Ideals and involutive filters in residuated lattices

Jiří Rachůnek Dana Šalounová

Palacký University in Olomouc VŠB–Technical University of Ostrava

Czech Republic

TACL 2015 Ischia, June 2015

The first author was supported by the IGA PřF 2015010. The second author was supported by ESF Project CZ.1.07/2.3.00/20.0296.

J. Rachůnek, D. Šalounová (CR)

Ideals in residuated lattices

TACL 2015 1 / 17

A B A A B A

Residuated lattices.

Definition

A bounded integral residuated lattice is an algebra

 $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 2, 0, 0 \rangle$ satisfying:

- $(M; \odot, 1)$ is a monoid;
- $(M; \lor, \land, 0, 1)$ is a bounded lattice;
- $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$.

In what follows, a residuated lattice is a bounded integral residuated lattice.

Additional unary operations:

 $x^- := x \to 0, \ x^\sim := x \to 0$

A residuated lattice M is called

- good if it satisfies $x^{-\sim} = x^{\sim -}$.
- normal if it satisfies

Residuated lattices.

Definition

A bounded integral residuated lattice is an algebra

 $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 2, 0, 0 \rangle$ satisfying:

- $(M; \odot, 1)$ is a monoid;
- $(M; \lor, \land, 0, 1)$ is a bounded lattice;
- $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$.

In what follows, a residuated lattice is a bounded integral residuated lattice.

Additional unary operations:

 $x^- := x \to 0, \ x^- := x \to 0$

A residuated lattice M is called

- good if it satisfies $x^{-\sim} = x^{\sim -}$.
- normal if it satisfies

$(x \odot y)^{-\sim} = x^{-\sim} \odot y^{-\sim}, \ (x \odot y)^{\sim -} = x^{\sim -} \odot y^{\sim -}$

J. Rachůnek, D. Šalounová (CR)

Ideals in residuated lattices

Residuated lattices.

Definition

A bounded integral residuated lattice is an algebra

 $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 2, 0, 0 \rangle$ satisfying:

- $(M; \odot, 1)$ is a monoid;
- $(M; \lor, \land, 0, 1)$ is a bounded lattice;
- $x \odot y \le z$ iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$.

In what follows, a residuated lattice is a bounded integral residuated lattice.

Additional unary operations:

$$x^- := x \to 0, \ x^\sim := x \rightsquigarrow 0$$

A residuated lattice M is called

- good if it satisfies $x^{-\sim} = x^{\sim -}$.
- normal if it satisfies

$$(x \odot y)^{-\sim} = x^{-\sim} \odot y^{-\sim}, \ (x \odot y)^{\sim-} = x^{\sim-} \odot y^{\sim-}.$$

J. Rachůnek, D. Šalounová (CR)

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

- a pseudo MTL-algebra if M satisfies (1);
- an *Rl*-monoid if *M* satisfies (2);
- a pseudo *BL*-algebra if *M* satisfies (1) and (2);
- a Heyting algebra if M satisfies (4);
- a GMV-algebra (pseudo MV-algebra equivalently) if M satisfies (2) and (3).

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

• a pseudo *MTL*-algebra if *M* satisfies (1);

- an $R\ell$ -monoid if M satisfies (2);
- a pseudo *BL*-algebra if *M* satisfies (1) and (2);
- a Heyting algebra if *M* satisfies (4);
- a *GMV*-algebra (pseudo *MV*-algebra equivalently) if *M* satisfies (2) and (3).

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

- a pseudo *MTL*-algebra if *M* satisfies (1);
- an *Rl*-monoid if *M* satisfies (2);
- a pseudo BL-algebra if M satisfies (1) and (2);
- a Heyting algebra if *M* satisfies (4);
- a *GMV*-algebra (pseudo *MV*-algebra equivalently) if *M* satisfies (2) and (3).

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

- a pseudo *MTL*-algebra if *M* satisfies (1);
- an *Rl*-monoid if *M* satisfies (2);
- a pseudo *BL*-algebra if *M* satisfies (1) and (2);
- a Heyting algebra if M satisfies (4);
- a *GMV*-algebra (pseudo *MV*-algebra equivalently) if *M* satisfies (2) and (3).

