\doteq means literal ("graphical") equality of two strings of symbols. Category $\Re = (Ob\Re, Mor \Re)$.

$$H(A,B) \subset Mor \Re \qquad f: A \to B, \ A \stackrel{t}{\to} B,$$

In $f : A \rightarrow B$, A is the source, B is the target ("from A to B").

$$g \cdot f : A \to C \text{ for } A \xrightarrow{f} B \xrightarrow{g} C,$$

 $f \cdot (g \cdot h) = (f \cdot g) \cdot h,$
 $1 = 1_A : A \to A, \ 1f = f1 = f$

The leading example. A category corresponding to a formal system $\ensuremath{\mathcal{S}}.$

Objects: formulas of \mathcal{S} .

Morphisms $f : A \rightarrow B$; deductions $A \vdash_{\mathcal{S}} B$.

 1_A : the deduction $A \vdash A$.

The composition fg: superimposing f over G:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The System HCC

Formulas: constructed from the propositional variables and I by &, \supset .

Derivable objects: $f : A \to B$ the same as $A \xrightarrow{f} B$. Axioms $1_A : A \to A$

$$O_A: A \to I;$$
 $\ell = \ell_{AB}: A\&B \to A; \mathbf{r} = \mathbf{r}_{AB}: A\&B \to B;$
 $\varepsilon = \varepsilon_{AB}: (A \supset B)\&A \to B.$

Inference rules

$$\frac{A \xrightarrow{b} B \quad B \xrightarrow{c} C}{A \xrightarrow{cb} C}$$

$$\frac{A \xrightarrow{b} B \quad A \xrightarrow{c} C}{A \xrightarrow{cb} C} \qquad \frac{A \xrightarrow{c} C}{A \xrightarrow{c+} B \supset C}$$

Canonical maps = derivations in HCC= combinators constructed from 1, $O, \ell, \mathbf{r}, \varepsilon$ by pairing and composition $\langle a, b \rangle$, ab.

Axioms DA for equality of maps in CCC

1.
$$b1_A \equiv 1_A b \equiv b$$
 for $b : A \to C$,
2. $d(cb) \equiv (dc)b$
3. $O_A \equiv f$ for all $f : A \to I$,
4. $\ell_{BC}\langle b, c \rangle \equiv b$, $\mathbf{r}_{bc}\langle b, c \rangle \equiv c$ for $A \xrightarrow{b} B, A \xrightarrow{c} C$,
5. $\langle \ell f, \mathbf{r} f \rangle \equiv f$ for $A \xrightarrow{f} B \& C$,
6. $\varepsilon \langle c^+ \ell_{AB}, \mathbf{r}_{AB} \rangle \equiv c$ for $A \& B \xrightarrow{c} C$,
7. $(\varepsilon \langle f \ell_{AB}, \mathbf{r}_{AB} \rangle \equiv f$ for $A \xrightarrow{f} b \supset c$.

Categorical Equivalence Relation \equiv_{HCC}

A relation \equiv for combinators is the least congruence relation turning HCC into a cartesian closed category. More precisely \equiv is defined by axioms DA and $a \equiv a$ plus the rules:

$$\frac{a \equiv b \quad a \equiv c}{b \equiv c} \qquad \frac{a \equiv a' \quad b \equiv b'}{\langle a, b \rangle \equiv \langle a', b' \rangle} \qquad \frac{a \equiv a' \quad b \equiv b'}{(ab) \equiv (a'b')}$$
$$\frac{a \equiv b}{a^+ \equiv b^+} \qquad \frac{a \equiv b}{\ell a \equiv \ell b} \qquad \frac{a \equiv b}{ra \equiv rb}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A sequent $A \to B$ is valid (for CCC) if for any CCC \Re and any substitution ζ of objects from \Re for propositional variables of $A \to B$ one has a CCC map $\zeta A \xrightarrow{b} \zeta B \in Mor \Re$.

Two canonical maps are considered *equal* iff their realizations are equivalent in any CCC.

