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SKOLEMIZATION PROBLEM

In classical logic, Skolemization gives us
(VX)(Fy)p(X, V) satishiable < (VX)p(X, /(X)) satisfiable

where fis a function symbol not occurring in ¢.

What is the situation in substructural logics?

Some problems:

- Formulas are not always equivalent to prenex formulas.

- Semantic consequence may not reduce to satisfiability.



THE SEMANTICS OF SUBSTRUCTURAL LOGICS

An FlL.-algebra is a structure A = (A, &, —, A, V,0,1) such that:

- (A, A, V) s a lattice
- (A, &, 1) is a commutative monoid

- = is the residuum of &

Example
- Boolean algebras - MTL-algebras
- Heyting algebras - Godel algebras

- Bounded residuated lattices - MV-algebras



THE SEMANTICS OF SUBSTRUCTURAL LOGICS

A predicate language P = (P, F,ar)

A P-structure 9t = (A, M)
- Ais a complete FL.-algebra
- M = (M, (P"Ypep, (M)ser), where P - M — Aand M- M" — M

Given an 9i-evaluation v mapping object variables to M,

I = v(x)
Uit = MU, L W) forfeF
IP(t, .. t)IT = PGl .. ] T)  forPeP
leowlZ = llelF ALl foro € {&,—, A, V}
«F = #A for x € {0, 1}
I99llT = Aben lellTfq
1@l = VaculllelTq



THE SEMANTICS OF SUBSTRUCTURAL LOGICS

For a fixed arbitrary class K of complete FL.-algebras,
a formula ¢ is a semantic consequence of a theory T in K,

T = "

e

if for each A € K and each model 9t = (A, M) of T, M |= ¢.
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ALTERNATIVE WAY TO SAVE SKOLEMIZATION

- Consider just a unary predicate symbol P. .

- Consider the FL.-algebra A with

- 1&x=x&1=xand
- x&y=0°forx,y € {0,a1,a:}. N

{(20P0O} Fa (IN)(PO&P(X)) = {P(c1) V P(C)} Fea (3X)(P(X)&P (X))

Consider the structure 9t = (A, M)
- M= {dy,dy}

- PM(d;) = a; fori=1,2

- M =d;fori=1,2

m ':A P(C1) V P(Cz)
M [Ea (IX)(P(X)&P(x))



PARALLEL SKOLEMIZATION

1

- Consider just a unary predicate symbol P.

- Consider the FL.-algebra A with w@@
- 1&x=x&1=xand
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PARALLEL SKOLEMIZATION

- Consider just a unary predicate symbol P. ]

- Consider the FL.-algebra A with . o

- 1&X=x&1=xand
- x&y=0forxye{0,a,a} ¢

{(IPOI} Foa (N(PM&P(X)) = {P(c1) vV P(C)} Fa (3X)(P(X)&P(x))
TU{(M(3)e( I} Eav = TU{(W)e(h(V),9) vV e(2(V). ¥))} Fa ¥

Parallel Skolemization was introduced for intermediate logics in:

M. Baaz, R. lemhoff
Skolemization in intermediate logics with the finite model property,

submitted.



STRONG AND WEAK OCCURRENCES OF QUANTIFIERS

An occurrence of v in ¢ is positive (negative) if:

s,
@ISO AP, P2 A1, @1V @2, P2 V1, o1 & 2, 02 & @1, (VX) 1, (IX) ey, OF
w2 — 1, and 1 is positive (negative) in p1[v];

- @ is @1 — ¢ and 9 is negative (positive) in ¢[].



STRONG AND WEAK OCCURRENCES OF QUANTIFIERS

An occurrence of 1 in ¢ is positive (negative) if:
Cpis;

T @ISO A2, 02 N1, 01V 2, 02V o1, 1 & @2, 02 & 1, (YX)1, (IX)¢n, OF
w2 — 1, and 1 is positive (negative) in p1[v];

- @ is @1 — ¢ and 9 is negative (positive) in ¢[].
An occurrence of (Qx) in ¢ is strong if
itis positiveand Q =V or itisnegativeand Q =4.

It is called weak otherwise.
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\Vei0).7) fa=3  and  Aw(().) fQ=v
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where fi,...,f, & P are function symbols of arity |y|.
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Procedure P : Replace a subformula (Ox)(x, V) in a P-sentence ¢ by

\Vei0).7) fa=3  and  Aw(().) fQ=v

=1 1=1

where fi,...,f, & P are function symbols of arity |y|.

skl(p) : repeat P to leftmost weak occurrences of quantifiers
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Example
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PARALLEL SKOLEMIZATION

Procedure P : Replace a subformula (Ox)u:(x, V) in a P-sentence ¢ by

VU@ fa=3  and  Au(i().7) fa=v

function symbols fa,...,f, & P of arity |y|.

skl(p) : repeat P to leftmost weak occurrences of quantifiers
skl(¢) : repeat P to leftmost strong occurrences of quantifiers
Example
¢ = (W)(Ey)P(x,y) = (F2)Q(x,2))
= (W)((F)P(x,y) = (32)Q(x,2))
skip) = P(c,d) = (32)Q(c,2)