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

- a pseudo *MTL*-algebra if *M* satisfies (1);
- an *Rl*-monoid if *M* satisfies (2);
- a pseudo *BL*-algebra if *M* satisfies (1) and (2);
- a Heyting algebra if M satisfies (4);
- a *GMV*-algebra (pseudo *MV*-algebra equivalently) if *M* satisfies (2) and (3).

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

- a pseudo *MTL*-algebra if *M* satisfies (1);
- an *Rl*-monoid if *M* satisfies (2);
- a pseudo *BL*-algebra if *M* satisfies (1) and (2);
- a Heyting algebra if M satisfies (4);
- a *GMV*-algebra (pseudo *MV*-algebra equivalently) if *M* satisfies (2) and (3).

Terms of properties of residuated structures

(1)
$$(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x)$$
 pre-linearity
(2) $(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x)$ divisibility
(3) $x^{-\sim} = x = x^{\sim-}$ involution
(4) $x \odot x = x$ idempotency

- a pseudo *MTL*-algebra if *M* satisfies (1);
- an *Rl*-monoid if *M* satisfies (2);
- a pseudo *BL*-algebra if *M* satisfies (1) and (2);
- a Heyting algebra if M satisfies (4);
- a *GMV*-algebra (pseudo *MV*-algebra equivalently) if *M* satisfies (2) and (3).

A non-empty subset F of a residuated lattice M is called a *filter* of M if (a) $x, y \in F$ imply $x \odot y \in F$; (b) $x \in F, y \in M, x \le y$ imply $y \in F$.

A B A A B A

A non-empty subset *F* of a residuated lattice *M* is called a *filter* of *M* if (a) $x, y \in F$ imply $x \odot y \in F$; (b) $x \in F, y \in M, x \le y$ imply $y \in F$. A filter *F* is called *normal* if for each $x, y \in M$ (c) $x \to y \in F \iff x \rightsquigarrow y \in F$.

normal filters of $M \iff$ kernels (i.e. 1-classes) of congruences on M $\langle x, y \rangle \in \theta_F \iff (x \rightarrow y) \odot (y \rightarrow x) \in F$ $\iff (x \rightsquigarrow y) \odot (y \rightsquigarrow x) \in F.$

M/F ... a quotient residuated lattice; $x/F = x/\theta_F$... the class of M/F containing x.

イロト イポト イヨト イヨト 二日

(c) $x \to y \in F \iff x \rightsquigarrow y \in F$.

A non-empty subset F of a residuated lattice M is called a *filter* of M if (a) $x, y \in F$ imply $x \odot y \in F$; (b) $x \in F, y \in M, x \le y$ imply $y \in F$. A filter F is called *normal* if for each $x, y \in M$

normal filters of $M \iff$ kernels (i.e. 1-classes) of congruences on M $\langle x, y \rangle \in \theta_F \iff (x \rightarrow y) \odot (y \rightarrow x) \in F$ $\iff (x \rightsquigarrow y) \odot (y \rightsquigarrow x) \in F.$

M/F ... a quotient residuated lattice; $x/F = x/\theta_F$... the class of M/F containing x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

(c) $x \to y \in F \iff x \rightsquigarrow y \in F$.

A non-empty subset F of a residuated lattice M is called a *filter* of M if (a) $x, y \in F$ imply $x \odot y \in F$; (b) $x \in F, y \in M, x \le y$ imply $y \in F$. A filter F is called *normal* if for each $x, y \in M$

normal filters of $M \iff$ kernels (i.e. 1-classes) of congruences on M $\langle x, y \rangle \in \theta_F \iff (x \rightarrow y) \odot (y \rightarrow x) \in F$ $\iff (x \rightsquigarrow y) \odot (y \rightsquigarrow x) \in F.$

M/F ... a quotient residuated lattice; $x/F = x/\theta_F$... the class of M/F containing x.

(日) (四) (王) (王) (王)

GMV-algebras (pseudo MV-algebras).

