Towards a Riesz Representation Theorem for Finite Heyting Algebras

Stefano Aguzzoli	Brunella Gerla	Vincenzo Marra
D.I.	Di.S.T.A.	Math.
University of Milano	University of Insubria	University of Milano
aguzzoli@di.unimi.it	brunella.gerla@uninsubria.it	vincenzo.marra@unimi.it

A classical conceptual framework

Fundamental concepts involving classical logic and classical probability.

Consider classical logic through its algebraic semantics, *i.e.* Boolean algebras \mathcal{B} . Consider classical probability theory: Boolean σ -algebras.

- 1. Stone duality: yields $[\varphi] \in \mathcal{B} \text{ iff } \chi_{[\varphi]}^{-1}(1) \subseteq \operatorname{MaxSpec} \mathcal{B}.$
- 2. de Finetti's coherence criterion: yields

 $P: \mathcal{B} \to [0, 1]$ finitely additive probability measure iff bettors have no winning strategy against (reversible) bookmaker selling bets at P.

3. Riesz representation theorem: yields $P([\varphi]) = \int_{\text{MaxSpec }\mathcal{B}} \chi_{[\varphi]} d\mu.$

Generalising this conceptual framework

To develop a theory of probability of non-classical events.

Events are identified with (logically equivalent classes of) formulas in a logic L:

- 1. A Stone-like duality theorem between the category of L-algebras and their homomorphisms and a suitable category of spaces.
- 2. A de Finetti-like coherence criterion defining probability of events subject to the logical constraints imposed by L.
- 3. A Riesz-like representation theorem to express probabilities as integral measures over the dual spaces of L-algebras.

A non-classical case

What about propositional intuitionistic logic, and Heyting algebras?

- 1. Stone-like duality: Esakia spaces.
- 2. de Finetti's-like coherence criterion: ?
- 3. Riesz-like integral representation: ?

In this work in progress, we are proposing a way to define probabilities over finite Heyting algebras as integrals of certain functions.

Another non-classical case

Propositional Gödel-Dummett logic is intuitionism plus prelinearity. Algebraic semantics: Gödel algebras \mathcal{G} (Heyting algebras plus prelinearity). Consider finite Gödel algebras.

- 1. Stone-like duality: finite forests with open, order-preserving maps.
- 2. de-Finetti's like coherence criterion: a betting scheme over events evolving in time.
- 3. Riesz-like representation theorem: Free *n*-generated Gödel algebras are represented as algebras of functions $f: [0,1]^n \to [0,1]$. (Finitely additive) Probabilities are defined as integrals of them.

Algebraic semantics

Gödel-Dummett propositional logic G:

Intuitionistic propositional logic + $(\varphi \to \psi) \lor (\psi \to \varphi)$.

The equivalent algebraic semantics of G is given by the variety \mathbb{G} of Gödel algebras $(A, \wedge, \rightarrow, \bot)$, that is prelinear Heyting algebras.

 $\mathbb G$ is generated by the standard Gödel algebra:

 $([0,1], \min, \rightarrow, 0)$, where $x \to y = 1$ iff $x \le y$; $x \to y = y$ iff x > y.

The free *n*-generated Gödel algebra $F_n(\mathbb{G})$ is the subalgebra of $[0,1]^{[0,1]^n}$ generated by the projections $\pi_i \colon (t_1,\ldots,t_n) \mapsto t_i$.

G is locally finite, whence the classes of finitely generated, finitely presented and finite Gödel algebras coincide.

$$F_n(\mathbb{G})$$

 $\Omega = X_1 < X_2 < \cdots < X_h$: ordered partition of $\{0, 1, \dots, n, n+1\}$ such that $0 \in X_1$ and $n+1 \in X_h$.

 $(X_1 < \cdots < X_h) \preceq (Y_1 < \cdots < Y_k)$ iff $X_i = Y_i$ for all i < h and $X_h = \bigcup_{i>=h} Y_i$.

 B_{Ω} : set of all $(t_1, \ldots, t_n) \in [0, 1]^n$ such that

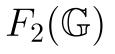
•
$$t_i = 0$$
 iff $i \in X_1$, $t_i = 1$ iff $i \in X_h$,

- $t_i = t_j$ iff there is l such that $i, j \in X_l$,
- $t_i < t_j$ iff there are l < m such that $i \in X_l$ and $j \in X_m$.