1



PARALLEL SKOLEMIZATION

Procedure P : Replace a subformula (Ox)u:(x, V) in a P-sentence ¢ by

VU@ fa=3  and  Au(i().7) fa=v

function symbols fa,...,f, & P of arity |y|.

skl(p) : repeat P to leftmost weak occurrences of quantifiers
skl(¢) : repeat P to leftmost strong occurrences of quantifiers
Example

o = (W((F)P.y) = (32)Q(x,2))



PARALLEL SKOLEMIZATION

Procedure P : Replace a subformula (Ox)u:(x, V) in a P-sentence ¢ by

\“/l'(f‘(y)y) ifO=+ and /“\p(f‘(y)‘y) ifQ=v

function symbols fa,...,f, & P of arity |y|.

skl(p) : repeat P to leftmost weak occurrences of quantifiers
skl(¢) : repeat P to leftmost strong occurrences of quantifiers
Example

o = (W((F)P.y) = (32)Q(x,2))
Step 1 (F)P(cr,y) = (32)Q(cr,2)) A ((BY)P(c2,¥) — (32)Q(c2,2))



PARALLEL SKOLEMIZATION

Procedure P : Replace a subformula (Ox)u:(x, V) in a P-sentence ¢ by

VU@ fa=3  and  Au(i().7) fa=v

function symbols fa,...,f, & P of arity |y|.
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PARALLEL SKOLEMIZATION

Procedure P : Replace a subformula (Ox)u:(x, V) in a P-sentence ¢ by

V(@9 £a=3  and A w(i).9) ifa=v

function symbols fa,...,f, & P of arity |y|.

skl(p) : repeat P to leftmost weak occurrences of quantifiers
skl(¢) : repeat P to leftmost strong occurrences of quantifiers
Example
o = (V)((Fy)Pxy) = (F2)Q(x,2))
Step 1 Jy)P(c1,y) = (F2)Q(c1,2)) A ((FY)P(c2,y) = (32)Q(c2, 2))

P(cy,d}) Vv P(cq, d} (32)Q(c1,2)) A

(

(
sky(e) = ((P( )) =

((P(c2,d?) V P(C2, d3)) = (32)Q(cy, 2))

(
(
(



PARALLEL SKOLEMIZATION

Let us fix an arbitrary class of complete FL.-algebras K.

Ex admits parallel Skolemization left of degree n for a sentence ¢
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PARALLEL SKOLEMIZATION

Let us fix an arbitrary class of complete FL.-algebras K.

Ex admits parallel Skolemization left of degree n for a sentence ¢
if for any theory TU {9},

TUu{p} Ex v <= TU{sky(¢)} Fx ¢

Ex admits parallel Skolemization right of degree n for a sentence ¢ if for
any theory T,

TEke <<= TExsk(v)
Lemma

If Ex admits parallel Skolemization left of degree n for all sentences,
then =x admits parallel Skolemization right of degree n for all sentences.

14
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N-COMPACTENESS

Let L be a lattice and X C B(L).

X is n-compact for some n € N* if for each A € X,
\VA=a,V...vVa, forsomeay,...,a, €A

NA=arN...Na, forsomeay,...,a, €A.
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Let L be a lattice and X C B(L).

X is n-compact for some n € N* if for each A € X,

\VA=a,V...vVa, forsomeay,...,a, €A
NA=arN...Na, forsomeay,...,a, €A.
2-compact 2-compact 3-compact
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N-WITNESSED MODELS

A structure 9t = (A, M) is n-witnessed if the system
{{

is n-compact.

o(b,a)||° | b e M} | p(x,¥) a P-formula and @ € M}

Exk has the n-witnessed model property if for any theory TU {¢},

TEk ¢ — each n-witnessed model 99t of T is a model of ¢.
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Let K consists of the standard tukasiewicz algebra on [0, 1].
The powerset of [0, 1] is clearly not n-compact for any n € N*.

However, ¢, has the 1-witnessed model property, as shown by Hajek.
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N-WITNESSED MODELS

Example

Let K consists of the standard tukasiewicz algebra on [0, 1].
The powerset of [0, 1] is clearly not n-compact for any n € N*.

However, ¢, has the 1-witnessed model property, as shown by Hajek.

Example
Let K be a class of FL.-algebras whose underlying lattices

- either have height bounded by some fixed n + 1

’

- or contain no infinite chain and have width bounded by some fixed n.

Then =k has the n-witnessed model property.



WITNESSED MODELS AND PARALLEL SKOLEMIZATION

Theorem

If =k has the n-witnessed model property, then =g admits parallel
Skolemization left and right of degree n for all sentences.
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WITNESSED MODELS AND PARALLEL SKOLEMIZATION

Theorem

If =k has the n-witnessed model property, then =g admits parallel
Skolemization left and right of degree n for all sentences.

Moreover, if |=x is finitary, i.e. for any theory TU {p},
TEke < T ke forsomefiniteT CT.

and admits parallel Skolemization left and right of degree n for all
sentences, then =k has the n-witnessed model property.

19



Thank you!
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