We consider recognizing validity *word problem* and recognizing equality of canonical maps *coherence problem*.

Lemma

 $A \rightarrow B$ is derivable in HCC iff it is valid. Canonical maps a, b are equal iff $a \equiv b$.

Proof. For difficult directions consider HCC.

&-maps

&-map is a canonical map without any use of $\varepsilon,^+\text{, only }\ell,\mathbf{r}$ pairing and composition.

Non-uniqueness:

$$\langle \mathbf{r}, \ell \rangle : p\&p \rightarrow p\&p \qquad 1: p\&p \rightarrow p\&p.$$

 $f: A \to B$ is an *isomorphism* if there is an *inverse* $g: B \to A$ such that $fg = 1_B$, $gf = 1_A$. To achieve uniqueness: do not make (unnecessary) identifications in the source.

Theorem

Let A, B be conjunctions constructed from I and variables, no variable occurs twice in A and each variable from B is in A. Then there exists an &-map

$$\alpha_{A,B}: A \to B$$

which is unique (among &-maps) modulo \equiv . In particular if the same variables occur in A and B and no variable occurs twice in either of A, B then $\alpha_{A,B}$ is an isomorphism:

 $\alpha_{AB}\alpha_{BA} = 1.$

$$\alpha_{A,B}: A \to B$$

Proof. The passage to projections:

$$a \equiv b$$
 iff $\ell a \equiv \ell b$ and $\mathbf{r} a \equiv \mathbf{r} b$.

Indeed by DA5 $a \equiv \langle \ell a, \mathbf{r}a \rangle \equiv \langle \ell b, \mathbf{r}b \rangle \equiv b$. In particular

$$\langle a,b
angle c\equiv\langle ac,bc
angle$$

since

$$\ell(\langle a, b \rangle c) \equiv (\ell \langle a, b \rangle) c \equiv \langle a, c \rangle \tag{1}$$

and similarly for **r**. Let's construct αAB by induction on B. Induction step. Given $\alpha_{AB} : A \to B$, $\alpha_{AC} : A \to C$ define $\alpha_{A(B\&C)} : A \to B\&C$ by $\alpha_{A(B\&C)} := \langle \alpha_{AB}, \alpha_{AC} \rangle$. Uniqueness follow by passing to projections. Induction base: the target B in $A \rightarrow B$ is atomic.

If $B \doteq I$ then $\alpha_{AB} := O_A$. The uniqueness is the O_A -axiom.

If B is a variable then B is contained in A, since otherwise $A \supset B$ is not even a tautology.

In this case α_{AB} is a combination of ℓ , *rb* corresponding to the position of *B* in *A*. For example

$$A \doteq (C\&(D\&(E\&B)), \qquad \alpha_{AB} := \mathbf{rrr},$$
$$A \doteq (((B\&C)\&D)\&E, \qquad \alpha_{AB} := \ell\ell\ell$$
$$A \doteq (((D\&C)\&B)\&E, \qquad \alpha_{AB} := \ell\mathbf{r}$$

It remains to prove uniqueness when B is a variable.

Uniqueness Proof

Lemma

(normal form for &-maps) For any &-map a there is an &-map $a' \equiv a a'$ contains no part of the form

$$\ell \langle c, d \rangle, \mathbf{r} \langle c, d \rangle, \mathbf{1} c, c \mathbf{1},$$

marginpar(a, b)c? Proof. Use DA1,DA2,DA4to shorten a. Assume now $b \equiv \alpha_{AB}$ in this normal form. If $b \doteq pb'$ for $p \in \{\ell, \mathbf{r}\}$, use IH for b'. [Why the source of b' is a conjunction of variables?] Otherwise $b \doteq 1$, also OK. Indeed the case

$$b \doteq (\langle c, d \rangle)e$$

is impossible. If $c: X \to C$, $d: X \to D$, $e: Y \to X$ then the target of *b* is C&D, not a variable.

