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Boolean and Stone algebras

The theory of the class BI,, of Boolean algebras
with a sequence of distinguished ideals (B, Ji,...,J,)
is decidable for each n > 0 [Ershov 1964], [Rabin 1969].

The theory of the class BP of Boolean pairs, i.e.,
Boolean algebras (B, S) with a distinguished subalgebra
is hereditarily undecidable [Rubin 1976].

Stone algebra (A, A,V,*0,1) is a distributive lattice
with smallest element 0, biggest element 1, and unary
pseudocomplement operation *, i.e.,

cANy=0 < y<Lz*
satisfying
x*Vatt=1

They form an equational class [Grétzer 1967].
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Skeleton, dense elements set and
structural map

Skeleton and dense elements set of A, resp.:
SkA={a€A|aVa" =1}
DnA={dec A|d* =0}

Sk A is a Boolean subalgebra of A and Dn A is a filter in A.
Principal Stone algebra: if Dn A has the smallest element e.
Structural map: (0, 1)-lattice homomorphism

ha:(SkA, A,V,0,1) = (DnA, A,V,e,1), ha(a)=aVe

A is completely determined by (Sk A,Dn A, hy).
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Triple construction

[Chen, Gratzer 1969], [Katrindk 1973]

Given Boolean algebra B, distributive lattice D (with 0 and 1)
and homomorphism h : (B, A,V,0,1) — (D, A,V,0,1),
we form the P-product

B xy, D ={(b,d) € Bx D | h(b) >d}

(0,1) sublattice of B x D;
(b,d)* = (b*,h(b*))

turns B xp D to a Stone algebra with

Sk(B xp, D) = {(b,h(b)) |be B} = B

Dn(B xp D) = {(1 d) ]deD} =D

and structural map h: Sk(B xp, D) — Dn(B %y D)

h(b, (b)) = (b, (b)) V (1,0) = (1,h(b))
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Stone algebras of degree n

Iterating the triple construction with Boolean algebras
we obtain the notion of Stone algebra of degree n.

One point Stone algebra is a Stone algebra of degree 0.

A Stone algebra is of degree n + 1 if its dense elements set
forms a Stone algebra of degree n.

SA,, denotes the class of all Stone algebras of degree n.

SA; is the class of all Boolean algebras and SA,, C SA,
for each n.

Each SA,, is a finitely axiomatizable class.
ThSAy={z =y}, ThSA; = ThBA,
ThSA, ;1 = ThSAU(ThSA,)P* for n>1
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Iterated P-product [Katrinak, Mitschke 1972]

A Stone algebra A is in SA,, iff there is a finite sequence of
Boolean algebras B, Bs, ..., B, and Boolean homomorphisms
hi : By, = By (1 <k < n), such that
A= Bl X hq B2 HNhg oo Xhp_q Bn
= {(bl,bg,...,bn) € By X By x...x By |
hi(by) > by, ha(bg) > b3, ... ha_1(bp—1) > bn}
P-injective and P-surjective Stone algebras of order n, resp.

SA', — Stone algebras in SA,, with all the the ht’s injective
SAS, — Stone algebras in SA,, with all the the hj’s surjective

The class PA,, of all Post algebras of degree n is definitionally
equivalent to SA| N SAJ.
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Interpretations 1

Given two first order languages L, L', a p-ary interpretation
I: L — L' consists of the following data [Rabin 1964]:

an effectively computable mapping x — 2! = x, assigning
to each L-variable z a p-tuple of distinct L’-variables
x = (x1,...,%p), (for distinct z, y the lists x, y are disjoint)

an L'-formula U(x), representing the universe of the
interpretation

an L'-formula FE(x,y), representing the equality relation

an L/-formula R!(x!,...,x") for each n-ary relational
symbol R in L

an L'-formula f!(x% x!,... x") for each n-ary functional
symbol f in L (constants are nullary operation symbols)

1
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I can be extended to a map I : Form L — Form L', ¢+ ¢!,

by recursion:

(x=y)

Rz, ... 2!

(xo = f(a, ..,x”))I
(=)

(0 * )

is
is
is
is

is

E(x,y)

RI(xY, ..., x")
A0, xt, .. x™)
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Interpretations 2

I can be extended to a map I : Form L — Form L', ¢+ ¢!,
by recursion:

=y s B(xy)
R(z',....2™! s RI(xY, ... x")
(xo = f(xl, ,x”))I is fl(xo,xl,...,x”)
(~o)' is =,
(o x )T is @l x ! (for any binary connective *)
Bzp) is Bxy,...,2)(Ux) & @)
(Vzp) is (Vaor,...,2)(Ux) = ¢)
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An L/-structure 9 with base set M admits I if
° Ugm:{aeMpMﬁ): U(a)}%@
o Fgy = {(a,b) € Usn X Uy ’ m ': E(a,b)}
is an equivalence relation on Ugy
o M (Vasl,...,J:”El!a:O 20 = f(ml,...,x”))
for every n-ary functional symbol f in L

I

e M= ! for every instance e of the equality axiom
for any relational or functional symbol in L

Naturally defined L-structure 9t/ with base set Uspy/Esn
and relational and functional symbols interpreted as follows:

m! = R(al,...,a") if M E RI(al,...,a")
M E a0 = flal,...a") i o fla0al. ., a")

a denotes the equivalence class of a € Ugpy w.r.t. Foy
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Interpretations 4

L...,a" € Uy,

M = pal,...,a") iff ME ol(al,... a")

By induction, for any L-formula p(z!,... 2"), a

In particular, for any L-sentence ¢,
M o i M !

