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Residuated lattices.

Definition

A bounded integral residuated lattice is an algebra
M = (M;�,∨,∧,→, , 0, 1) of type 〈2, 2, 2, 2, 2, 0, 0〉 satisfying:

(M; �, 1) is a monoid;

(M; ∨,∧, 0, 1) is a bounded lattice;

x � y ≤ z iff x ≤ y → z iff y ≤ x  z .

In what follows, a residuated lattice is a bounded integral residuated lattice.

Additional unary operations:

x− := x → 0, x∼ := x  0

A residuated lattice M is called

good if it satisfies x−∼ = x∼−.

normal if it satisfies
(x � y)−∼ = x−∼ � y−∼, (x � y)∼− = x∼− � y∼−.
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Special cases of residuated lattices.

Terms of properties of residuated structures

(1) (x → y) ∨ (y → x) = 1 = (x  y) ∨ (y  x) pre-linearity

(2) (x → y)� x = x ∧ y = y � (y  x) divisibility

(3) x−∼ = x = x∼− involution

(4) x � x = x idempotency

A residuated lattice M is

a pseudo MTL-algebra if M satisfies (1);

an R`-monoid if M satisfies (2);

a pseudo BL-algebra if M satisfies (1) and (2);

a Heyting algebra if M satisfies (4);

a GMV -algebra (pseudo MV -algebra equivalently) if M satisfies (2)
and (3).
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Filters and congruences.

A non-empty subset F of a residuated lattice M is called a filter of M if

(a) x , y ∈ F imply x � y ∈ F ;

(b) x ∈ F , y ∈ M, x ≤ y imply y ∈ F .

A filter F is called normal if for each x , y ∈ M

(c) x → y ∈ F ⇐⇒ x  y ∈ F .

normal filters of M ←→ kernels (i.e. 1-classes) of congruences on M

〈x , y〉 ∈ θF ⇐⇒ (x → y)� (y → x) ∈ F

⇐⇒ (x  y)� (y  x) ∈ F .

M/F . . . a quotient residuated lattice;

x/F = x/θF . . . the class of M/F containing x .
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GMV -algebras (pseudo MV -algebras).

Definition

A GMV -algebra is an algebra M = (M; ⊕,− ,∼ , 0, 1) of type 〈2, 1, 1, 0, 0〉, where
x � y := (x− ⊕ y−)∼ for any x , y ∈ M, satisfying:

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z ;

x ⊕ 0 = x = 0⊕ x ;

x ⊕ 1 = 1 = 1⊕ x ;

1− = 0 = 1∼;

(x∼ ⊕ y∼)− = (x− ⊕ y−)∼;

x ⊕ (y � x∼) = y ⊕ (x � y∼) = (y− � x)⊕ y = (x− � y)⊕ x ;

(x− ⊕ y)� x = y � (x ⊕ y∼);

x−∼ = x .

x ≤ y iff x− ⊕ y = 1,

(M,≤) is a bounded distributive lattice,

x ∨ y = x ⊕ (y � x∼), x ∧ y = x � (y ⊕ x∼)
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Ideals of GMV -algebras.

A non-empty subset I of a GMV -algebra M is called an ideal of M if

(a) x , y ∈ I imply x ⊕ y ∈ I ;

(b) x ∈ I , y ∈ M, y ≤ x imply y ∈ I .

An ideal I is called normal if for each x , y ∈ M

(c) x− � y ∈ I ⇐⇒ y � x∼ ∈ I .

normal ideals of M ←→ kernels of congruences on M

〈x , y〉 ∈ θI ⇐⇒ (x− � y)⊕ (y− � x) ∈ I

⇐⇒ (x � y∼)⊕ (y � x∼) ∈ I .
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Motivation.

1 In GMV -algebra M, x � y := (x− ⊕ y−)∼, put x → y := x− ⊕ y , x  y := y ⊕ x∼,
then (M; �,∨,∧,→, , 0, 1) is a residuated lattice with (2), (3).

2 Conversely, let (M; �,∨,∧,→, , 0, 1) be a residuated lattice with (2), (3).
Put x− := x → 0, x∼ := x  0, x ⊕ y := (x− � y−)∼ = (x∼ � y∼)−.
Then M = (M;⊕,− ,∼ , 0, 1) is a GMV -algebra.

Filter and ideal theories of GMV -algebras are mutually dual.

A dual binary operation to multiplication in residuated lattices does not exist.
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The aim.

To fill the gap by introducing the notion of ideal in residuated lattices.

To establish congruences in residuated lattices using ideals.
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Ideals of residuated lattices.

Let M be a residuated lattice, we put

x � y := y−  x . . . left addition,

x ; y := x∼ → y . . . right addition on M.