Definition

A GMV-algebra is an algebra $M = (M; \oplus, \bar{}, \bar{}, 0, 1)$ of type (2, 1, 1, 0, 0), where $x \odot y := (x^- \oplus y^-)^{\sim}$ for any $x, y \in M$, satisfying:

•
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z;$$

•
$$x \oplus 0 = x = 0 \oplus x;$$

•
$$x \oplus 1 = 1 = 1 \oplus x;$$

•
$$1^- = 0 = 1^{\sim};$$

•
$$(x^{\sim} \oplus y^{\sim})^- = (x^- \oplus y^-)^{\sim};$$

•
$$x \oplus (y \odot x^{\sim}) = y \oplus (x \odot y^{\sim}) = (y^{-} \odot x) \oplus y = (x^{-} \odot y) \oplus x;$$

•
$$(x^- \oplus y) \odot x = y \odot (x \oplus y^{\sim})$$

•
$$x^{-\sim} = x$$
.

 $x \leq y$ iff $x^- \oplus y = 1$,

(日) (周) (三) (三)

GMV-algebras (pseudo MV-algebras).

Definition

A GMV-algebra is an algebra $M = (M; \oplus, \bar{}, \infty, 0, 1)$ of type (2, 1, 1, 0, 0), where $x \odot y := (x^- \oplus y^-)^{\infty}$ for any $x, y \in M$, satisfying:

•
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z;$$

•
$$x \oplus 0 = x = 0 \oplus x;$$

•
$$x \oplus 1 = 1 = 1 \oplus x;$$

•
$$1^- = 0 = 1^{\sim};$$

•
$$(x^{\sim} \oplus y^{\sim})^- = (x^- \oplus y^-)^{\sim};$$

•
$$x \oplus (y \odot x^{\sim}) = y \oplus (x \odot y^{\sim}) = (y^- \odot x) \oplus y = (x^- \odot y) \oplus x;$$

•
$$(x^- \oplus y) \odot x = y \odot (x \oplus y^{\sim})$$

•
$$x^{-\sim} = x$$
.

 $x \leq y$ iff $x^- \oplus y = 1$, (M, \leq) is a bounded distributive lattice, $x \vee y = x \oplus (y \odot x^{\sim}), x \wedge y = x \odot (y \oplus x^{\sim})$

イロト イポト イヨト イヨト 二日

GMV-algebras (pseudo MV-algebras).

Definition

A GMV-algebra is an algebra $M = (M; \oplus, \bar{}, \infty, 0, 1)$ of type (2, 1, 1, 0, 0), where $x \odot y := (x^- \oplus y^-)^{\infty}$ for any $x, y \in M$, satisfying:

•
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z;$$

•
$$x \oplus 0 = x = 0 \oplus x;$$

•
$$x \oplus 1 = 1 = 1 \oplus x;$$

•
$$1^- = 0 = 1^{\sim};$$

•
$$(x^{\sim} \oplus y^{\sim})^- = (x^- \oplus y^-)^{\sim};$$

•
$$x \oplus (y \odot x^{\sim}) = y \oplus (x \odot y^{\sim}) = (y^{-} \odot x) \oplus y = (x^{-} \odot y) \oplus x;$$

•
$$(x^- \oplus y) \odot x = y \odot (x \oplus y^{\sim})$$

•
$$x^{-\sim} = x$$
.

 $\begin{array}{ll} x \leq y & \text{iff} \quad x^- \oplus y = 1, \quad (M, \leq) \text{ is a bounded distributive lattice,} \\ & x \vee y = x \oplus (y \odot x^{\sim}), \quad x \wedge y = x \odot (y \oplus x^{\sim}) \end{array}$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Ideals of *GMV*-algebras.

A non-empty subset I of a GMV-algebra M is called an *ideal* of M if (a) $x, y \in I$ imply $x \oplus y \in I$; (b) $x \in I, y \in M, y \le x$ imply $y \in I$.

.

Ideals of *GMV*-algebras.

A non-empty subset *I* of a *GMV*-algebra *M* is called an *ideal* of *M* if (a) $x, y \in I$ imply $x \oplus y \in I$; (b) $x \in I, y \in M, y \leq x$ imply $y \in I$. An ideal *I* is called *normal* if for each $x, y \in M$

(c) $x^- \odot y \in I \iff y \odot x^{\sim} \in I.$

normal ideals of $M \iff$ kernels of congruences on M $\langle x, y \rangle \in \theta_I \iff (x^- \odot y) \oplus (y^- \odot x) \in I$ $\iff (x \odot y^{\sim}) \oplus (y \odot x^{\sim}) \in I.$

A B F A B F

Ideals of *GMV*-algebras.

