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parallel skolemization



skolemization problem

In classical logic, Skolemization gives us

(∀x̄)(∃y)φ(x̄, y) satisfiable ⇐⇒ (∀x̄)φ(x̄, f(x̄)) satisfiable

where f is a function symbol not occurring in φ.

What is the situation in substructural logics?

Some problems:

∙ Formulas are not always equivalent to prenex formulas.

∙ Semantic consequence may not reduce to satisfiability.
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the semantics of substructural logics

An FLe-algebra is a structure A = ⟨A,&,→,∧,∨, 0, 1⟩ such that:

∙ ⟨A,∧,∨⟩ is a lattice

∙ ⟨A,&, 1⟩ is a commutative monoid

∙ → is the residuum of &

Example

∙ Boolean algebras
∙ Heyting algebras
∙ Bounded residuated lattices

∙ MTL-algebras
∙ Gödel algebras
∙ MV-algebras
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the semantics of substructural logics

A predicate language P = ⟨P, F, ar⟩

A P-structureM = ⟨A,M⟩

∙ A is a complete FLe-algebra

∙ M = ⟨M, ⟨PM⟩P∈P, ⟨fM⟩f∈F⟩, where PM : Mn → A and fM : Mn → M

Given anM-evaluation v mapping object variables to M,

∥x∥Mv = v(x)
∥f(t1, . . . , tn)∥Mv = fM(∥t1∥Mv , . . . , ∥tn∥Mv ) for f ∈ F
∥P(t1, . . . , tn)∥Mv = PM(∥t1∥Mv , . . . , ∥tn∥Mv ) for P ∈ P

∥φ ◦ ψ∥Mv = ∥φ∥Mv ◦A ∥ψ∥Mv for ◦ ∈ {&,→,∧,∨}

∥⋆∥Mv = ⋆A for ⋆ ∈ {0, 1}
∥(∀x)φ∥Mv =

∧A
a∈M ∥φ∥Mv[x→a]

∥(∃x)φ∥Mv =
∨A

a∈M{∥φ∥
M
v[x→a]
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the semantics of substructural logics

For a fixed arbitrary class K of complete FLe-algebras,
a formula φ is a semantic consequence of a theory T in K,

T |=K φ

if for each A ∈ K and each modelM = ⟨A,M⟩ of T,M |= φ.
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”normal” skolemization fails in substructural logics

∙ Consider just a unary predicate symbol P.
∙ Consider the FLe-algebra A with
∙ 1& x = x& 1 = x and
∙ x& y = 0 for x, y ∈ {0, a1, a2}. 0

a1 a2

1

{(∃x)P(x)} ̸|=A (∃x)(P(x)&P(x)) ⇐⇒/ {P(c)} |=A (∃x)(P(x)&P(x))

Consider the structureM = ⟨A,M⟩

∙ M = {d1,d2}
∙ PM(di) = ai for i = 1, 2

M |=A (∃x)P(x)
M ̸|=A (∃x)(P(x)&P(x))

Clearly since
{P(c)} |=A P(c)&P(c)
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alternative way to save skolemization

∙ Consider just a unary predicate symbol P.
∙ Consider the FLe-algebra A with
∙ 1& x = x& 1 = x and
∙ x& y = 0 for x, y ∈ {0, a1, a2}. 0

a1 a2

1

{(∃x)P(x)} ̸|=A (∃x)(P(x)&P(x)) ⇐⇒ {P(c1) ∨ P(c2)} ̸|=A (∃x)(P(x)&P(x))

Consider the structureM = ⟨A,M⟩

∙ M = {d1,d2}
∙ PM(di) = ai for i = 1, 2
∙ cMi = di for i = 1, 2

M |=A P(c1) ∨ P(c2)
M ̸|=A (∃x)(P(x)&P(x))
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parallel skolemization

∙ Consider just a unary predicate symbol P.
∙ Consider the FLe-algebra A with
∙ 1& x = x& 1 = x and
∙ x& y = 0 for x, y ∈ {0, a1, a2}. 0

a1 a2

1

{(∃x)P(x)} ̸|=A (∃x)(P(x)&P(x)) ⇐⇒ {P(c1) ∨ P(c2)} ̸|=A (∃x)(P(x)&P(x))