 $C_{\Omega} = \bigcup_{\Omega' \preceq \Omega} B_{\Omega'}.$

 $F_n(\mathbb{G})$: all functions $f: [0,1]^n \to [0,1]$ such that for each \preceq -maximal Ω there is $g_\Omega \in \{0, \pi_1, \ldots, \pi_n, 1\}$ with $f \upharpoonright C_\Omega = g \upharpoonright C_\Omega$ (equipped with the pointwise operations of the standard algebra).

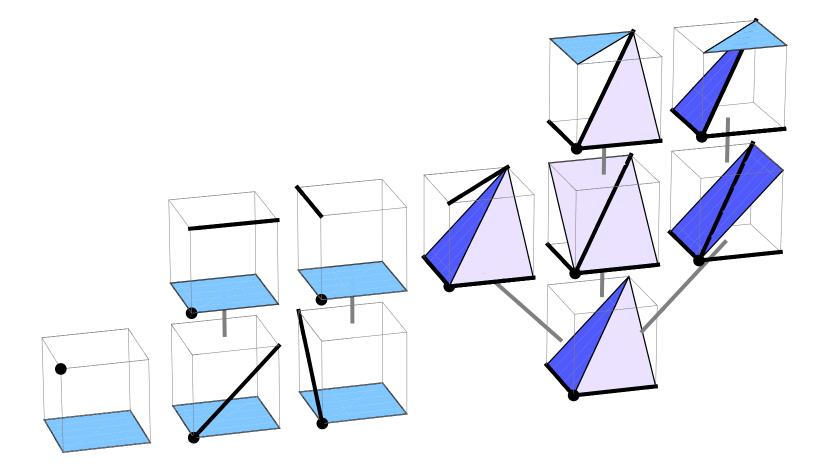
Example:



8

TACL 2015

All join-irreducible elements of $F_2(\mathbb{G})$ by pointwise order:



A is a finite Gödel algebra.

A is a homomorphic image of some $F_n(\mathbb{G})$.

A is isomorphic to the algebra of restrictions of functions of $F_n(\mathbb{G})$ to a suitable subset $D_A \subseteq [0,1]^n$.

A state of A is a functional $s \colon A \to [0, 1]$ such that

1.
$$s(\perp) = 0, \ s(\top) = 1;$$

2.
$$s(a) + s(b) = s(a \lor b) + s(a \land b);$$

3. If $a \leq b$ then $s(a) \leq s(b)$;

States coincide with integrals of functions of A.

For each state s there is a (regolar Borel probability) measure μ (and viceversa) such that

$$s(a) = \int_{[0,1]^n} a \, d\mu$$
, for all $a \in A$.

A is a finite Gödel algebra.

A is a homomorphic image of some $F_n(\mathbb{G})$.

A is isomorphic to the algebra of restrictions of functions of $F_n(\mathbb{G})$ to a suitable subset $D_A \subseteq [0,1]^n$.

A state of A is a functional $s \colon A \to [0, 1]$ such that

1.
$$s(\perp) = 0, \ s(\top) = 1;$$

2.
$$s(a) + s(b) = s(a \lor b) + s(a \land b);$$

3. If $a \leq b$ then $s(a) \leq s(b)$;

States coincide with integrals of functions of A. \leftarrow Wrong! For each state s there is a (regolar Borel probability) measure μ (and viceversa) such that

$$s(a) = \int_{[0,1]^n} a \, d\mu$$
, for all $a \in A$.

States

Let f, g, h be three join irreducibles or \perp with f < g < h, and consider C_{Ω} included in the *support* of g.

If
$$\int_{[0,1]^n} f \,\mathrm{d}\mu = \int_{[0,1]^n} g \,\mathrm{d}\mu$$

then all mass of μ in C_{Ω} is concentrated in the 1-set $f^{-1}(1)$ of f.

That is: $\forall B \in \mathfrak{B}([0,1]^n) \colon B \subseteq C_{\Omega}, B \cap f^{-1}(1) = \emptyset \Rightarrow \mu(B) = 0.$

Whence,
$$\int_{[0,1]^n} f \, d\mu = \int_{[0,1]^n} g \, d\mu = \int_{[0,1]^n} h \, d\mu$$
.

