On decidabilty of some classes of Stone alebras

Pavol Zlatoš
Comenius University
Bratislava, Slovakia
(joint work with Martin Adamčík)

Topology, Algebra and Categories in Logic June 21-26, 2015

Ischia, Italy

Boolean and Stone algebras

Boolean and Stone algebras

The theory of the class $\mathbf{B I}_{n}$ of Boolean algebras with a sequence of distinguished ideals $\left(B, J_{1}, \ldots, J_{n}\right)$ is decidable for each $n \geq 0$ [Ershov 1964], [Rabin 1969].

Boolean and Stone algebras

The theory of the class $\mathbf{B I}_{n}$ of Boolean algebras with a sequence of distinguished ideals $\left(B, J_{1}, \ldots, J_{n}\right)$ is decidable for each $n \geq 0$ [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e., Boolean algebras (B, S) with a distinguished subalgebra is hereditarily undecidable [Rubin 1976].

Boolean and Stone algebras

The theory of the class $\mathbf{B I}_{n}$ of Boolean algebras with a sequence of distinguished ideals $\left(B, J_{1}, \ldots, J_{n}\right)$ is decidable for each $n \geq 0$ [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e., Boolean algebras (B, S) with a distinguished subalgebra is hereditarily undecidable [Rubin 1976].

Stone algebra $\left(A, \wedge, \vee,{ }^{*}, 0,1\right)$ is a distributive lattice with smallest element 0 , biggest element 1 , and unary pseudocomplement operation *, i.e.,

Boolean and Stone algebras

The theory of the class $\mathbf{B I}_{n}$ of Boolean algebras with a sequence of distinguished ideals $\left(B, J_{1}, \ldots, J_{n}\right)$ is decidable for each $n \geq 0$ [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e., Boolean algebras (B, S) with a distinguished subalgebra is hereditarily undecidable [Rubin 1976].

Stone algebra $\left(A, \wedge, \vee,{ }^{*}, 0,1\right)$ is a distributive lattice with smallest element 0 , biggest element 1 , and unary pseudocomplement operation ${ }^{*}$, i.e.,

$$
x \wedge y=0 \Leftrightarrow y \leqslant x^{*}
$$

Boolean and Stone algebras

The theory of the class $\mathbf{B I}_{n}$ of Boolean algebras with a sequence of distinguished ideals $\left(B, J_{1}, \ldots, J_{n}\right)$ is decidable for each $n \geq 0$ [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e., Boolean algebras (B, S) with a distinguished subalgebra is hereditarily undecidable [Rubin 1976].

Stone algebra $\left(A, \wedge, \vee,{ }^{*}, 0,1\right)$ is a distributive lattice with smallest element 0 , biggest element 1 , and unary pseudocomplement operation ${ }^{*}$, i.e.,

$$
x \wedge y=0 \Leftrightarrow y \leqslant x^{*}
$$

satisfying

$$
x^{*} \vee x^{* *}=1
$$

Boolean and Stone algebras

The theory of the class $\mathbf{B I}_{n}$ of Boolean algebras with a sequence of distinguished ideals $\left(B, J_{1}, \ldots, J_{n}\right)$ is decidable for each $n \geq 0$ [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e., Boolean algebras (B, S) with a distinguished subalgebra is hereditarily undecidable [Rubin 1976].

Stone algebra $\left(A, \wedge, \vee,{ }^{*}, 0,1\right)$ is a distributive lattice with smallest element 0 , biggest element 1 , and unary pseudocomplement operation ${ }^{*}$, i.e.,

$$
x \wedge y=0 \Leftrightarrow y \leqslant x^{*}
$$

satisfying

$$
x^{*} \vee x^{* *}=1
$$

They form an equational class [Grätzer 1967].

Skeleton, dense elements set and structural map

Skeleton, dense elements set and structural map

Skeleton and dense elements set of A, resp.:

$$
\begin{gathered}
\operatorname{Sk} A=\left\{a \in A \mid a \vee a^{*}=1\right\} \\
\operatorname{Dn} A=\left\{d \in A \mid d^{*}=0\right\}
\end{gathered}
$$

Skeleton, dense elements set and structural map

Skeleton and dense elements set of A, resp.:

$$
\begin{gathered}
\operatorname{Sk} A=\left\{a \in A \mid a \vee a^{*}=1\right\} \\
\operatorname{Dn} A=\left\{d \in A \mid d^{*}=0\right\}
\end{gathered}
$$

$\operatorname{Sk} A$ is a Boolean subalgebra of A and $\operatorname{Dn} A$ is a filter in A.

Skeleton, dense elements set and structural map

Skeleton and dense elements set of A, resp.:

$$
\begin{gathered}
\operatorname{Sk} A=\left\{a \in A \mid a \vee a^{*}=1\right\} \\
\operatorname{Dn} A=\left\{d \in A \mid d^{*}=0\right\}
\end{gathered}
$$

$\operatorname{Sk} A$ is a Boolean subalgebra of A and $\operatorname{Dn} A$ is a filter in A.
Principal Stone algebra: if $\operatorname{Dn} A$ has the smallest element e.

Skeleton, dense elements set and structural map

Skeleton and dense elements set of A, resp.:

$$
\begin{gathered}
\operatorname{Sk} A=\left\{a \in A \mid a \vee a^{*}=1\right\} \\
\operatorname{Dn} A=\left\{d \in A \mid d^{*}=0\right\}
\end{gathered}
$$

$\operatorname{Sk} A$ is a Boolean subalgebra of A and $\operatorname{Dn} A$ is a filter in A.
Principal Stone algebra: if $\operatorname{Dn} A$ has the smallest element e.
Structural map: (0,1)-lattice homomorphism
$h_{A}:(\operatorname{Sk} A, \wedge, \vee, 0,1) \rightarrow(\operatorname{Dn} A, \wedge, \vee, e, 1), h_{A}(a)=a \vee e$

Skeleton, dense elements set and structural map

Skeleton and dense elements set of A, resp.:

$$
\begin{gathered}
\operatorname{Sk} A=\left\{a \in A \mid a \vee a^{*}=1\right\} \\
\operatorname{Dn} A=\left\{d \in A \mid d^{*}=0\right\}
\end{gathered}
$$

$\operatorname{Sk} A$ is a Boolean subalgebra of A and $\operatorname{Dn} A$ is a filter in A.
Principal Stone algebra: if Dn A has the smallest element e.
Structural map: $(0,1)$-lattice homomorphism
$h_{A}:(\operatorname{Sk} A, \wedge, \vee, 0,1) \rightarrow(\operatorname{Dn} A, \wedge, \vee, e, 1), h_{A}(a)=a \vee e$
A is completely determined by $\left(\operatorname{Sk} A, \operatorname{Dn} A, h_{A}\right)$.