A class K of L-structures definable in a class K’ of
L'-structures if there is an interpretation I : L — L’ such that
every structure 2 € K is isomorphic to the structure Ot

for some M € K’ which admits I.

I defines a semantic embedding of K into K'.

An L-theory T is interpretable in an L'-theory 7"
if the class Mod T is definable in the class Mod 7".



Proving (un)decidability 1



Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L
with finitely many non-logical symbols which is interpretable
in a theory T” in a recursive first order language L’. Then



Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L
with finitely many non-logical symbols which is interpretable
in a theory T” in a recursive first order language L’. Then

e if T is finitely axiomatizable and T” is decidable,
then also T is decidable;



Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L
with finitely many non-logical symbols which is interpretable
in a theory T” in a recursive first order language L’. Then

e if T is finitely axiomatizable and T” is decidable,
then also T is decidable;

e if T is hereditarily undecidable (in particular,
if T is finitely axiomatizable and undecidable),
then also 7" is hereditarily undecidable.



Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L
with finitely many non-logical symbols which is interpretable
in a theory T” in a recursive first order language L’. Then
e if T is finitely axiomatizable and T” is decidable,
then also T is decidable;
e if T is hereditarily undecidable (in particular,
if T is finitely axiomatizable and undecidable),
then also 7" is hereditarily undecidable.

In order to prove decidability of some class K, find a
semantical embedding of K into a decidable class K’.



Proving (un)decidability 1

Theorem 0. Let T be a theory in a first order language L
with finitely many non-logical symbols which is interpretable
in a theory T” in a recursive first order language L’. Then

e if T is finitely axiomatizable and T” is decidable,
then also T is decidable;

e if T is hereditarily undecidable (in particular,
if T is finitely axiomatizable and undecidable),
then also 7" is hereditarily undecidable.

In order to prove decidability of some class K, find a
semantical embedding of K into a decidable class K’.

In order to prove undecidability of some class K’, find a
semantical embedding of a hereditarily undecidable class K
into K'.
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SA, = SA} =SA; =BA
Theorem 1. [Adamcik, PZ 2012]
Let n > 2. Then

o the class SA! of all P-injective Stone algebras of degree n
is hereditarily undecidable

e the class SA®, of all P-surjective Stone algebras of degree n
is decidable
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Undecidability of SAin

Theorem 1A. The class SAin of all P-injective Stone algebras
of any degree n > 2 is hereditarily undecidable.
Sketch of proof:

As SAl C SAL 41 for each n, it suffices to to prove
hereditary undecidability of SA',.

Every Boolean pair (B, S) can be regarded as a triple
(S,B,id : S — B) and that way it gives rise to a

Stone algebra S xjq B € SA%.

Conversely, every A € SA,, can be obtained in this way
from the Boolean pair (B, S), with

B=DnA,  S=hsSkA]~SkA

This enables to define a semantic embedding of the hereditarily
undecidable class BP into SA,.
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Decidability of SAS,

Theorem 1B. The class SAS, of all P-surjective Stone algebras
of any degree n > 2 is decidable.

Sketch of proof:

Every Boolean algebra with n — 1 ideals J; C Jo C ... C J,_1
defines the P-product

B xp, B/J1 Xpy ... Xp, , B/ Jn—1 € SA},
with canonic projections py : B — B/Ji, pi : B/Jx—1 — B/ Jj.

Conversely, every A € SAS can be obtained in this way
from its P-product representation

Bl X h,y BQ Hpg oo Xhy_q Bn
with Jy = (hgo...0h1)71(0) for 1 <k<n—1.

This enables to define a semantic embedding of SAS, into the
finitely axiomatizable decidable class class BIL,,_1.
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Some consequences 1

Corollary 1. The following classes of algebras are
hereditarily undecidable:

o the class SA, of all n-th degree Stone algebras for n > 2,
in particular the class SAs of all Stone algebras with
Boolean dense set

o the class of all relatively pseudocomplemented Stone
algebras and the class SA of all Stone algebras

e the class of all Godel algebras, i.e., Heyting algebras
satisfying the identity (z - y)V(y — z) =1

The last two items follow from the observation that all the
algebras in SAs (hence in every SA,,) are relatively
pseudocomplemented and satisfy (z — y)V (y —» z) =1
[Katrindk, Mitschke 1972], [Balbes, Dwinger 1974].
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Corollary 2. The following classes of algebras are decidable:
e the class PA,, all Post algebras of degree n [Ershov 1967]

e the class SAD,, of all Stone algebras of degree n which are
dually pseudocomplemented and form a dual Stone algebra
under the operation of dual pseudocomplement

Reason: PA, C SAD,, C SA}, “up to definability”

Corollary 3. For each n the class SA,, of all Stone algebras of
degree n has decidable first order theory of its finite members.

Reason: Each class SA,, can be singled out from the variety of
Godel algebras by a finite set of identities involving A, V, —,
and definable constants ey, e, ..., e, [Katrindk, Mitschke 1972].
This variety (though undecidable) still has decidable first order
theory of its finite members [K. and P. Idziak 1988].



