\doteq means literal ("graphical") equality of two strings of symbols. Category $\Re=(O b \Re$, Mor $\Re)$.

$$
H(A, B) \subset M o r \Re \quad f: A \rightarrow B, A \xrightarrow{f} B
$$

In $f: A \rightarrow B, A$ is the source, B is the target ("from A to B ").

$$
\begin{gathered}
g \cdot f: A \rightarrow C \text { for } A \xrightarrow{f} B \xrightarrow{g} C, \\
f \cdot(g \cdot h)=(f \cdot g) \cdot h, \\
1=1_{A}: A \rightarrow A, 1 f=f 1=f
\end{gathered}
$$

The leading example. A category corresponding to a formal system \mathcal{S}.
Objects: formulas of \mathcal{S}.
Morphisms $f: A \rightarrow B$; deductions $A \vdash_{\mathcal{S}} B$.
1_{A} : the deduction $A \vdash A$.
The composition $f g$: superimposing f over G :
A
f
B
g
C
C

The System HCC

Formulas: constructed from the propositional variables and I by \& , \supset.
Derivable objects: $f: A \rightarrow B \quad$ the same as $A \xrightarrow{f} B$. Axioms $1_{A}: A \rightarrow A$

$$
\begin{gathered}
O_{A}: A \rightarrow I ; \quad \ell=\ell_{A B}: A \& B \rightarrow A ; \mathbf{r}=\mathbf{r}_{A B}: A \& B \rightarrow B ; \\
\varepsilon=\varepsilon_{A B}:(A \supset B) \& A \rightarrow B .
\end{gathered}
$$

Inference rules

$$
\begin{gathered}
\xrightarrow[\rightarrow]{A \xrightarrow[b]{C} B \xrightarrow{c} C} \\
A \xrightarrow{c b} C \\
A \xrightarrow{\langle b, c\rangle} B \& C \\
A \xrightarrow{b} C
\end{gathered} \frac{A \xrightarrow{c} C}{A \xrightarrow{c^{+}} B \supset C} .
$$

Canonical maps $=$ derivations in $\mathrm{HCC}=$ combinators constructed from $1, O, \ell, \mathbf{r}, \varepsilon$ by pairing and composition $\langle a, b\rangle$, $a b$.

Axioms DA for equality of maps in CCC

1. $b 1_{A} \equiv 1_{A} b \equiv b$ for $b: A \rightarrow C$,
2. $d(c b) \equiv(d c) b$
3. $O_{A} \equiv f$ for all $f: A \rightarrow I$,
4. $\ell_{B C}\langle b, c\rangle \equiv b, \mathbf{r}_{b c}\langle b, c\rangle \equiv c$ for $A \xrightarrow{b} B, A \xrightarrow{c} C$,
5. $\langle\ell f, \boldsymbol{r} f\rangle \equiv f$ for $A \xrightarrow{f} B \& C$,
6. $\varepsilon\left\langle c^{+} \ell_{A B}, \mathbf{r}_{A B}\right\rangle \equiv c$ for $A \& B \xrightarrow{c} C$,
7. $\left(\varepsilon\left\langle f \ell_{A B}, \mathbf{r}_{A B}\right\rangle \equiv f\right.$ for $A \xrightarrow{f} b \supset c$.

Categorical Equivalence Relation \equiv НСС

A relation \equiv for combinators is the least congruence relation turning HCC into a cartesian closed category.
More precisely \equiv is defined by axioms DA and $a \equiv a$ plus the rules:

$$
\begin{gathered}
\frac{a \equiv b \quad a \equiv c}{b \equiv c} \quad \frac{a \equiv a^{\prime} b \equiv b^{\prime}}{\langle a, b\rangle \equiv\left\langle a^{\prime}, b^{\prime}\right\rangle}
\end{gathered} \frac{\frac{a \equiv a^{\prime}}{(a b) \equiv\left(a^{\prime} b^{\prime}\right)}}{} \begin{gathered}
\frac{a \equiv b}{a^{+} \equiv b^{+}} \quad \frac{a \equiv b}{\ell a \equiv \ell b} \\
\frac{a \equiv b}{\mathbf{r a \equiv \mathbf { r } b}}
\end{gathered}
$$

A sequent $A \rightarrow B$ is valid (for CCC) if for any CCC \Re and any substitution ζ of objects from \Re for propositional variables of $A \rightarrow B$ one has a CCC map $\zeta A \xrightarrow{b} \zeta B \in$ Mor \Re.
Two canonical maps are considered equal iff their realizations are equivalent in any CCC.
We consider recognizing validity word problem and recognizing equality of canonical maps coherence problem.
Lemma
$A \rightarrow B$ is derivable in HCC iff it is valid.
Canonical maps a, b are equal iff $a \equiv b$.
Proof. For difficult directions consider HCC.