T ∪ {(∀ȳ)(∃x)φ(x, ȳ)} |=A ψ ⇐⇒ T ∪ {(∀ȳ)(φ(f1(ȳ), ȳ) ∨ φ(f2(ȳ), ȳ))} |=A ψ

Parallel Skolemization was introduced for intermediate logics in:

M. Baaz, R. Iemhoff
Skolemization in intermediate logics with the finite model property,
submitted.
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strong and weak occurrences of quantifiers

An occurrence of ψ in φ is positive (negative) if:

∙ φ is ψ;
∙ φ is φ1 ∧ φ2, φ2 ∧ φ1, φ1 ∨ φ2, φ2 ∨ φ1, φ1 & φ2, φ2 & φ1, (∀x)φ1, (∃x)φ1, or
φ2 → φ1, and ψ is positive (negative) in φ1[ψ];

∙ φ is φ1 → φ2 and ψ is negative (positive) in φ1[ψ].

An occurrence of (Qx)ψ in φ is strong if

it is positive and Q = ∀ or it is negative and Q = ∃.

It is called weak otherwise.
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parallel skolemization

Procedure P : Replace a subformula (Qx)ψ(x, ȳ) in a P-sentence φ by
n∨
i=1

ψ(fi(ȳ), ȳ) if Q = ∃ and
n∧
i=1

ψ(fi(ȳ), ȳ) if Q = ∀,

where f1, . . . , fn ̸∈ P are function symbols of arity |ȳ|.

skln(φ) : repeat P to leftmost weak occurrences of quantifiers
skrn(φ) : repeat P to leftmost strong occurrences of quantifiers

Example

φ = (∀x)((∃y)P(x, y) → (∃z)Q(x, z))

skl1(φ) = (∀x)((∃y)P(x, y) → Q(x,g(x)))
skl2(φ) = (∀x)((∃y)P(x, y) → (Q(x,g1(x)) ∨ Q(x,g2(x))))
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parallel skolemization

Let us fix an arbitrary class of complete FLe-algebras K.

|=K admits parallel Skolemization left of degree n for a sentence φ
if for any theory T ∪ {ψ},

T ∪ {φ} |=K ψ ⇐⇒ T ∪ {skln(φ)} |=K ψ

|=K admits parallel Skolemization right of degree n for a sentence φ if for
any theory T,

T |=K φ ⇐⇒ T |=K skrn(φ)

Lemma

If |=K admits parallel Skolemization left of degree n for all sentences,
then |=K admits parallel Skolemization right of degree n for all sentences.
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witnessed models



n-compacteness

Let L be a lattice and X ⊆ P(L).

X is n-compact for some n ∈ N+ if for each A ∈ X ,∨
A = a1 ∨ . . . ∨ an for some a1, . . . ,an ∈ A∧
A = a1 ∧ . . . ∧ an for some a1, . . . ,an ∈ A.

. . .

2-compact 2-compact 3-compact
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n-witnessed models

A structureM = ⟨A,M⟩ is n-witnessed if the system

{{||φ(b, ā)||S | b ∈ M} | φ(x, ȳ) a P-formula and ā ∈ M}

is n-compact.

|=K has the n-witnessed model property if for any theory T ∪ {φ},

T |=K φ ⇐⇒ each n-witnessed modelM of T is a model of φ.
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n-witnessed models

Example

Let K consists of the standard Łukasiewicz algebra on [0, 1].

The powerset of [0, 1] is clearly not n-compact for any n ∈ N+.

However, |=Ł has the 1-witnessed model property, as shown by Hájek.

Example

Let K be a class of FLe-algebras whose underlying lattices

∙ either have height bounded by some fixed n+ 1,
∙ or contain no infinite chain and have width bounded by some fixed n.

Then |=K has the n-witnessed model property.
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witnessed models and parallel skolemization

Theorem

If |=K has the n-witnessed model property, then |=K admits parallel
Skolemization left and right of degree n for all sentences.

Moreover, if |=K is finitary, i.e. for any theory T ∪ {φ},

T |=K φ ⇔ T′ |=K φ for some finite T′ ⊆ T.

and admits parallel Skolemization left and right of degree n for all
sentences, then |=K has the n-witnessed model property.
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Thank you!
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