is embedded into the  $\tau$ -reduct  $\mathfrak{B}_{\tau}$  of  $\tau$ ~-expansion  $(\mathfrak{B}_{\tau}, \sim)$  so that  $\mathsf{HSP}(\mathfrak{A}_{\tau}) = \mathsf{HSP}(\mathfrak{B}_{\tau})$ . Hence, for any  $\mathfrak{A}_{\tau}$ , there is a  $\mathfrak{B}_{\tau}$  such that  $\mathfrak{A}_{\tau} \triangleleft \mathfrak{B}_{\tau}$  and  $\mathsf{HSP}(\mathfrak{A}_{\tau}) = \mathsf{HSP}(\mathfrak{B}_{\tau})$ .

## **Conclusive Step**

#### Propositin 9

Let a Heyting algebra  $\mathfrak{A}$  be a subalgebra of  $\mathfrak{B}$  and let  $a \in \mathfrak{A}$ . Assume that a is enriched in  $\mathfrak{B}$  by and an element b. If  $\mathfrak{B}$  is generated by  $|\mathfrak{A}| \cup \{b\}$ , then  $\mathfrak{B}$  is isomorphic to  $\mathfrak{A}_a^{\Delta}$ .

Using Corollary 8.2 and Proposition 9, we obtain the following.

Proposition 10

Let  $\mathfrak{A}$  be a Heyting algebra and  $a \in \mathfrak{A}$ . Then  $HSP(\mathfrak{A}) = HSP(\mathfrak{A}_a^{\Delta})$ .

#### Theorem

For any Heyting algebra  $\mathfrak{A}$ , HSP( $\mathfrak{A}$ ) = HSP( $\vec{\mathfrak{A}}$ ).



# Thank You