A state of A is a functional $s: A \to [0, 1]$ such that

- 1. $s(\perp) = 0, \ s(\top) = 1;$
- 2. $s(a) + s(b) = s(a \lor b) + s(a \land b);$
- 3. If $a \leq b$ then $s(a) \leq s(b)$;
- 4. If $a \leq b$ and s(b) = s(a) then $s(b \to a) = 1$.

States coincide with integrals of functions of A.

For each state s there is a (regolar Borel probability) measure μ (and viceversa) such that

$$s(a) = \int_{[0,1]^n} a \, d\mu \,, \qquad \text{for all } a \in A$$

States: Condition (4)

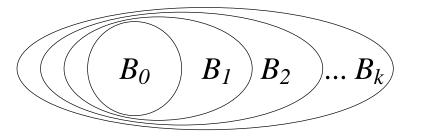
(4) If
$$a \le b$$
 and $s(b) = s(a)$ then $s(b \to a) = 1$.

$$\frac{-\varphi \to \psi \qquad P(\psi) \le P(\varphi)}{P(\psi \to \varphi) = 1} . \qquad (\dagger)$$

Intuitive classical reading:

If $A \subseteq B$ and P(B) = P(A) then $P(B \setminus A) = 0$.

(†) is automatically true in Boolean algebras (and in some non-classical case, e.g. MV-algebras), but it must be required explicitly in the case of Gödel algebras (and it reads: for certain families B_0, \ldots, B_k of nested sets, if $P(B_i) = P(B_{i+1})$ for some i then $P(B_{j+1} \setminus B_j) = 0$ for all $j \ge i$).



Duality

A finite forest is a finite poset such that the downset of each point is linearly ordered.

A map between forests is open (or a p-morphism) if it carries downsets to downsets.

$$\mathsf{G}_{fin} \equiv \mathsf{FF}^{\partial}$$
 via $\operatorname{Sub}: \mathsf{FF} \to \mathsf{G}_{fin}, \quad \operatorname{Spec}: \mathsf{G}_{fin} \to \mathsf{FF},$

Spec A is the prime spectrum of A, ordered by reverse inclusion (equivalently, is the poset of the join irreducibles of A, ordered by restriction).

Sub $F = (\{X \subseteq F \mid X = \downarrow X\}, X \cap Y, F \setminus \uparrow (X \setminus Y), \emptyset)$ is the algebra of all downsets of F, equipped with suitably defined operations.

Spec h: Spec $B \to \operatorname{Spec} A$ is given by $(\operatorname{Spec} h)(\mathfrak{p}) = h^{-1}(\mathfrak{p})$.

 $\operatorname{Sub} f \colon \operatorname{Sub} G \to \operatorname{Sub} F$ is given by $(\operatorname{Sub} f)(X) = f^{-1}(X)$.

States and labelings

A is a finite Gödel algebra.

 $F = \operatorname{Spec} A$ is its dual finite forest.

States of A are in bijective correspondence with labelings of F.

A labeling of a finite forest F is a map $l: F \to [0, 1]$ such that

- 1. $\sum_{a \in F} l(a) = 1$
- 2. $l^{-1}(0)$ is an upward closed subset of F.

(Condition (2) translates state:Condition (4)).

For each $a \in A$, $s(a) = \sum \{l(b) \mid b \in J.I.(A), b \le a\}$.

On weakly Gödelian maps

 ${\sf D}$ a (bounded) distibutive lattice.

C a linearly ordered distributive lattice.

 $q\colon D\twoheadrightarrow C$ a quotient map in the category of bounded distributive lattices.

The regular epi q is locally Gödelian iff for all factorisations $q = k \circ h$, $h: D \to E$ and $k: E \to C$ as bounded distributive lattices, with E linearly ordered, it holds that k is a morphism of Heyting algebras.

A morphism $g: D \to C$ of bounded distributive lattices, with C lineary ordered, is locally Gödelian iff so is $q: D \to \operatorname{Im} g$ (where $g = e \circ q$ is the regular epi, mono factorisation of g).