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]
Given Boolean algebra B, distributive lattice D (with 0 and 1) and homomorphism $h:(B, \wedge, \vee, 0,1) \rightarrow(D, \wedge, \vee, 0,1)$,

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]
Given Boolean algebra B, distributive lattice D (with 0 and 1) and homomorphism $h:(B, \wedge, \vee, 0,1) \rightarrow(D, \wedge, \vee, 0,1)$, we form the P-product

$$
B \rtimes_{h} D=\{(b, d) \in B \times D \mid h(b) \geq d\}
$$

$(0,1)$ sublattice of $B \times D$;

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]
Given Boolean algebra B, distributive lattice D (with 0 and 1) and homomorphism $h:(B, \wedge, \vee, 0,1) \rightarrow(D, \wedge, \vee, 0,1)$, we form the P-product

$$
B \rtimes_{h} D=\{(b, d) \in B \times D \mid h(b) \geq d\}
$$

$(0,1)$ sublattice of $B \times D$;

$$
(b, d)^{*}=\left(b^{*}, h\left(b^{*}\right)\right)
$$

turns $B \rtimes_{h} D$ to a Stone algebra with

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]
Given Boolean algebra B, distributive lattice D (with 0 and 1) and homomorphism $h:(B, \wedge, \vee, 0,1) \rightarrow(D, \wedge, \vee, 0,1)$, we form the \mathbf{P}-product

$$
B \rtimes_{h} D=\{(b, d) \in B \times D \mid h(b) \geq d\}
$$

$(0,1)$ sublattice of $B \times D$;

$$
(b, d)^{*}=\left(b^{*}, h\left(b^{*}\right)\right)
$$

turns $B \rtimes_{h} D$ to a Stone algebra with

$$
\operatorname{Sk}\left(B \rtimes_{h} D\right)=\{(b, h(b)) \mid b \in B\} \cong B
$$

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]
Given Boolean algebra B, distributive lattice D (with 0 and 1) and homomorphism $h:(B, \wedge, \vee, 0,1) \rightarrow(D, \wedge, \vee, 0,1)$, we form the \mathbf{P}-product

$$
B \rtimes_{h} D=\{(b, d) \in B \times D \mid h(b) \geq d\}
$$

$(0,1)$ sublattice of $B \times D$;

$$
(b, d)^{*}=\left(b^{*}, h\left(b^{*}\right)\right)
$$

turns $B \rtimes_{h} D$ to a Stone algebra with

$$
\begin{gathered}
\operatorname{Sk}\left(B \rtimes_{h} D\right)=\{(b, h(b)) \mid b \in B\} \cong B \\
\operatorname{Dn}\left(B \rtimes_{h} D\right)=\{(1, d) \mid d \in D\} \cong D
\end{gathered}
$$

Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]
Given Boolean algebra B, distributive lattice D (with 0 and 1) and homomorphism $h:(B, \wedge, \vee, 0,1) \rightarrow(D, \wedge, \vee, 0,1)$, we form the \mathbf{P}-product

$$
B \rtimes_{h} D=\{(b, d) \in B \times D \mid h(b) \geq d\}
$$

$(0,1)$ sublattice of $B \times D$;

$$
(b, d)^{*}=\left(b^{*}, h\left(b^{*}\right)\right)
$$

turns $B \rtimes_{h} D$ to a Stone algebra with

$$
\begin{gathered}
\operatorname{Sk}\left(B \rtimes_{h} D\right)=\{(b, h(b)) \mid b \in B\} \cong B \\
\operatorname{Dn}\left(B \rtimes_{h} D\right)=\{(1, d) \mid d \in D\} \cong D
\end{gathered}
$$

and structural map $\widetilde{h}: \operatorname{Sk}\left(B \rtimes_{h} D\right) \rightarrow \operatorname{Dn}\left(B \rtimes_{h} D\right)$

$$
\widetilde{h}(b, h(b))=(b, h(b)) \vee(1,0)=(1, h(b))
$$

Stone algebras of degree n

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0 .

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.
A Stone algebra is of degree $n+1$ if its dense elements set forms a Stone algebra of degree n.

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.
A Stone algebra is of degree $n+1$ if its dense elements set forms a Stone algebra of degree n.
$\mathbf{S A}_{n}$ denotes the class of all Stone algebras of degree n.

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0 .
A Stone algebra is of degree $n+1$ if its dense elements set forms a Stone algebra of degree n.
$\mathbf{S A}_{n}$ denotes the class of all Stone algebras of degree n. $\mathbf{S A}_{1}$ is the class of all Boolean algebras and $\mathbf{S A}_{n} \subseteq \mathbf{S A}_{n+1}$ for each n.

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.
A Stone algebra is of degree $n+1$ if its dense elements set forms a Stone algebra of degree n.
$\mathbf{S A}_{n}$ denotes the class of all Stone algebras of degree n.
$\mathbf{S A}_{1}$ is the class of all Boolean algebras and $\mathbf{S A}_{n} \subseteq \mathbf{S A}_{n+1}$ for each n.

Each $\mathbf{S A}_{n}$ is a finitely axiomatizable class.

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.
A Stone algebra is of degree $n+1$ if its dense elements set forms a Stone algebra of degree n.
$\mathbf{S A}_{n}$ denotes the class of all Stone algebras of degree n.
$\mathbf{S A}_{1}$ is the class of all Boolean algebras and $\mathbf{S A}_{n} \subseteq \mathbf{S A}_{n+1}$ for each n.

Each $\mathbf{S A}_{n}$ is a finitely axiomatizable class.
$\operatorname{Th} \mathbf{S A}_{0}=\{x=y\}, \quad \operatorname{Th} \mathbf{S} A_{1}=\operatorname{Th} \mathbf{B A}$,

Stone algebras of degree n

Iterating the triple construction with Boolean algebras we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.
A Stone algebra is of degree $n+1$ if its dense elements set forms a Stone algebra of degree n.
$\mathbf{S A}_{n}$ denotes the class of all Stone algebras of degree n.
$\mathbf{S A}_{1}$ is the class of all Boolean algebras and $\mathbf{S A}_{n} \subseteq \mathbf{S A}_{n+1}$ for each n.