A non-empty subset *I* of a *GMV*-algebra *M* is called an *ideal* of *M* if (a) $x, y \in I$ imply $x \oplus y \in I$; (b) $x \in I, y \in M, y \leq x$ imply $y \in I$. An ideal *I* is called *normal* if for each $x, y \in M$

(c) $x^- \odot y \in I \iff y \odot x^{\sim} \in I.$

normal ideals of $M \iff$ kernels of congruences on M $\langle x, y \rangle \in \theta_I \iff (x^- \odot y) \oplus (y^- \odot x) \in I$ $\iff (x \odot y^{\sim}) \oplus (y \odot x^{\sim}) \in I.$

A B F A B F

Filter and ideal theories of GMV-algebras are mutually dual.

J. Rachůnek, D. Šalounová (CR)

Ideals in residuated lattices

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

In *GMV*-algebra $M, x \odot y := (x^- \oplus y^-)^{\sim}$, put $x \to y := x^- \oplus y, x \to y := y \oplus x^{\sim}$, then $(M; \odot, \lor, \land, \to, \rightsquigarrow, 0, 1)$ is a residuated lattice with (2), (3).

Conversely, let $(M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a residuated lattice with (2), (3). Put $x^- := x \to 0$, $x^- := x \to 0$, $x \oplus y := (x^- \odot y^-)^- = (x^- \odot y^-)^-$. Then $M = (M; \oplus, -, \sim, 0, 1)$ is a *GMV*-algebra.

Filter and ideal theories of *GMV*-algebras are mutually dual.

(日) (周) (三) (三)

In *GMV*-algebra $M, x \odot y := (x^- \oplus y^-)^{\sim}$, put $x \to y := x^- \oplus y, x \to y := y \oplus x^{\sim}$, then $(M; \odot, \lor, \land, \to, \rightsquigarrow, 0, 1)$ is a residuated lattice with (2), (3).

2 Conversely, let $(M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a residuated lattice with (2), (3). Put $x^- := x \rightarrow 0$, $x^- := x \rightarrow 0$, $x \oplus y := (x^- \odot y^-)^- = (x^- \odot y^-)^-$. Then $M = (M; \oplus, -, \sim, 0, 1)$ is a *GMV*-algebra.

Filter and ideal theories of *GMV*-algebras are mutually dual.

(日) (同) (三) (三)

In *GMV*-algebra $M, x \odot y := (x^- \oplus y^-)^{\sim}$, put $x \to y := x^- \oplus y, x \to y := y \oplus x^{\sim}$, then $(M; \odot, \lor, \land, \to, \rightsquigarrow, 0, 1)$ is a residuated lattice with (2), (3).

2 Conversely, let $(M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a residuated lattice with (2), (3). Put $x^- := x \rightarrow 0$, $x^- := x \rightarrow 0$, $x \oplus y := (x^- \odot y^-)^- = (x^- \odot y^-)^-$. Then $M = (M; \oplus, -, \sim, 0, 1)$ is a *GMV*-algebra.

Filter and ideal theories of GMV-algebras are mutually dual.

A dual binary operation to multiplication in residuated lattices does not exist.

(日) (同) (三) (三)

In *GMV*-algebra $M, x \odot y := (x^- \oplus y^-)^{\sim}$, put $x \to y := x^- \oplus y, x \to y := y \oplus x^{\sim}$, then $(M; \odot, \lor, \land, \to, \rightsquigarrow, 0, 1)$ is a residuated lattice with (2), (3).

2 Conversely, let $(M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a residuated lattice with (2), (3). Put $x^- := x \rightarrow 0$, $x^- := x \rightsquigarrow 0$, $x \oplus y := (x^- \odot y^-)^- = (x^- \odot y^-)^-$. Then $M = (M; \oplus, -, \sim, 0, 1)$ is a *GMV*-algebra.

Filter and ideal theories of GMV-algebras are mutually dual.

A dual binary operation to multiplication in residuated lattices does not exist.

(日) (同) (三) (三)

The aim.

To fill the gap by introducing the notion of ideal in residuated lattices. To establish congruences in residuated lattices using ideals.