A morphism $g: D_1 \to D_2$ of bounded distributive lattices is weakly Gödelian iff for each locally Gödelian quotient $q: D_2 \to C_2$, the composition $q \circ g: D_1 \to C_2$ is locally Gödelian.

On weakly Gödelian maps

Gödelian hulls

D is a distributive lattice.

G is a Gödel algebra.

 $\iota \colon D \to U(G)$ is weakly Gödelian.

 ι is a Gödelian hull of D iff for any weakly Gödelian morphism $f: D \to U(G')$, there is a unique $g: G \to G'$ of Gödel algebras such that $f = U(g) \circ \iota$.

Then:

- Any finite distributive lattice D has a unique Gödelian hull $\iota: D \to U(G)$;
- ι is monic;
- G is finite;
- If $D \cong U(G)$ for some Gödel algebra G then id_D is its Gödelian hull.

On weakly Gödelian maps

the dual side

P is a finite poset.

F a forest.

Saturated path in $P: [a_1, a_2, \ldots, a_h]$, with $a_1 \in \min P$, and a_{i+1} covers a_i in P. $[a_1, \ldots, a_h] \preceq [b_1, \ldots, b_k]$ iff $h \leq k$ and $a_i = b_i$.

Path P is the forest of saturated paths, ordered by \leq .

e.o.p.: Path $P \to P$: $[a_1, \ldots, a_h] \mapsto a_h$ is the end-of-path map.

Then:

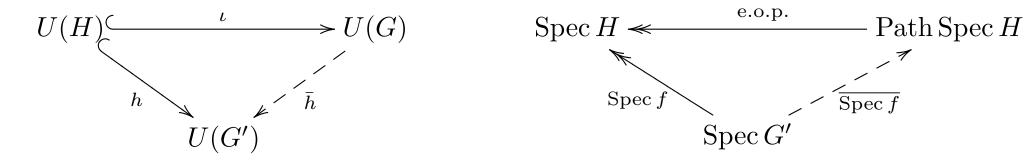
Sub e.o.p.: Sub $P \to U($ Sub Path P) is the Gödelian hull of Sub P.

Gödelian hull of a finite Heyting algebra

H: finite Heyting algebra.

G': finite Gödel algebra.

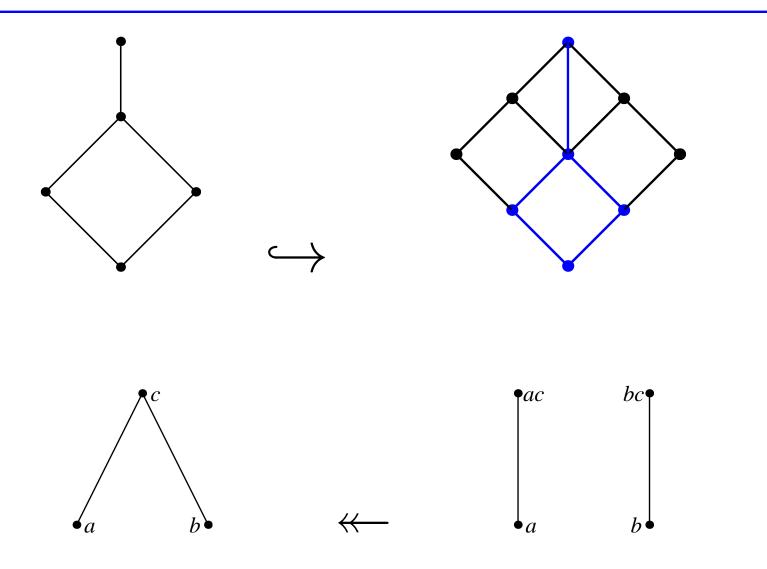
 $\iota: U(H) \to U(G)$: Gödelian hull of U(H).