Each $\mathbf{S A}_{n}$ is a finitely axiomatizable class.
$\operatorname{Th} \mathbf{S A}_{0}=\{x=y\}, \quad \operatorname{Th} \mathbf{S A} A_{1}=\operatorname{Th} \mathbf{B A}$,
$\operatorname{Th} \mathbf{S} \mathbf{A}_{n+1}=\operatorname{Th} \mathbf{S A} \cup\left(\operatorname{Th} \mathbf{S} \mathbf{A}_{n}\right)^{\mathrm{Dn}} \quad$ for $n \geq 1$

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

Iterated P-product [Katriňák, Mitschke 1972]

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

Iterated P-product [Katriňák, Mitschke 1972]
A Stone algebra A is in $\mathbf{S A}_{n}$ iff there is a finite sequence of
Boolean algebras $B_{1}, B_{2}, \ldots, B_{n}$ and Boolean homomorphisms $h_{k}: B_{k} \rightarrow B_{k+1}(1 \leqslant k<n)$, such that

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

Iterated P-product [Katriňák, Mitschke 1972]
A Stone algebra A is in $\mathbf{S A}_{n}$ iff there is a finite sequence of Boolean algebras $B_{1}, B_{2}, \ldots, B_{n}$ and Boolean homomorphisms $h_{k}: B_{k} \rightarrow B_{k+1} \quad(1 \leqslant k<n)$, such that
$A \cong B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}$

$$
\begin{aligned}
& =\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in B_{1} \times B_{2} \times \ldots \times B_{n}\right. \\
& \left.\quad h_{1}\left(b_{1}\right) \geq b_{2}, h_{2}\left(b_{2}\right) \geq b_{3}, \ldots, h_{n-1}\left(b_{n-1}\right) \geq b_{n}\right\}
\end{aligned}
$$

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

Iterated P-product [Katriňák, Mitschke 1972]
A Stone algebra A is in $\mathbf{S A}_{n}$ iff there is a finite sequence of Boolean algebras $B_{1}, B_{2}, \ldots, B_{n}$ and Boolean homomorphisms $h_{k}: B_{k} \rightarrow B_{k+1}(1 \leqslant k<n)$, such that
$A \cong B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}$

$$
\begin{aligned}
&=\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in B_{1} \times B_{2} \times \ldots \times B_{n}\right. \\
&\left.\quad h_{1}\left(b_{1}\right) \geq b_{2}, h_{2}\left(b_{2}\right) \geq b_{3}, \ldots, h_{n-1}\left(b_{n-1}\right) \geq b_{n}\right\}
\end{aligned}
$$

P-injective and \mathbf{P}-surjective Stone algebras of order n, resp.

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

Iterated P-product [Katriňák, Mitschke 1972]
A Stone algebra A is in $\mathbf{S A}_{n}$ iff there is a finite sequence of Boolean algebras $B_{1}, B_{2}, \ldots, B_{n}$ and Boolean homomorphisms $h_{k}: B_{k} \rightarrow B_{k+1}(1 \leqslant k<n)$, such that
$A \cong B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}$

$$
\begin{aligned}
&=\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in B_{1} \times B_{2} \times \ldots \times B_{n}\right. \\
&\left.h_{1}\left(b_{1}\right) \geq b_{2}, h_{2}\left(b_{2}\right) \geq b_{3}, \ldots, h_{n-1}\left(b_{n-1}\right) \geq b_{n}\right\}
\end{aligned}
$$

P-injective and \mathbf{P}-surjective Stone algebras of order n, resp.
$\mathbf{S A}_{n}^{i}$ - Stone algebras in $\mathbf{S A}_{n}$ with all the the h_{k} 's injective $\mathbf{S A}_{n}^{\mathrm{s}}$ - Stone algebras in $\mathbf{S A}_{n}$ with all the the h_{k} 's surjective

The classes $\mathbf{S A}_{n}^{\mathrm{i}}, \mathbf{S A}_{n}^{\mathrm{s}}$

Iterated P-product [Katriňák, Mitschke 1972]
A Stone algebra A is in $\mathbf{S A}_{n}$ iff there is a finite sequence of Boolean algebras $B_{1}, B_{2}, \ldots, B_{n}$ and Boolean homomorphisms $h_{k}: B_{k} \rightarrow B_{k+1}(1 \leqslant k<n)$, such that
$A \cong B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}$

$$
\begin{aligned}
&=\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in B_{1} \times B_{2} \times \ldots \times B_{n}\right. \\
&\left.\quad h_{1}\left(b_{1}\right) \geq b_{2}, h_{2}\left(b_{2}\right) \geq b_{3}, \ldots, h_{n-1}\left(b_{n-1}\right) \geq b_{n}\right\}
\end{aligned}
$$

P-injective and P-surjective Stone algebras of order n, resp. $\mathbf{S A}_{n}^{i}$ - Stone algebras in $\mathbf{S A}_{n}$ with all the the h_{k} 's injective $\mathbf{S A}_{n}^{\mathrm{s}}$ - Stone algebras in $\mathbf{S A}_{n}$ with all the the h_{k} 's surjective The class $\mathbf{P A}_{n}$ of all Post algebras of degree n is definitionally equivalent to $\mathbf{S A}_{n}^{\mathrm{i}} \cap \mathbf{S A}_{n}^{\mathrm{s}}$.

Interpretations 1

Interpretations 1

Given two first order languages L, L^{\prime}, a p-ary interpretation $I: L \rightarrow L^{\prime}$ consists of the following data [Rabin 1964]:

Interpretations 1

Given two first order languages L, L^{\prime}, a p-ary interpretation $I: L \rightarrow L^{\prime}$ consists of the following data [Rabin 1964]:

- an effectively computable mapping $x \mapsto x^{I}=\mathbf{x}$, assigning to each L-variable x a p-tuple of distinct L^{\prime}-variables $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right),($ for distinct x, y the lists \mathbf{x}, \mathbf{y} are disjoint $)$

Interpretations 1

Given two first order languages L, L^{\prime}, a p-ary interpretation $I: L \rightarrow L^{\prime}$ consists of the following data [Rabin 1964]:

- an effectively computable mapping $x \mapsto x^{I}=\mathbf{x}$, assigning to each L-variable x a p-tuple of distinct L^{\prime}-variables $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right),($ for distinct x, y the lists \mathbf{x}, \mathbf{y} are disjoint)
- an L^{\prime}-formula $U(\mathbf{x})$, representing the universe of the interpretation

Interpretations 1

Given two first order languages L, L^{\prime}, a p-ary interpretation $I: L \rightarrow L^{\prime}$ consists of the following data [Rabin 1964]:

- an effectively computable mapping $x \mapsto x^{I}=\mathbf{x}$, assigning to each L-variable x a p-tuple of distinct L^{\prime}-variables $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right),($ for distinct x, y the lists \mathbf{x}, \mathbf{y} are disjoint $)$
- an L^{\prime}-formula $U(\mathbf{x})$, representing the universe of the interpretation
- an L^{\prime}-formula $E(\mathbf{x}, \mathbf{y})$, representing the equality relation

Interpretations 1

Given two first order languages L, L^{\prime}, a p-ary interpretation $I: L \rightarrow L^{\prime}$ consists of the following data [Rabin 1964]:

- an effectively computable mapping $x \mapsto x^{I}=\mathbf{x}$, assigning to each L-variable x a p-tuple of distinct L^{\prime}-variables $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right),($ for distinct x, y the lists \mathbf{x}, \mathbf{y} are disjoint)
- an L^{\prime}-formula $U(\mathbf{x})$, representing the universe of the interpretation
- an L^{\prime}-formula $E(\mathbf{x}, \mathbf{y})$, representing the equality relation
- an L^{\prime}-formula $R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right)$ for each n-ary relational symbol R in L

Interpretations 1

Given two first order languages L, L^{\prime}, a p-ary interpretation $I: L \rightarrow L^{\prime}$ consists of the following data [Rabin 1964]:

- an effectively computable mapping $x \mapsto x^{I}=\mathbf{x}$, assigning to each L-variable x a p-tuple of distinct L^{\prime}-variables $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right),($ for distinct x, y the lists \mathbf{x}, \mathbf{y} are disjoint)
- an L^{\prime}-formula $U(\mathbf{x})$, representing the universe of the interpretation
- an L^{\prime}-formula $E(\mathbf{x}, \mathbf{y})$, representing the equality relation
- an L^{\prime}-formula $R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right)$ for each n-ary relational symbol R in L
- an L^{\prime}-formula $f^{I}\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right)$ for each n-ary functional symbol f in L (constants are nullary operation symbols)

Interpretations 2

Interpretations 2

I can be extended to a map $I: \operatorname{Form} L \rightarrow \operatorname{Form} L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

Interpretations 2

I can be extended to a map $I: \operatorname{Form} L \rightarrow \operatorname{Form} L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
(x=y)^{I} \text { is } E(\mathbf{x}, \mathbf{y})
$$

Interpretations 2

I can be extended to a map $I: \operatorname{Form} L \rightarrow \operatorname{Form} L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
\begin{aligned}
(x=y)^{I} & \text { is } E(\mathbf{x}, \mathbf{y}) \\
R\left(x^{1}, \ldots, x^{n}\right)^{I} & \text { is } R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right)
\end{aligned}
$$

Interpretations 2

I can be extended to a map $I:$ Form $L \rightarrow$ Form $L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
\begin{aligned}
(x=y)^{I} & \text { is } E(\mathbf{x}, \mathbf{y}) \\
R\left(x^{1}, \ldots, x^{n}\right)^{I} & \text { is } R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
\left(x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I} & \text { is } f^{I}\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right)
\end{aligned}
$$

Interpretations 2

I can be extended to a map $I:$ Form $L \rightarrow$ Form $L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
\begin{aligned}
(x=y)^{I} & \text { is } E(\mathbf{x}, \mathbf{y}) \\
R\left(x^{1}, \ldots, x^{n}\right)^{I} & \text { is } R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
\left(x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I} & \text { is } f^{I}\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
(\neg \varphi)^{I} & \text { is } \neg \varphi^{I},
\end{aligned}
$$

Interpretations 2

I can be extended to a map $I:$ Form $L \rightarrow$ Form $L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
\begin{aligned}
(x=y)^{I} & \text { is } E(\mathbf{x}, \mathbf{y}) \\
R\left(x^{1}, \ldots, x^{n}\right)^{I} & \text { is } R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
\left(x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I} & \text { is } f^{I}\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
(\neg \varphi)^{I} & \text { is } \neg \varphi^{I}, \\
(\varphi \star \psi)^{I} & \text { is } \varphi^{I} \star \psi^{I} \text { (for any binary connective } \star \text {) }
\end{aligned}
$$

Interpretations 2

I can be extended to a map $I:$ Form $L \rightarrow$ Form $L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
\begin{aligned}
(x=y)^{I} & \text { is } E(\mathbf{x}, \mathbf{y}) \\
R\left(x^{1}, \ldots, x^{n}\right)^{I} & \text { is } R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
\left(x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I} & \text { is } f^{I}\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
(\neg \varphi)^{I} & \text { is } \neg \varphi^{I}, \\
(\varphi \star \psi)^{I} & \text { is } \varphi^{I} \star \psi^{I} \text { (for any binary connective } \star \text {) } \\
(\exists x \varphi)^{I} & \text { is }\left(\exists x_{1}, \ldots, x_{p}\right)\left(U(\mathbf{x}) \& \varphi^{I}\right)
\end{aligned}
$$

Interpretations 2

I can be extended to a map $I:$ Form $L \rightarrow$ Form $L^{\prime}, \varphi \mapsto \varphi^{I}$, by recursion:

$$
\begin{aligned}
(x=y)^{I} & \text { is } E(\mathbf{x}, \mathbf{y}) \\
R\left(x^{1}, \ldots, x^{n}\right)^{I} & \text { is } R^{I}\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
\left(x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I} & \text { is } f^{I}\left(\mathbf{x}^{0}, \mathbf{x}^{1}, \ldots, \mathbf{x}^{n}\right) \\
(\neg \varphi)^{I} & \text { is } \neg \varphi^{I}, \\
(\varphi \star \psi)^{I} & \text { is } \varphi^{I} \star \psi^{I}(\text { for any binary connective } \star) \\
(\exists x \varphi)^{I} & \text { is }\left(\exists x_{1}, \ldots, x_{p}\right)\left(U(\mathbf{x}) \& \varphi^{I}\right) \\
(\forall x \varphi)^{I} & \text { is }\left(\forall x_{1}, \ldots, x_{p}\right)\left(U(\mathbf{x}) \Rightarrow \varphi^{I}\right)
\end{aligned}
$$

Interpretations 3

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

- $U_{\mathfrak{M}}=\left\{\mathbf{a} \in M^{p} \mid \mathfrak{M} \models U(\mathbf{a})\right\} \neq \emptyset$