Definition

A non-empty subset I of a residuated lattice M is called a left ideal of M if

(a) x , y ∈ I =⇒ x � y ∈ I ;

(b) x ∈ I , z ∈ M, z ≤ x =⇒ z ∈ I .

Theorem 1

Let I be a subset of a residuated lattice M containing 0. Then I is a left
ideal of M if and only if

∀x , y ∈ M; x− � y ∈ I , x ∈ I =⇒ y ∈ I .
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Ideals of residuated lattices.

Definition

A non-empty subset I of a residuated lattice M is called a right ideal of M
if

(a’) x , y ∈ I =⇒ x ; y ∈ I ;

(b) x ∈ I , z ∈ M, z ≤ x =⇒ z ∈ I .

Theorem 1’

Let I be a subset of a residuated lattice M containing 0. Then I is a right
ideal of M if and only if

∀x , y ∈ M; y � x∼ ∈ I , x ∈ I =⇒ y ∈ I .

Every left ideal as well as every right ideal of a residuated lattice M is
a lattice ideal.
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Ideals of residuated lattices.

Definition

A non-empty subset I of a residuated lattice M is called a ideal of M if it
is both left and right ideal of M, i.e.

(a) x , y ∈ I =⇒ x � y ∈ I ;

(a’) x , y ∈ I =⇒ x ; y ∈ I ;

(b) x ∈ I , z ∈ M, z ≤ x =⇒ z ∈ I .

For an ideal I of a residuated lattice M,

〈x , y〉 ∈ θI :⇐⇒ x− � y ∈ I , y− � x ∈ I , x � y∼ ∈ I , y � x∼ ∈ I .

θI . . . an equivalence on M.

Theorem 2

a) Let M be a residuated lattice and I an ideal of M. Then the equiva-
lence θI is a congruence on the reduct (M; �,∨,→, , 0, 1) of the resi-
duated lattice M.

b) If M is a pseudo BL-algebra then θI is a congruence on M.
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Ideals of residuated lattices.

Theorem 3

a) If M is a pseudo BL-algebra and I is an ideal of M, then M/θI is
a GMV -algebra.

b) If M is any residuated lattice then M/θI is an involutive residuated
lattice.
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Involutive filter, Glivenko property

If F is a normal filter of a residuated lattice M, then we say that F is
an involutive filter if the quotient residuated lattice M/F is involutive.

Glivenko property

A residuated lattice M satisfies the Glivenko property if for any x , y ∈ M

(x → y)−∼ = x → y−∼, (x  y)∼− = x  y∼−.

The Glivenko property was introduced (Cignoli, Torrens 2004) for commutative
residuated lattices

(x → y)−− = x → y−−.

For a good residuated lattice M, the following conditions are equivalent:

(i) (x−∼ → x)−∼ = 1 = (x∼−  x)∼−,

(ii) (x → y)−∼ = x−∼ → y−∼, (x  y)∼− = x∼−  y∼−,

(iii) (GP).
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Set of dense elements.

For a residuated lattice M:

D(M) := {x ∈ M : x−∼ = 1 = x∼−}.

Theorem 4

a) If M is a good residuated lattice, then D(M) is a filter of M.

b) If, moreover, M satisfies (GP), then D(M) is a normal filter of M.

Theorem 5

Let M be a good residuated lattice satisfying (GP) and x , y ∈ M. Then
〈x , y〉 ∈ θD(M) if and only if x−∼ = y−∼. Moreover, M/D(M) is an
involutive residuated lattice, i.e. D(M) is an involutive filter.
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D(M) and involutive normal filters.

Theorem 6

If a good residuated lattice M satisfies (GP) and F is an involutive normal
filter of M, then D(M) ⊆ F .

Proposition 7

If F1 and F2 are normal filters of a residuated lattice M, F1 ⊆ F2 and F1 is
an involutive filter, then F2 is also involutive.

Corollary 8

If M is a good residuated lattice satisfying (GP) then the involutive filters
of M are exactly all normal filters of M containing D(M).
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Connections among ideals, filters and congruences.

Proposition 9

If M is a residuated lattice and I is an ideal of M then I is the 0-class
in M/θI .

Proposition 10

Let I be an ideal of a pseudo BL-algebra and F = FI = 1/θI . Then F is
an involutive normal filter of M.

Proposition 11

If M is a residuated lattice and F is a normal filter of M, then the class
0/F is an ideal of M.
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Connections among ideals, filters and congruences.

Theorem 12 (the main result)

If M is an arbitrary pseudo BL-algebra then there is a one-to-one
correspondence between ideals and involutive normal filters of M.

Remark 13

Let M be a good pseudo BL-algebra. In the previous correspondence,
the ideal {0} corresponds to the filter D(M). (In fact, this is also true for
any good residuated lattice satisfying (GP).)
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