$$B$$

$$b \nearrow \uparrow \ell$$

$$A \xrightarrow{f} B\&C$$

$$c \searrow \downarrow \mathbf{r}$$

$$C$$

$$A\&B$$

$$\langle f\ell_{AB}, \mathbf{r}_{AB} \rangle \downarrow \searrow c$$

$$(B \supset C)\&B \xrightarrow{\varepsilon} C$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Translation au of Combinators into Deductive Terms

Recall that a term I of the type \top belongs to the set of deductive terms. We identify the constant \top with the constant I of HCC. Example. $\varepsilon_{AB} : (A \supset B) \& A \rightarrow B$.

$$\frac{Ax (A \supset B)\&A}{A} \quad \frac{Ax (A \rightarrow B)\&A}{A \supset B}$$

$$\frac{A \times (A \rightarrow B)\&A}{(A \supset B)\&A \Rightarrow B}$$

$$\frac{x : (A \supset B)\&A}{\mathbf{p}_1 x : A} \quad \frac{x : (A \rightarrow B)\&A}{\mathbf{p}_0 x : A \supset B}$$

$$p_0 x(\mathbf{p}_1 x) : (A \supset B)\&A \Rightarrow B$$

for $x = x^{(A \supset B)\&A}$.

 $b: A \to B;$ $\tau(b): B$ with $FV(\tau(b)) \subset \{x^A\}.$

・ロト・西ト・ヨト・ヨー シック

$$\tau(1_a) = x^A; \qquad \tau(O_A) = I_A;$$

$$\tau(\ell_{AB}) = \mathbf{p}_0 x^{A\&B}; \qquad \tau(\mathbf{r}_{AB}) = \mathbf{p}_1 x^{A\&B};$$

$$\tau(\langle b, c \rangle) = \mathbf{p}(\tau(b), \tau(c)) \text{ for } A \xrightarrow{b} B, A \xrightarrow{c} C;$$

$$\tau(\varepsilon_{AB}) = \mathbf{p}_0 x(\mathbf{p}_1 x) \text{ for } x = x^{(A \supset B)\&A};$$

$$\tau(c^+) = \lambda x^B . (\lambda x^{A\&B} \tau(c)) \mathbf{p}(\tau(a), \tau(b)) \text{ for } C : A\&B \to C;$$

$$\tau(bc) = (\lambda x^C \tau(b))(\tau(c)) \text{ for } A \xrightarrow{c} C \xrightarrow{b} B$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Note that last two clauses can be simplified:

$$au[c^+) \text{ red } \lambda x^B . au(c))[x^{A\&B}/\mathbf{p}(au(a), au(b))],$$

 $au(bc) \text{ red } au(b))[x^C/ au(c)].$

Translation **c** of Deductive Terms into Combinators $((A\&B)\&A)\&A \rightarrow A$ with the 2-nd A matching the target A.

 $A, B, A, A \Rightarrow A$ with the 2-nd A matching the target A

$$x : A, y : B, z : A, u : A \Rightarrow z : A$$

or by the map

$$\mathbf{r}\ell:(((I\&A)\&B)\&A)\&A \to A$$

The general case.

$$\begin{split} \Gamma &= x_1^{A_1}, \dots, x_n^{A_n}, \qquad \Delta = x_{n+1}^{A_{n+1}}, \dots, x_m^{A_m} \\ & \mathcal{K}'(\Gamma) := (\dots (p_1 \& p_2) \& \dots \& p_n); \\ & \mathcal{K}'(\Delta) := (\dots (p_{n+1}' 1 \& p_{n+2}') \& \dots \& p_m') \\ \end{split}$$
where $p_j' = p_{i_j}$ iff $x_j^{A_j} = x_{i_j}^{A_{i_j}}$ for $n+1 \le j \le m, \ 1 \le i_j \le n.$
 $\mathcal{K}(\Gamma) := (\dots (I \& A_1) \& \dots \& A_n).$

$$\alpha'_{\Gamma,\Delta} := \alpha_{K'(\Gamma),K'(\Delta)} : K'(\Gamma) \to K'(\Delta); \qquad \alpha_{\Gamma,\Delta} := \alpha'_{\Gamma,\Delta}[p_i/A_i].$$