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

- $U_{\mathfrak{M}}=\left\{\mathbf{a} \in M^{p} \mid \mathfrak{M} \models U(\mathbf{a})\right\} \neq \emptyset$
- $E_{\mathfrak{M}}=\left\{(\mathbf{a}, \mathbf{b}) \in U_{\mathfrak{M}} \times U_{\mathfrak{M}}|\mathfrak{M}|=E(\mathbf{a}, \mathbf{b})\right\}$ is an equivalence relation on $U_{\mathfrak{M}}$

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

- $U_{\mathfrak{M}}=\left\{\mathbf{a} \in M^{p} \mid \mathfrak{M} \models U(\mathbf{a})\right\} \neq \emptyset$
- $E_{\mathfrak{M}}=\left\{(\mathbf{a}, \mathbf{b}) \in U_{\mathfrak{M}} \times U_{\mathfrak{M}}|\mathfrak{M}|=E(\mathbf{a}, \mathbf{b})\right\}$ is an equivalence relation on $U_{\mathfrak{M}}$
- $\mathfrak{M} \models\left(\forall x^{1}, \ldots, x^{n} \exists!x^{0} x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I}$
for every n-ary functional symbol f in L

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

- $U_{\mathfrak{M}}=\left\{\mathbf{a} \in M^{p} \mid \mathfrak{M} \models U(\mathbf{a})\right\} \neq \emptyset$
- $E_{\mathfrak{M}}=\left\{(\mathbf{a}, \mathbf{b}) \in U_{\mathfrak{M}} \times U_{\mathfrak{M}}|\mathfrak{M}|=E(\mathbf{a}, \mathbf{b})\right\}$ is an equivalence relation on $U_{\mathfrak{M}}$
- $\mathfrak{M} \models\left(\forall x^{1}, \ldots, x^{n} \exists!x^{0} x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I}$ for every n-ary functional symbol f in L
- $\mathfrak{M} \models \varepsilon^{I}$ for every instance ε of the equality axiom for any relational or functional symbol in L

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

- $U_{\mathfrak{M}}=\left\{\mathbf{a} \in M^{p} \mid \mathfrak{M} \models U(\mathbf{a})\right\} \neq \emptyset$
- $E_{\mathfrak{M}}=\left\{(\mathbf{a}, \mathbf{b}) \in U_{\mathfrak{M}} \times U_{\mathfrak{M}}|\mathfrak{M}|=E(\mathbf{a}, \mathbf{b})\right\}$ is an equivalence relation on $U_{\mathfrak{M}}$
- $\mathfrak{M} \models\left(\forall x^{1}, \ldots, x^{n} \exists!x^{0} x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I}$ for every n-ary functional symbol f in L
- $\mathfrak{M} \vDash \varepsilon^{I}$ for every instance ε of the equality axiom for any relational or functional symbol in L

Naturally defined L-structure \mathfrak{M}^{I} with base set $U_{\mathfrak{M}} / E_{\mathfrak{M}}$ and relational and functional symbols interpreted as follows:

Interpretations 3

An L^{\prime}-structure \mathfrak{M} with base set M admits I if

- $U_{\mathfrak{M}}=\left\{\mathbf{a} \in M^{p} \mid \mathfrak{M} \models U(\mathbf{a})\right\} \neq \emptyset$
- $E_{\mathfrak{M}}=\left\{(\mathbf{a}, \mathbf{b}) \in U_{\mathfrak{M}} \times U_{\mathfrak{M}}|\mathfrak{M}|=E(\mathbf{a}, \mathbf{b})\right\}$ is an equivalence relation on $U_{\mathfrak{M}}$
- $\mathfrak{M} \models\left(\forall x^{1}, \ldots, x^{n} \exists!x^{0} x^{0}=f\left(x^{1}, \ldots, x^{n}\right)\right)^{I}$ for every n-ary functional symbol f in L
- $\mathfrak{M} \models \varepsilon^{I}$ for every instance ε of the equality axiom for any relational or functional symbol in L

Naturally defined L-structure \mathfrak{M}^{I} with base set $U_{\mathfrak{M}} / E_{\mathfrak{M}}$ and relational and functional symbols interpreted as follows:

$$
\begin{array}{lll}
\mathfrak{M}^{I} \models R\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) & \text { iff } & \mathfrak{M} \models R^{I}\left(\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right) \\
\mathfrak{M}^{I} \models \underline{\mathbf{a}}^{0}=f\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) & \text { iff } & \mathfrak{M} \models f^{I}\left(\mathbf{a}^{0}, \mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right)
\end{array}
$$

$\underline{\mathbf{a}}$ denotes the equivalence class of $\mathbf{a} \in U_{\mathfrak{M}}$ w.r.t. $E_{\mathfrak{M}}$

Interpretations 4

Interpretations 4

By induction, for any L-formula $\varphi\left(x^{1}, \ldots, x^{n}\right), \mathbf{a}^{1}, \ldots, \mathbf{a}^{n} \in U_{\mathfrak{M}}$, $\mathfrak{M}^{I} \models \varphi\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) \quad$ iff $\quad \mathfrak{M} \models \varphi^{I}\left(\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right)$

Interpretations 4

By induction, for any L-formula $\varphi\left(x^{1}, \ldots, x^{n}\right), \mathbf{a}^{1}, \ldots, \mathbf{a}^{n} \in U_{\mathfrak{M}}$, $\mathfrak{M}^{I} \models \varphi\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) \quad$ iff $\quad \mathfrak{M} \models \varphi^{I}\left(\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right)$
In particular, for any L-sentence φ,

$$
\mathfrak{M}^{I} \models \varphi \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}
$$

Interpretations 4

By induction, for any L-formula $\varphi\left(x^{1}, \ldots, x^{n}\right), \mathbf{a}^{1}, \ldots, \mathbf{a}^{n} \in U_{\mathfrak{M}}$,

$$
\mathfrak{M}^{I} \models \varphi\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}\left(\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right)
$$

In particular, for any L-sentence φ,

$$
\mathfrak{M}^{I} \models \varphi \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}
$$

A class \mathbf{K} of L-structures definable in a class \mathbf{K}^{\prime} of L^{\prime}-structures if there is an interpretation $I: L \rightarrow L^{\prime}$ such that every structure $\mathfrak{A} \in \mathbf{K}$ is isomorphic to the structure \mathfrak{M}^{I} for some $\mathfrak{M} \in \mathbf{K}^{\prime}$ which admits I.