• = • •

The aim.

To fill the gap by introducing the notion of ideal in residuated lattices.
To establish congruences in residuated lattices using ideals.

• • • • • • • • • • • •

The aim.

• To fill the gap by introducing the notion of ideal in residuated lattices.

• To establish congruences in residuated lattices using ideals.

< □ > < ---->

Let M be a residuated lattice, we put

- $x \oslash y := y^- \rightsquigarrow x \ldots$ left addition,
- $x \odot y := x^{\sim} \rightarrow y \dots$ right addition on M.

Definition

A non-empty subset I of a residuated lattice M is called a *left ideal* of M if

(a)
$$x, y \in I \implies x \oslash y \in I;$$

(b)
$$x \in I, z \in M, z \leq x \implies z \in I$$

Theorem 1

Let I be a subset of a residuated lattice M containing 0. Then I is a left ideal of M if and only if

 $\forall x, y \in M; x^{-} \odot y \in I, x \in I \implies y \in I.$

→ 3 → 4 3

Let M be a residuated lattice, we put

- $x \oslash y := y^- \rightsquigarrow x \ldots$ left addition,
- $x \odot y := x^{\sim} \rightarrow y \ldots$ right addition on M.

Definition

A non-empty subset I of a residuated lattice M is called a *left ideal* of M if

(a)
$$x, y \in I \implies x \oslash y \in I;$$

(b) $x \in I, z \in M, z \le x \implies z \in I.$

Theorem 1

Let I be a subset of a residuated lattice M containing 0. Then I is a left ideal of M if and only if

 $\forall x, y \in M; x^{-} \odot y \in I, x \in I \implies y \in I.$

< 回 ト < 三 ト < 三 ト

Let M be a residuated lattice, we put

- $x \oslash y := y^- \rightsquigarrow x \ldots$ left addition,
- $x \odot y := x^{\sim} \rightarrow y \dots$ right addition on M.

Definition

A non-empty subset I of a residuated lattice M is called a *left ideal* of M if

(a)
$$x, y \in I \implies x \oslash y \in I;$$

(b)
$$x \in I, z \in M, z \leq x \implies z \in I.$$

Theorem 1

Let I be a subset of a residuated lattice M containing 0. Then I is a left ideal of M if and only if

$$\forall x, y \in M; x^{-} \odot y \in I, x \in I \implies y \in I.$$

Definition

A non-empty subset I of a residuated lattice M is called a *right ideal* of M if

$$(a') \quad x, y \in I \implies x \otimes y \in I;$$

(b)
$$x \in I, z \in M, z \leq x \implies z \in I.$$

Theorem 1'

Let I be a subset of a residuated lattice M containing 0. Then I is a right ideal of M if and only if

$$\forall x, y \in M; y \odot x^{\sim} \in I, x \in I \implies y \in I.$$

Every left ideal as well as every right ideal of a residuated lattice M is a lattice ideal.

J. Rachůnek, D. Šalounová (CR)

Definition

A non-empty subset I of a residuated lattice M is called a *right ideal* of M if

$$(a') \quad x, y \in I \implies x \otimes y \in I;$$

(b)
$$x \in I, z \in M, z \leq x \implies z \in I.$$

Theorem 1'

Let I be a subset of a residuated lattice M containing 0. Then I is a right ideal of M if and only if

$$\forall x, y \in M; y \odot x^{\sim} \in I, x \in I \implies y \in I.$$

Every left ideal as well as every right ideal of a residuated lattice M is a lattice ideal.

J. Rachůnek, D. Šalounová (CR)

Definition

A non-empty subset I of a residuated lattice M is called a *ideal* of M if it is both left and right ideal of M, i.e.

(a)
$$x, y \in I \implies x \oslash y \in I;$$

(a') $x, y \in I \implies x \oslash y \in I;$
(b) $x \in I, z \in M, z \le x \implies z \in I.$

For an ideal I of a residuated lattice M,

 $\langle x, y \rangle \in \theta_I : \iff x^- \odot y \in I, y^- \odot x \in I, x \odot y^\sim \in I, y \odot x^\sim \in I.$ $\theta_I \ldots$ an equivalence on M.