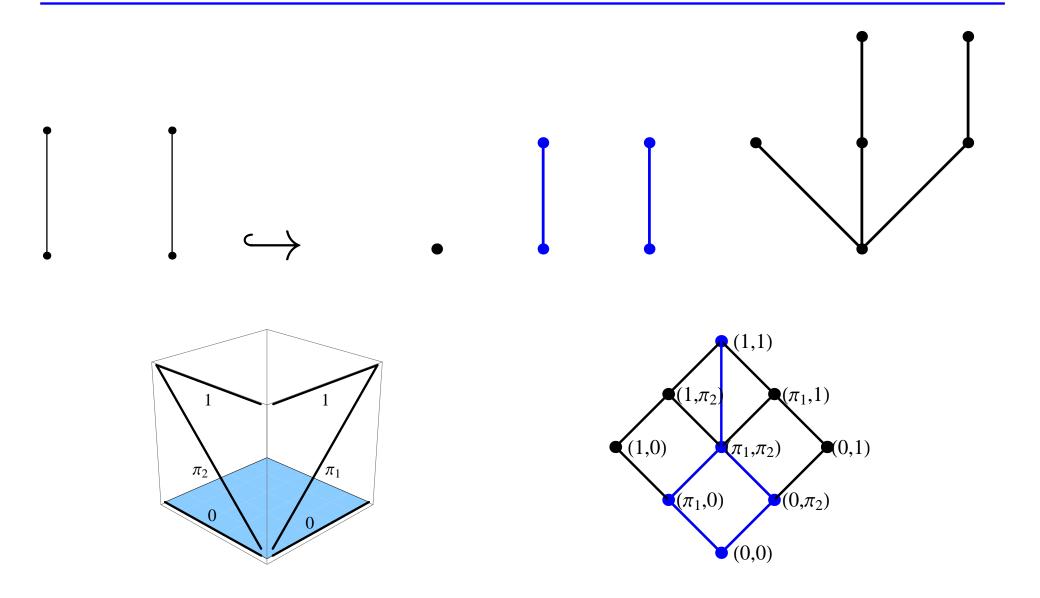
 $G \cong \operatorname{Sub}\operatorname{Path}\operatorname{Spec} H.$

 $\overline{\operatorname{Spec} f} \colon \operatorname{Spec} G' \to \operatorname{Path} \operatorname{Spec} H \text{ defined by}$ $(\overline{\operatorname{Spec} f})(x) = ((\operatorname{Spec} f)[\downarrow x], \leq_{\operatorname{Spec} H}).$

The smallest example



The smallest example



States of a finite Heyting algebra

H is a finite Heyting algebra.

 $\iota: U(H) \to U(G)$ is the Gödelian hull of H.

Dually, $G \cong \text{Sub Path Spec } H$.

A state $s: H \to [0, 1]$ is the restriction to H of a state $s': G \to [0, 1]$.

- $s(\perp) = 0, \ s(\top) = 1;$
- $s(a) + s(b) = s(a \lor b) + s(a \land b);$
- If $a \le b$ then $s(a) \le s(b)$;
- If $a \leq b$ and s(b) = s(a) then $s(b \to a) = 1$.

States of H coincide with integrals of functions of G.

For each s there is a (regolar Borel probability) measure μ (and viceversa) s. th.

$$s(a) = \int_{[0,1]^n} a \, d\mu$$
 for all $a \in H$

States of a finite Heyting algebra

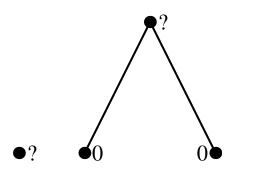
labeled posets

H is a finite Heyting algebra.

States of H are in bijection with labelings l of Spec H:

- $l: \operatorname{Spec} H \to [0, 1]$ such that:
 - $\sum_{\mathfrak{p}\in\operatorname{Spec} H} l(\mathfrak{p}) = 1;$
 - For any p ∈ Spec H: if each q covered by p is such that l(q) = 0 then l(p) = 0, too.

For each $a \in H$, $s(a) = \sum \{l(b) \mid b \in J.I.(A), b \leq a\}$.



States of a finite Heyting algebra

labeled posets

H is a finite Heyting algebra.

States of H are in bijection with labelings l of Spec H:

- $l\colon\operatorname{Spec} H\to[0,1]$ such that:
 - $\sum_{\mathfrak{p}\in\operatorname{Spec} H} l(\mathfrak{p}) = 1;$
 - For any p ∈ Spec H: if each q covered by p is such that l(q) = 0 then l(p) = 0, too.

For each $a \in H$, $s(a) = \sum \{l(b) \mid b \in J.I.(A), b \le a\}$.