Interpretations 4

By induction, for any L-formula $\varphi\left(x^{1}, \ldots, x^{n}\right), \mathbf{a}^{1}, \ldots, \mathbf{a}^{n} \in U_{\mathfrak{M}}$,

$$
\mathfrak{M}^{I} \models \varphi\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}\left(\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right)
$$

In particular, for any L-sentence φ,

$$
\mathfrak{M}^{I} \models \varphi \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}
$$

A class \mathbf{K} of L-structures definable in a class \mathbf{K}^{\prime} of L^{\prime}-structures if there is an interpretation $I: L \rightarrow L^{\prime}$ such that every structure $\mathfrak{A} \in \mathbf{K}$ is isomorphic to the structure \mathfrak{M}^{I} for some $\mathfrak{M} \in \mathbf{K}^{\prime}$ which admits I.
I defines a semantic embedding of \mathbf{K} into \mathbf{K}^{\prime}.

Interpretations 4

By induction, for any L-formula $\varphi\left(x^{1}, \ldots, x^{n}\right), \mathbf{a}^{1}, \ldots, \mathbf{a}^{n} \in U_{\mathfrak{M}}$,

$$
\mathfrak{M}^{I} \models \varphi\left(\underline{\mathbf{a}}^{1}, \ldots, \underline{\mathbf{a}}^{n}\right) \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}\left(\mathbf{a}^{1}, \ldots, \mathbf{a}^{n}\right)
$$

In particular, for any L-sentence φ,

$$
\mathfrak{M}^{I} \models \varphi \quad \text { iff } \quad \mathfrak{M} \models \varphi^{I}
$$

A class \mathbf{K} of L-structures definable in a class \mathbf{K}^{\prime} of L^{\prime}-structures if there is an interpretation $I: L \rightarrow L^{\prime}$ such that every structure $\mathfrak{A} \in \mathbf{K}$ is isomorphic to the structure \mathfrak{M}^{I} for some $\mathfrak{M} \in \mathbf{K}^{\prime}$ which admits I.
I defines a semantic embedding of \mathbf{K} into \mathbf{K}^{\prime}.
An L-theory T is interpretable in an L^{\prime}-theory T^{\prime} if the class $\operatorname{Mod} T$ is definable in the class $\operatorname{Mod} T^{\prime}$.

Proving (un)decidability 1

Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L with finitely many non-logical symbols which is interpretable in a theory T^{\prime} in a recursive first order language L^{\prime}. Then

Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L with finitely many non-logical symbols which is interpretable in a theory T^{\prime} in a recursive first order language L^{\prime}. Then

- if T is finitely axiomatizable and T^{\prime} is decidable, then also T is decidable;

Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L with finitely many non-logical symbols which is interpretable in a theory T^{\prime} in a recursive first order language L^{\prime}. Then

- if T is finitely axiomatizable and T^{\prime} is decidable, then also T is decidable;
- if T is hereditarily undecidable (in particular, if T is finitely axiomatizable and undecidable), then also T^{\prime} is hereditarily undecidable.

Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L with finitely many non-logical symbols which is interpretable in a theory T^{\prime} in a recursive first order language L^{\prime}. Then

- if T is finitely axiomatizable and T^{\prime} is decidable, then also T is decidable;
- if T is hereditarily undecidable (in particular, if T is finitely axiomatizable and undecidable), then also T^{\prime} is hereditarily undecidable.
In order to prove decidability of some class \mathbf{K}, find a semantical embedding of \mathbf{K} into a decidable class \mathbf{K}^{\prime}.

Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L with finitely many non-logical symbols which is interpretable in a theory T^{\prime} in a recursive first order language L^{\prime}. Then

- if T is finitely axiomatizable and T^{\prime} is decidable, then also T is decidable;
- if T is hereditarily undecidable (in particular, if T is finitely axiomatizable and undecidable), then also T^{\prime} is hereditarily undecidable.
In order to prove decidability of some class \mathbf{K}, find a semantical embedding of \mathbf{K} into a decidable class \mathbf{K}^{\prime}.
In order to prove undecidability of some class \mathbf{K}^{\prime}, find a semantical embedding of a hereditarily undecidable class \mathbf{K} into \mathbf{K}^{\prime}.

Proving (un)decidability 2

Proving (un)decidability 2

$$
\mathbf{S A}_{1}^{\mathrm{i}}=\mathbf{S A}_{1}^{\mathrm{s}}=\mathbf{S A}_{1}=\mathbf{B A}
$$

Proving (un)decidability 2

$\mathbf{S A}_{1}^{\mathrm{i}}=\mathbf{S A}_{1}^{\mathrm{s}}=\mathbf{S A}_{1}=\mathbf{B A}$
Theorem 1. [Adamčík, PZ 2012]
Let $n \geq 2$. Then

Proving (un)decidability 2

$\mathbf{S A}_{1}^{\mathrm{i}}=\mathbf{S A}_{1}^{\mathrm{s}}=\mathbf{S A}_{1}=\mathbf{B A}$
Theorem 1. [Adamčík, PZ 2012]
Let $n \geq 2$. Then

- the class $\mathbf{S A}_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of degree n is hereditarily undecidable

Proving (un)decidability 2

$\mathbf{S A}_{1}^{\mathrm{i}}=\mathbf{S A}_{1}^{\mathrm{s}}=\mathbf{S A}_{1}=\mathbf{B A}$
Theorem 1. [Adamčík, PZ 2012]
Let $n \geq 2$. Then

- the class $\mathbf{S A}_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of degree n is hereditarily undecidable
- the class $\mathbf{S A}_{n}^{\mathbf{s}}$ of all P-surjective Stone algebras of degree n is decidable

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Theorem 1A. The class $\mathbf{S A}_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of any degree $n \geq 2$ is hereditarily undecidable.

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Theorem 1A. The class $\mathbf{S A}_{n}{ }_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of any degree $n \geq 2$ is hereditarily undecidable.

Sketch of proof:

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Theorem 1A. The class $\mathbf{S A}_{n}{ }_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of any degree $n \geq 2$ is hereditarily undecidable.

Sketch of proof:

As $\mathbf{S A}_{n}^{\mathrm{i}} \subseteq \mathbf{S A}_{n+1}^{\mathrm{i}}$ for each n, it suffices to to prove hereditary undecidability of $\mathbf{S A}_{2}^{\mathrm{i}}$.

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Theorem 1A. The class $\mathbf{S A}_{n}{ }_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of any degree $n \geq 2$ is hereditarily undecidable.

