
On decidabilty of some classes of Stone alebras

Pavol Zlatoš
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Boolean and Stone algebras

The theory of the class BIn of Boolean algebras
with a sequence of distinguished ideals (B, J1, . . . , Jn)
is decidable for each n ≥ 0 [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e.,
Boolean algebras (B,S) with a distinguished subalgebra
is hereditarily undecidable [Rubin 1976].

Stone algebra (A,∧,∨, ∗, 0, 1) is a distributive lattice
with smallest element 0, biggest element 1, and unary
pseudocomplement operation ∗, i.e.,

x ∧ y = 0 ⇔ y 6 x∗

satisfying

x∗ ∨ x∗∗ = 1

They form an equational class [Grätzer 1967].
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Skeleton, dense elements set and
structural map

Skeleton and dense elements set of A, resp.:

SkA = {a ∈ A | a ∨ a∗ = 1}

DnA = {d ∈ A | d∗ = 0}

SkA is a Boolean subalgebra of A and DnA is a filter in A.

Principal Stone algebra: if DnA has the smallest element e.

Structural map: (0, 1)-lattice homomorphism

hA : (SkA, ∧,∨, 0, 1)→ (DnA, ∧,∨, e, 1), hA(a) = a ∨ e

A is completely determined by (SkA,DnA, hA).
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Triple construction

[Chen, Grätzer 1969], [Katriňák 1973]

Given Boolean algebra B, distributive lattice D (with 0 and 1)
and homomorphism h : (B,∧,∨, 0, 1)→ (D,∧,∨, 0, 1),
we form the P-product

B oh D = {(b, d) ∈ B ×D | h(b) ≥ d}
(0, 1) sublattice of B ×D;

(b, d)∗ =
(
b∗, h(b∗)

)
turns B oh D to a Stone algebra with

Sk(B oh D) =
{(
b, h(b)

)
| b ∈ B

} ∼= B

Dn(B oh D) =
{

(1, d) | d ∈ D
} ∼= D

and structural map h̃ : Sk(B oh D)→ Dn(B oh D)

h̃
(
b, h(b)

)
=
(
b, h(b)

)
∨ (1, 0) =

(
1, h(b)

)
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Stone algebras of degree n

Iterating the triple construction with Boolean algebras
we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.

A Stone algebra is of degree n+ 1 if its dense elements set
forms a Stone algebra of degree n.

SAn denotes the class of all Stone algebras of degree n.

SA1 is the class of all Boolean algebras and SAn ⊆ SAn+1

for each n.

Each SAn is a finitely axiomatizable class.

Th SA0 = {x = y}, Th SA1 = Th BA,

Th SAn+1 = Th SA ∪ (Th SAn)Dn for n ≥ 1
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The classes SAi
n, SA

s
n

Iterated P-product [Katriňák, Mitschke 1972]

A Stone algebra A is in SAn iff there is a finite sequence of
Boolean algebras B1, B2, . . . , Bn and Boolean homomorphisms
hk : Bk → Bk+1 (1 6 k < n), such that

A ∼= B1 oh1 B2 oh2 . . .ohn−1 Bn

=
{

(b1, b2, . . . , bn) ∈ B1 ×B2 × . . .×Bn |
h1(b1) ≥ b2, h2(b2) ≥ b3, . . . , hn−1(bn−1) ≥ bn

}
P-injective and P-surjective Stone algebras of order n, resp.

SAi
n — Stone algebras in SAn with all the the hk’s injective

SAs
n — Stone algebras in SAn with all the the hk’s surjective

The class PAn of all Post algebras of degree n is definitionally
equivalent to SAi

n ∩ SAs
n.
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Interpretations 1

Given two first order languages L, L′, a p-ary interpretation
I : L→ L′ consists of the following data [Rabin 1964]:

• an effectively computable mapping x 7→ xI = x, assigning
to each L-variable x a p-tuple of distinct L′-variables
x = (x1, . . . , xp), (for distinct x, y the lists x, y are disjoint)

• an L′-formula U(x), representing the universe of the
interpretation

• an L′-formula E(x,y), representing the equality relation

• an L′-formula RI(x1, . . . ,xn) for each n-ary relational
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Interpretations 2

I can be extended to a map I : FormL→ FormL′, ϕ 7→ ϕI ,
by recursion:

(x = y)I is E(x,y)

R(x1, . . . , xn)I is RI(x1, . . . ,xn)(
x0 = f(x1, . . . , xn)

)I
is f I(x0,x1, . . . ,xn)

(¬ϕ)I is ¬ϕI ,

(ϕ ? ψ)I is ϕI ? ψI (for any binary connective ?)