 $\Gamma \sim \Gamma' \colon$ Γ' is a permutation of $\Gamma.$ Then $\alpha_{\Gamma,\Gamma'}$ is an isomorphism:

$$\begin{split} \alpha_{\Gamma\Gamma'}\alpha_{\Gamma',\Gamma} &\equiv 1, \qquad \alpha_{\Gamma\Gamma} \equiv 1, \\ \alpha\Gamma'\Sigma &\equiv \alpha_{\Gamma\Sigma}\alpha_{\Gamma',\Gamma} \equiv \alpha_{\Sigma\Gamma'}\alpha_{\Sigma\Gamma}, \\ \alpha_{\Gamma x,\Delta x} &\equiv \langle \alpha_{\Gamma\Delta}\ell, \mathbf{r} \rangle \text{ if } x \not\in \Gamma, \Delta \\ \alpha_{\Gamma\Sigma,\Delta} &\equiv \alpha_{\Gamma,\Delta}\ell^{\Sigma} \qquad \ell^{\Sigma}\alpha_{\Gamma,\Delta\Sigma} \equiv \alpha_{\Gamma,\Delta} \end{split}$$

where $\ell^{A,B,C} = \ell^{A}\ell^{B}\ell^{C}.$

$$\mathbf{c}_{\Gamma}(t^{A}): K(\Gamma) \to A \qquad \Gamma \supset FV(T^{A})$$

1.
$$\mathbf{c}_{\Pi x^A \Sigma}(x^A) := \alpha_{x'\Pi x^A \Sigma, x^A} \equiv \mathbf{r} \ell^{\Sigma}$$
.
2. $\mathbf{c}_{\Gamma}((b(a)) := \varepsilon \langle \mathbf{c}_{\Gamma}(b), \mathbf{c}_{\Gamma}(a) \rangle$.
3. $\mathbf{c}_{\Gamma}(\mathbf{p}(a, b)) := \langle \mathbf{c}_{\Gamma}(a), \mathbf{c}_{\Gamma}(b) \rangle$.
4. $\mathbf{c}_{\Gamma}(\lambda x^A b) := (\mathbf{c}_{\Gamma x^A}(b))^+ \text{ if } x^A \notin \Gamma$. Otherwise $\mathbf{c}_{\Gamma}(\lambda x^A b) := (\mathbf{c}_{\Gamma y^A}(b_{x^A}[y^A]))^+ \text{ for a fresh variable } y^A$.
5. $\mathbf{c}_{\Gamma}(ft) := \tilde{f} \mathbf{c}_g a(t) \text{ for } f \in \{\ell, \mathbf{r}\}, \text{ with } \tilde{\ell} := \mathbf{p}_0, \ \tilde{\mathbf{r}} := \mathbf{p}_1$.
6. $\mathbf{c}_{\Gamma}(l) := O_{K_{\Gamma}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Lemma

HCC proves $A \rightarrow B$ iff there is a deductive term t^B containing free no variables except x^A .

Proof. If $A \xrightarrow{b} B$ in HCC, take $\tau(b)$. If t^B contains free at most x^A then $\mathbf{c}_{x^A}(t^B) : I\&A \to B$, hence $\mathbf{c}_{x^A}(t^B)\langle O_A, 1_A \rangle : A \to B$ as required.

The Relation between Translations τ and ${\bf c}$

Recall that \equiv for deductive terms means $\beta - \eta$ interconversion. We would like to have $\mathbf{c}(\tau(b)) \equiv b$, $\tau(\mathbf{c}(t)) \equiv t$.

Lemma

 $\mathbf{c}_{x^{A}}(\tau(b)) \equiv b\mathbf{r} \text{ for } A \stackrel{b}{\rightarrow} B.$

Proof. Induction on *b* with some computations. Cf. G. Mints, Proof Theory and Category Theory, in: Selected papers in Proof Theory, North Holland/Bibliopolis p. 168,169.