Sketch of proof:

As $\mathbf{S A}_{n}^{\mathrm{i}} \subseteq \mathbf{S A}_{n+1}^{\mathrm{i}}$ for each n, it suffices to to prove hereditary undecidability of $\mathbf{S A}_{2}^{\mathrm{i}}$.
Every Boolean pair (B, S) can be regarded as a triple $(S, B$, id $: S \rightarrow B)$ and that way it gives rise to a Stone algebra $S \rtimes_{\mathrm{id}} B \in \mathbf{S A}_{2}^{\mathrm{i}}$.

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Theorem 1A. The class $\mathbf{S A}_{n}{ }_{n}^{i}$ of all P-injective Stone algebras of any degree $n \geq 2$ is hereditarily undecidable.

Sketch of proof:

As $\mathbf{S A}_{n}^{\mathrm{i}} \subseteq \mathbf{S A}_{n+1}^{\mathrm{i}}$ for each n, it suffices to to prove hereditary undecidability of $\mathbf{S A}_{2}^{\mathrm{i}}$.
Every Boolean pair (B, S) can be regarded as a triple $(S, B$, id $: S \rightarrow B)$ and that way it gives rise to a Stone algebra $S \rtimes_{\mathrm{id}} B \in \mathbf{S A}_{2}^{\mathrm{i}}$.
Conversely, every $A \in \mathbf{S A}_{2}^{\mathrm{i}}$ can be obtained in this way from the Boolean pair (B, S), with

$$
B=\operatorname{Dn} A, \quad S=h_{A}[\operatorname{Sk} A] \cong \operatorname{Sk} A
$$

Undecidability of $\mathbf{S A}_{n}^{\mathrm{i}}$

Theorem 1A. The class $\mathbf{S A}_{n}^{\mathrm{i}}$ of all P-injective Stone algebras of any degree $n \geq 2$ is hereditarily undecidable.

Sketch of proof:

As $\mathbf{S A}_{n}^{\mathrm{i}} \subseteq \mathbf{S A}_{n+1}^{\mathrm{i}}$ for each n, it suffices to to prove hereditary undecidability of $\mathbf{S A}_{2}^{\mathrm{i}}$.
Every Boolean pair (B, S) can be regarded as a triple $(S, B$, id $: S \rightarrow B)$ and that way it gives rise to a Stone algebra $S \rtimes_{\mathrm{id}} B \in \mathbf{S A}_{2}^{\mathrm{i}}$.
Conversely, every $A \in \mathbf{S A}_{2}^{\mathrm{i}}$ can be obtained in this way from the Boolean pair (B, S), with

$$
B=\operatorname{Dn} A, \quad S=h_{A}[\operatorname{Sk} A] \cong \operatorname{Sk} A
$$

This enables to define a semantic embedding of the hereditarily undecidable class $\mathbf{B P}$ into $\mathbf{S A}_{2}^{\mathrm{i}}$.

Decidability of $\mathbf{S A}_{n}^{s}$

Decidability of $\mathbf{S A}_{n}^{\mathbf{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Decidability of $\mathbf{S A}_{n}^{\mathrm{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:

Decidability of $\mathbf{S A}_{n}^{\mathrm{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:
Every Boolean algebra with $n-1$ ideals $J_{1} \subseteq J_{2} \subseteq \ldots \subseteq J_{n-1}$ defines the P-product

Decidability of $\mathbf{S A}_{n}^{\mathrm{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:
Every Boolean algebra with $n-1$ ideals $J_{1} \subseteq J_{2} \subseteq \ldots \subseteq J_{n-1}$ defines the P-product

$$
B \rtimes_{p_{1}} B / J_{1} \rtimes_{p_{2}} \ldots \rtimes_{p_{n-1}} B / J_{n-1} \in \mathbf{S A}_{n}^{\mathrm{s}}
$$

Decidability of $\mathbf{S A}_{n}^{\mathbf{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:

Every Boolean algebra with $n-1$ ideals $J_{1} \subseteq J_{2} \subseteq \ldots \subseteq J_{n-1}$ defines the P-product

$$
B \rtimes_{p_{1}} B / J_{1} \rtimes_{p_{2}} \ldots \rtimes_{p_{n-1}} B / J_{n-1} \in \mathbf{S A}_{n}^{\mathrm{s}}
$$

with canonic projections $p_{1}: B \rightarrow B / J_{1}, p_{k}: B / J_{k-1} \rightarrow B / J_{k}$.

Decidability of $\mathbf{S A}_{n}^{\mathbf{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:

Every Boolean algebra with $n-1$ ideals $J_{1} \subseteq J_{2} \subseteq \ldots \subseteq J_{n-1}$ defines the P-product

$$
B \rtimes_{p_{1}} B / J_{1} \rtimes_{p_{2}} \ldots \rtimes_{p_{n-1}} B / J_{n-1} \in \mathbf{S A}_{n}^{\mathrm{s}}
$$

with canonic projections $p_{1}: B \rightarrow B / J_{1}, p_{k}: B / J_{k-1} \rightarrow B / J_{k}$.
Conversely, every $A \in \mathbf{S A}_{2}^{\text {s }}$ can be obtained in this way from its P-product representation

$$
B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}
$$

Decidability of $\mathbf{S A}_{n}^{\mathbf{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:

Every Boolean algebra with $n-1$ ideals $J_{1} \subseteq J_{2} \subseteq \ldots \subseteq J_{n-1}$ defines the P-product

$$
B \rtimes_{p_{1}} B / J_{1} \rtimes_{p_{2}} \ldots \rtimes_{p_{n-1}} B / J_{n-1} \in \mathbf{S A}_{n}^{\mathrm{s}}
$$

with canonic projections $p_{1}: B \rightarrow B / J_{1}, p_{k}: B / J_{k-1} \rightarrow B / J_{k}$.
Conversely, every $A \in \mathbf{S A}_{2}^{\text {s }}$ can be obtained in this way from its P-product representation

$$
B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}
$$

with $J_{k}=\left(h_{k} \circ \ldots \circ h_{1}\right)^{-1}(0)$ for $1 \leqslant k \leqslant n-1$.

Decidability of $\mathbf{S A}_{n}^{\mathbf{s}}$

Theorem 1B. The class $\mathbf{S A}_{n}^{\mathrm{s}}$ of all P-surjective Stone algebras of any degree $n \geq 2$ is decidable.