(∃xϕ)I is (∃x1, . . . , xp)(U(x) & ϕI)

(∀xϕ)I is (∀x1, . . . , xp)(U(x) ⇒ ϕI)
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Interpretations 3

An L′-structure M with base set M admits I if

• UM =
{
a ∈Mp |M |= U(a)

}
6= ∅

• EM =
{

(a,b) ∈ UM × UM |M |= E(a,b)
}

is an equivalence relation on UM

• M |=
(
∀x1, . . . , xn ∃!x0 x0 = f(x1, . . . , xn)

)I
for every n-ary functional symbol f in L

• M |= εI for every instance ε of the equality axiom
for any relational or functional symbol in L

Naturally defined L-structure MI with base set UM/EM

and relational and functional symbols interpreted as follows:

MI |= R(a1, . . . ,an) iff M |= RI(a1, . . . ,an)

MI |= a0 = f(a1, . . . ,an) iff M |= f I(a0,a1, . . . ,an)

a denotes the equivalence class of a ∈ UM w.r.t. EM
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Interpretations 4

By induction, for any L-formula ϕ(x1, . . . , xn), a1, . . . ,an ∈ UM,

MI |= ϕ(a1, . . . ,an) iff M |= ϕI(a1, . . . ,an)

In particular, for any L-sentence ϕ,

MI |= ϕ iff M |= ϕI

A class K of L-structures definable in a class K′ of
L′-structures if there is an interpretation I : L→ L′ such that
every structure A ∈ K is isomorphic to the structure MI

for some M ∈ K′ which admits I.

I defines a semantic embedding of K into K′.

An L-theory T is interpretable in an L′-theory T ′

if the class ModT is definable in the class ModT ′.
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Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L
with finitely many non-logical symbols which is interpretable
in a theory T ′ in a recursive first order language L′. Then

• if T is finitely axiomatizable and T ′ is decidable,
then also T is decidable;

• if T is hereditarily undecidable (in particular,
if T is finitely axiomatizable and undecidable),
then also T ′ is hereditarily undecidable.

In order to prove decidability of some class K, find a
semantical embedding of K into a decidable class K′.

In order to prove undecidability of some class K′, find a
semantical embedding of a hereditarily undecidable class K
into K′.
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Proving (un)decidability 2

SAi
1 = SAs

1 = SA1 = BA

Theorem 1. [Adamč́ık, PZ 2012]
Let n ≥ 2. Then
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Undecidability of SAi
n

Theorem 1A. The class SAi
n of all P-injective Stone algebras

of any degree n ≥ 2 is hereditarily undecidable.

Sketch of proof:

As SAi
n ⊆ SAi

n+1 for each n, it suffices to to prove
hereditary undecidability of SAi

2.

Every Boolean pair (B,S) can be regarded as a triple
(S,B, id : S → B) and that way it gives rise to a
Stone algebra S oid B ∈ SAi

2.

Conversely, every A ∈ SAi
2 can be obtained in this way

from the Boolean pair (B,S), with

B = DnA, S = hA[SkA] ∼= SkA

This enables to define a semantic embedding of the hereditarily
undecidable class BP into SAi
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Decidability of SAs
n

Theorem 1B. The class SAs
n of all P-surjective Stone algebras

of any degree n ≥ 2 is decidable.

Sketch of proof:

Every Boolean algebra with n− 1 ideals J1 ⊆ J2 ⊆ . . . ⊆ Jn−1
defines the P -product

B op1 B/J1 op2 . . .opn−1 B/Jn−1 ∈ SAs
n

with canonic projections p1 : B → B/J1, pk : B/Jk−1 → B/Jk.

Conversely, every A ∈ SAs
2 can be obtained in this way

from its P-product representation

B1 oh1 B2 oh2 . . .ohn−1 Bn

with Jk = (hk ◦ . . . ◦ h1)−1(0) for 1 6 k 6 n− 1.

This enables to define a semantic embedding of SAs
n into the

finitely axiomatizable decidable class class BIn−1.
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Some consequences 1

Corollary 1. The following classes of algebras are
hereditarily undecidable:

• the class SAn of all n-th degree Stone algebras for n ≥ 2,
in particular the class SA2 of all Stone algebras with
Boolean dense set

• the class of all relatively pseudocomplemented Stone
algebras and the class SA of all Stone algebras

• the class of all Gödel algebras, i.e., Heyting algebras
satisfying the identity (x→ y) ∨ (y → x) = 1

The last two items follow from the observation that all the
algebras in SA2 (hence in every SAn) are relatively
pseudocomplemented and satisfy (x→ y) ∨ (y → x) = 1
[Katriňák, Mitschke 1972], [Balbes, Dwinger 1974].
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Some consequences 2

Corollary 2. The following classes of algebras are decidable:

• the class PAn all Post algebras of degree n [Ershov 1967]

• the class SADn of all Stone algebras of degree n which are
dually pseudocomplemented and form a dual Stone algebra
under the operation of dual pseudocomplement

Reason: PAn ⊆ SADn ⊆ SAs
n “up to definability”

Corollary 3. For each n the class SAn of all Stone algebras of
degree n has decidable first order theory of its finite members.

Reason: Each class SAn can be singled out from the variety of
Gödel algebras by a finite set of identities involving ∧, ∨, →,
and definable constants e0, e1, . . . , en [Katriňák, Mitschke 1972].
This variety (though undecidable) still has decidable first order
theory of its finite members [K. and P. Idziak 1988].
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Gödel algebras by a finite set of identities involving ∧, ∨, →,
and definable constants e0, e1, . . . , en [Katriňák, Mitschke 1972].
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