Theorem 2

a) Let M be a residuated lattice and I an ideal of M. Then the equivalence θ_I is a congruence on the reduct $(M; \odot, \lor, \rightarrow, \rightsquigarrow, 0, 1)$ of the residuated lattice M.

b) If M is a pseudo BL-algebra then θ_1 is a congruence on M.

Definition

A non-empty subset I of a residuated lattice M is called a *ideal* of M if it is both left and right ideal of M, i.e.

(a)
$$x, y \in I \implies x \oslash y \in I;$$

(a') $x, y \in I \implies x \odot y \in I;$
(b) $x \in I, z \in M, z \le x \implies z \in I.$

For an ideal I of a residuated lattice M,

 $\langle x, y \rangle \in \theta_I : \iff x^- \odot y \in I, y^- \odot x \in I, x \odot y^\sim \in I, y \odot x^\sim \in I.$ $\theta_I \dots$ an equivalence on M.

Theorem 2

a) Let M be a residuated lattice and I an ideal of M. Then the equivalence θ_I is a congruence on the reduct $(M; \odot, \lor, \rightarrow, \rightsquigarrow, 0, 1)$ of the residuated lattice M.

b) If M is a pseudo BL-algebra then θ_1 is a congruence on M.

Ideals in residuated lattices

Ideals of residuated lattices.

Definition

A non-empty subset I of a residuated lattice M is called a *ideal* of M if it is both left and right ideal of M, i.e.

(a)
$$x, y \in I \implies x \oslash y \in I;$$

(a') $x, y \in I \implies x \oslash y \in I;$
(b) $x \in I, z \in M, z \le x \implies z \in I.$

For an ideal I of a residuated lattice M,

 $\langle x, y \rangle \in \theta_I : \iff x^- \odot y \in I, y^- \odot x \in I, x \odot y^\sim \in I, y \odot x^\sim \in I.$ $\theta_I \dots$ an equivalence on M.

Theorem 2

a) Let *M* be a residuated lattice and *I* an ideal of *M*. Then the equivalence θ_I is a congruence on the reduct $(M; \odot, \lor, \rightarrow, \rightsquigarrow, 0, 1)$ of the residuated lattice *M*.

b) If M is a pseudo BL-algebra then θ_1 is a congruence on M.

Ideals of residuated lattices.

Theorem 3

a) If M is a pseudo BL-algebra and I is an ideal of M, then M/θ_I is a GMV-algebra.

b) If M is any residuated lattice then M/θ_1 is an involutive residuated lattice.

Involutive filter, Glivenko property

If F is a normal filter of a residuated lattice M, then we say that F is an *involutive filter* if the quotient residuated lattice M/F is involutive.

Glivenko property

A residuated lattice M satisfies the *Glivenko property* if for any $x, y \in M$

$$(x \to y)^{-\sim} = x \to y^{-\sim}, \ (x \rightsquigarrow y)^{\sim -} = x \rightsquigarrow y^{\sim -}.$$

.

Involutive filter, Glivenko property

If F is a normal filter of a residuated lattice M, then we say that F is an *involutive filter* if the quotient residuated lattice M/F is involutive.

Glivenko property

A residuated lattice M satisfies the Glivenko property if for any $x, y \in M$

$$(x \to y)^{-\sim} = x \to y^{-\sim}, \ (x \rightsquigarrow y)^{\sim -} = x \rightsquigarrow y^{\sim -}$$

The Glivenko property was introduced (Cignoli, Torrens 2004) for commutative residuated lattices $(x \rightarrow y)^{--} = x \rightarrow y^{--}$.

For a good residuated lattice
$$M$$
, the following conditions are equivalent:
(i) $(x^{-\sim} \rightarrow x)^{-\sim} = 1 = (x^{\sim-} \rightsquigarrow x)^{\sim-}$,
(ii) $(x \rightarrow y)^{-\sim} = x^{-\sim} \rightarrow y^{-\sim}$, $(x \rightsquigarrow y)^{\sim-} = x^{\sim-} \rightsquigarrow y^{\sim-}$,
(iii) (GP).

J. Rachůnek, D. Šalounová (CR)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Involutive filter, Glivenko property

If F is a normal filter of a residuated lattice M, then we say that F is an *involutive filter* if the quotient residuated lattice M/F is involutive.