Lemma

 $a \equiv b \text{ implies } \tau(a) \equiv \tau(b)$

for all suitable combinators a, b, if the free variables for construction of $\tau(a), \tau(b)$ are chosen in the same way.

Proof. Induction on demostration of $a \equiv b$. (Exercise)

Lemma

If $\Gamma\subset\Gamma'$ are lists of typed variables without repetitions and $FV(t)\subset\Gamma$ then

$$\mathbf{c}_{\Gamma'}(t) \equiv \mathbf{c}_{\Gamma}(t) \alpha_{x'\Gamma',x'\Gamma}$$

Proof. Induction on t. A half-page of computations

Lemma $\mathbf{c}_{\Gamma}((\lambda x A t^B)(a^A)) \equiv \mathbf{c}_{\Gamma}(t^B_{x^B}[a]).$ Proof. Induction on t. A page of computations.

Lemma

$$t \equiv t' \text{ implies } \mathbf{c}_{\Gamma}(t) \equiv \mathbf{c}_{\Gamma}(t').$$

Proof. . Go through the definition of $t \equiv t'$. Use previous Lemmata.

Theorem

For any combinators a, b,

$$a\equiv b ext{ iff } au(a)\equiv au(b).$$

Free CCC

Let [f] means the equivalence class of f modulo \equiv . *Ob CCC*: the set of all $\&, \supset, I$ propositional formulas. *Mor CCC*: the set of all equivalence classes [f]of combinators f modulo \equiv .

$$CCC = (Ob \ CCC, Mor \ CCC).$$

f = g means $f \equiv g$. This is expressed by saying that maps are combinators f considered modulo \equiv .

Lemma

CCC is a cartesian closed category.

Proof. All category and cc properties are explicitly postulated. \Box In fact *CCC* is the free (minimal) ccc category in a suitable sense. Exercise. Write down natural deductions for all combinators.

Exercise. If $a \equiv b$ then a, b have the same source and same target. Exercise. Prove that if $A \rightarrow B$ is provable in HCC then $A \supset B$ is a tautology.

*Prove that HCC is in fact contained in intuitionistic propositional calculus. This is not too difficult, but takes time.

Prove that If A is a conjunction of atoms (variables and I) and B is a variable not contained in A then $A \supset B$ is not a tautology.

Exercise. Write down and prove (1) for **r**.

Prove uniqueness for $\alpha_{A(B\&C)}$ from one for α_{AB}, α_{AC} by passing to projections.

Exercise. Write down the types of all formulas in the definition of $c_{\Gamma}.$

Exercise. Do several steps in the proof of Lemma 5.

Provable Isomorphism of Types

after D.Bruce, R. Di Cosmo, Guiseppe Longo. Propositional Formulas &, \supset , *I*. A deductive term $M : A \rightarrow B$ is an isomorphism iff there is an $M : B \rightarrow A$ such that

$$M(N) \equiv 1, \ N(M) \equiv 1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Implicational Formulas

$$A \supset (B \supset (C \supset D)) \sim C \supset (B \supset (A \supset D))$$

Finite hereditary permutation: $A \sim A$,

$$A \supset (B \supset (C \supset D)) \sim C' \supset (B' \supset (A' \supset D'))$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (essentialy Dezani, 1976) An implicational term M is $\lambda\beta\eta$ -invertible iff M is a f.h.p.

Elimination of /

$$A\&I \sim A; \qquad A \supset I \sim I$$

Both of these isomorphisms are natural, therefore I can be eliminated.

Elimination of &

$$(A\&B) \supset C \sim A \supset (B \supset C)$$
$$A \supset (B\&C) \sim (A \supset B)\&(A \supset C)$$

This reduces the problem to the &-free case:

$$A\&B\&C \sim C'\&A'\&B'$$

up to permutation in the outermost &.