Sketch of proof:

Every Boolean algebra with $n-1$ ideals $J_{1} \subseteq J_{2} \subseteq \ldots \subseteq J_{n-1}$ defines the P-product

$$
B \rtimes_{p_{1}} B / J_{1} \rtimes_{p_{2}} \ldots \rtimes_{p_{n-1}} B / J_{n-1} \in \mathbf{S A}_{n}^{\mathrm{s}}
$$

with canonic projections $p_{1}: B \rightarrow B / J_{1}, p_{k}: B / J_{k-1} \rightarrow B / J_{k}$.
Conversely, every $A \in \mathbf{S A}_{2}^{\mathrm{s}}$ can be obtained in this way from its P-product representation

$$
B_{1} \rtimes_{h_{1}} B_{2} \rtimes_{h_{2}} \ldots \rtimes_{h_{n-1}} B_{n}
$$

with $J_{k}=\left(h_{k} \circ \ldots \circ h_{1}\right)^{-1}(0)$ for $1 \leqslant k \leqslant n-1$.
This enables to define a semantic embedding of $\mathbf{S A}_{n}^{\mathrm{s}}$ into the finitely axiomatizable decidable class class $\mathbf{B I}_{n-1}$.

Some consequences 1

Some consequences 1

Corollary 1. The following classes of algebras are hereditarily undecidable:

Some consequences 1

Corollary 1. The following classes of algebras are hereditarily undecidable:

- the class $\mathbf{S A}_{n}$ of all n-th degree Stone algebras for $n \geq 2$, in particular the class $\mathbf{S A}_{2}$ of all Stone algebras with Boolean dense set

Some consequences 1

Corollary 1. The following classes of algebras are hereditarily undecidable:

- the class $\mathbf{S A}_{n}$ of all n-th degree Stone algebras for $n \geq 2$, in particular the class $\mathbf{S A}_{2}$ of all Stone algebras with Boolean dense set
- the class of all relatively pseudocomplemented Stone algebras and the class SA of all Stone algebras

Some consequences 1

Corollary 1. The following classes of algebras are hereditarily undecidable:

- the class $\mathbf{S A}_{n}$ of all n-th degree Stone algebras for $n \geq 2$, in particular the class $\mathbf{S A}_{2}$ of all Stone algebras with Boolean dense set
- the class of all relatively pseudocomplemented Stone algebras and the class SA of all Stone algebras
- the class of all Gödel algebras, i.e., Heyting algebras satisfying the identity $(x \rightarrow y) \vee(y \rightarrow x)=1$

Some consequences 1

Corollary 1. The following classes of algebras are hereditarily undecidable:

- the class $\mathbf{S A}_{n}$ of all n-th degree Stone algebras for $n \geq 2$, in particular the class $\mathbf{S A}_{2}$ of all Stone algebras with Boolean dense set
- the class of all relatively pseudocomplemented Stone algebras and the class SA of all Stone algebras
- the class of all Gödel algebras, i.e., Heyting algebras satisfying the identity $(x \rightarrow y) \vee(y \rightarrow x)=1$

The last two items follow from the observation that all the algebras in $\mathbf{S A}_{2}$ (hence in every $\mathbf{S A}_{n}$) are relatively pseudocomplemented and satisfy $(x \rightarrow y) \vee(y \rightarrow x)=1$ [Katriňák, Mitschke 1972], [Balbes, Dwinger 1974].

Some consequences 2

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

- the class $\mathbf{P A}_{n}$ all Post algebras of degree n [Ershov 1967]

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

- the class $\mathbf{P A}_{n}$ all Post algebras of degree n [Ershov 1967]
- the class $\mathbf{S A D}_{n}$ of all Stone algebras of degree n which are dually pseudocomplemented and form a dual Stone algebra under the operation of dual pseudocomplement

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

- the class $\mathbf{P A}_{n}$ all Post algebras of degree n [Ershov 1967]
- the class $\mathbf{S A D}_{n}$ of all Stone algebras of degree n which are dually pseudocomplemented and form a dual Stone algebra under the operation of dual pseudocomplement

Reason: $\mathbf{P A}_{n} \subseteq \mathbf{S A D}_{n} \subseteq \mathbf{S A}_{n}^{\mathrm{s}}$ "up to definability"

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

- the class $\mathbf{P A}_{n}$ all Post algebras of degree n [Ershov 1967]
- the class $\mathbf{S A D}_{n}$ of all Stone algebras of degree n which are dually pseudocomplemented and form a dual Stone algebra under the operation of dual pseudocomplement

Reason: $\mathbf{P A}_{n} \subseteq \mathbf{S A D}_{n} \subseteq \mathbf{S A}_{n}^{\mathrm{s}}$ "up to definability"
Corollary 3. For each n the class $\mathbf{S A}_{n}$ of all Stone algebras of degree n has decidable first order theory of its finite members.

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

- the class $\mathbf{P A}_{n}$ all Post algebras of degree n [Ershov 1967]
- the class $\mathbf{S A D}_{n}$ of all Stone algebras of degree n which are dually pseudocomplemented and form a dual Stone algebra under the operation of dual pseudocomplement

Reason: $\mathbf{P A}_{n} \subseteq \mathbf{S A D}_{n} \subseteq \mathbf{S A}_{n}^{\mathrm{s}}$ "up to definability"
Corollary 3. For each n the class $\mathbf{S A}_{n}$ of all Stone algebras of degree n has decidable first order theory of its finite members.

Reason: Each class $\mathbf{S A}_{n}$ can be singled out from the variety of Gödel algebras by a finite set of identities involving $\wedge, \vee, \rightarrow$, and definable constants $e_{0}, e_{1}, \ldots, e_{n}$ [Katriňák, Mitschke 1972].

Some consequences 2

Corollary 2. The following classes of algebras are decidable:

- the class $\mathbf{P A}_{n}$ all Post algebras of degree n [Ershov 1967]
- the class $\mathbf{S A D}_{n}$ of all Stone algebras of degree n which are dually pseudocomplemented and form a dual Stone algebra under the operation of dual pseudocomplement

Reason: $\mathbf{P A}_{n} \subseteq \mathbf{S A D}_{n} \subseteq \mathbf{S A}_{n}^{\mathrm{s}}$ "up to definability"
Corollary 3. For each n the class $\mathbf{S A}_{n}$ of all Stone algebras of degree n has decidable first order theory of its finite members.

Reason: Each class $\mathbf{S A}_{n}$ can be singled out from the variety of Gödel algebras by a finite set of identities involving $\wedge, \vee, \rightarrow$, and definable constants $e_{0}, e_{1}, \ldots, e_{n}$ [Katriňák, Mitschke 1972]. This variety (though undecidable) still has decidable first order theory of its finite members [K. and P. Idziak 1988].