Glivenko property

A residuated lattice M satisfies the Glivenko property if for any $x, y \in M$

$$(x \rightarrow y)^{-\sim} = x \rightarrow y^{-\sim}, \ (x \rightsquigarrow y)^{\sim -} = x \rightsquigarrow y^{\sim -},$$

The Glivenko property was introduced (Cignoli, Torrens 2004) for commutative residuated lattices $(x \rightarrow y)^{--} = x \rightarrow y^{--}$.

For a good residuated lattice M, the following conditions are equivalent: (i) $(x^{-\sim} \rightarrow x)^{-\sim} = 1 = (x^{\sim-} \rightsquigarrow x)^{\sim-}$, (ii) $(x \rightarrow y)^{-\sim} = x^{-\sim} \rightarrow y^{-\sim}$, $(x \rightsquigarrow y)^{\sim-} = x^{\sim-} \rightsquigarrow y^{\sim-}$, (iii) (GP).

イロト イポト イヨト イヨト

Set of dense elements.

For a residuated lattice M:

 $D(M) := \{ x \in M : x^{-\sim} = 1 = x^{\sim -} \}.$

Theorem 4

a) If M is a good residuated lattice, then D(M) is a filter of M.
b) If, moreover, M satisfies (GP), then D(M) is a normal filter of M.

Theorem 5

Let M be a good residuated lattice satisfying (GP) and x, $y \in M$. Then $\langle x, y \rangle \in \theta_{D(M)}$ if and only if $x^{-\sim} = y^{-\sim}$. Moreover, M/D(M) is an involutive residuated lattice, i.e. D(M) is an involutive filter.

D(M) and involutive normal filters.

Theorem 6

If a good residuated lattice M satisfies (GP) and F is an involutive normal filter of M, then $D(M) \subseteq F$.

Proposition 7

If F_1 and F_2 are normal filters of a residuated lattice M, $F_1 \subseteq F_2$ and F_1 is an involutive filter, then F_2 is also involutive.

Corollary 8

If M is a good residuated lattice satisfying (GP) then the involutive filters of M are exactly all normal filters of M containing D(M).

- 4 週 ト - 4 三 ト - 4 三 ト

D(M) and involutive normal filters.

Theorem 6

If a good residuated lattice M satisfies (GP) and F is an involutive normal filter of M, then $D(M) \subseteq F$.

Proposition 7

If F_1 and F_2 are normal filters of a residuated lattice M, $F_1 \subseteq F_2$ and F_1 is an involutive filter, then F_2 is also involutive.

Corollary 8

If M is a good residuated lattice satisfying (GP) then the involutive filters of M are exactly all normal filters of M containing D(M).

Proposition 9

If M is a residuated lattice and I is an ideal of M then I is the 0-class in M/θ_I .

Proposition 10

Let I be an ideal of a pseudo BL-algebra and $F = F_I = 1/\theta_I$. Then F is an involutive normal filter of M.

Proposition 11

If M is a residuated lattice and F is a normal filter of M, then the class 0/F is an ideal of M.

Proposition 9

If M is a residuated lattice and I is an ideal of M then I is the 0-class in M/θ_I .

Proposition 10

Let I be an ideal of a pseudo BL-algebra and $F = F_I = 1/\theta_I$. Then F is an involutive normal filter of M.

Proposition 11

If M is a residuated lattice and F is a normal filter of M, then the class 0/F is an ideal of M.

Proposition 9

If M is a residuated lattice and I is an ideal of M then I is the 0-class in M/θ_I .

Proposition 10

Let I be an ideal of a pseudo BL-algebra and $F = F_I = 1/\theta_I$. Then F is an involutive normal filter of M.

Proposition 11

If M is a residuated lattice and F is a normal filter of M, then the class 0/F is an ideal of M.

< 3 > < 3 >

Theorem 12 (the main result)

If M is an arbitrary pseudo BL-algebra then there is a one-to-one correspondence between ideals and involutive normal filters of M.

Remark 13

Let M be a good pseudo BL-algebra. In the previous correspondence, the ideal $\{0\}$ corresponds to the filter D(M). (In fact, this is also true for any good residuated lattice satisfying (GP).)