\&-maps

\&-map is a canonical map without any use of $\varepsilon,{ }^{+}$, only ℓ, \mathbf{r} pairing and composition.
Non-uniqueness:

$$
\langle\mathbf{r}, \ell\rangle: p \& p \rightarrow p \& p ; \quad 1: p \& p \rightarrow p \& p .
$$

$f: A \rightarrow B$ is an isomorphism if there is an inverse $g: B \rightarrow A$ such that $f g=1_{B}, g f=1_{A}$. To achieve uniqueness: do not make (unnecessary) identifications in the source.

Theorem

Let A, B be conjunctions constructed from I and variables, no variable occurs twice in A and each variable from B is in A. Then there exists an \&-map

$$
\alpha_{A, B}: A \rightarrow B
$$

which is unique (among \&-maps) modulo \equiv. In particular if the same variables occur in A and B and no variable occurs twice in either of A, B then $\alpha_{A, B}$ is an isomorphism:

$$
\alpha_{A B} \alpha_{B A}=1
$$

$$
\alpha_{A, B}: A \rightarrow B
$$

Proof. The passage to projections:

$$
a \equiv b \text { iff } \quad \ell a \equiv \ell b \text { and } \mathbf{r} a \equiv \mathbf{r} b .
$$

Indeed by DA5 $a \equiv\langle\ell a, \mathbf{r} a\rangle \equiv\langle\ell b, \mathbf{r} b\rangle \equiv b$. In particular

$$
\langle a, b\rangle c \equiv\langle a c, b c\rangle
$$

since

$$
\begin{equation*}
\ell(\langle a, b\rangle c) \equiv(\ell\langle a, b\rangle) c \equiv\langle a, c\rangle \tag{1}
\end{equation*}
$$

and similarly for \mathbf{r}.
Let's construct $\alpha A B$ by induction on B.
Induction step. Given $\alpha_{A B}: A \rightarrow B, \alpha_{A C}: A \rightarrow C$ define $\alpha_{A(B \& C)}: A \rightarrow B \& C$ by $\alpha_{A(B \& C)}:=\left\langle\alpha_{A B}, \alpha_{A C}\right\rangle$. Uniqueness follow by passing to projections.

Induction base: the target B in $A \rightarrow B$ is atomic.
If $B \doteq I$ then $\alpha_{A B}:=O_{A}$. The uniqueness is the O_{A}-axiom.
If B is a variable then B is contained in A, since otherwise $A \supset B$ is not even a tautology.
In this case $\alpha_{A B}$ is a combination of $\ell, r b$ corresponding to the position of B in A. For example

$$
\begin{array}{ll}
A \doteq(C \&(D \&(E \& B), & \alpha_{A B}:=\mathbf{r r r} \\
A \doteq(((B \& C) \& D) \& E, & \alpha_{A B}:=\ell \ell \ell \\
A \doteq(((D \& C) \& B) \& E, & \alpha_{A B}:=\ell \mathbf{r}
\end{array}
$$

It remains to prove uniqueness when B is a variable.

Uniqueness Proof

Lemma

(normal form for \&-maps) For any \&-map a there is an \&-map $a^{\prime} \equiv a a^{\prime}$ contains no part of the form

$$
\ell\langle c, d\rangle, \mathbf{r}\langle c, d\rangle, 1 c, c 1
$$

marginpar $\langle a, b\rangle c$? Proof. Use DA1,DA2,DA4to shorten a. Assume now $b \equiv \alpha_{A B}$ in this normal form. If $b \doteq \mathrm{pb}^{\prime}$ for $p \in\{\ell, \mathbf{r}\}$, use IH for b^{\prime}. [Why the source of b^{\prime} is a conjunction of variables?] Otherwise $b \doteq 1$, also OK. Indeed the case

$$
b \doteq(\langle c, d\rangle) e
$$

is impossible. If $c: X \rightarrow C, d: X \rightarrow D, e: Y \rightarrow X$ then the target of b is $C \& D$, not a variable.

B

A\&B
$\left\langle f \ell_{A B}, \mathbf{r}_{A B}\right\rangle \downarrow \searrow c$
$(B \supset C) \& B \quad \xrightarrow{\varepsilon} \quad C$

Translation τ of Combinators into Deductive Terms

Recall that a term I of the type T belongs to the set of deductive terms. We identify the constant T with the constant I of HCC. Example. $\varepsilon_{A B}:(A \supset B) \& A \rightarrow B$.

$$
\begin{array}{r}
\frac{A x(A \supset B) \& A}{\frac{A}{(A \supset B) \& A \Rightarrow B}} \frac{A x(A \rightarrow B) \& A}{A \supset B} \\
\frac{x:(A \supset B) \& A}{\frac{\mathbf{p}_{1} x: A}{\mathbf{p}_{0} \times\left(\mathbf{p}_{1} x\right):(A \supset B) \& A \Rightarrow B}} \frac{x:(A \rightarrow B) \& A}{\mathbf{p}_{0} x: A \supset B}
\end{array}
$$

for $x=x^{(A \supset B) \& A}$.

$$
b: A \rightarrow B ; \quad \tau(b): B \quad \text { with } F V(\tau(b)) \subset\left\{x^{A}\right\} .
$$

$$
\begin{array}{cl}
\tau\left(1_{a}\right)=x^{A} ; & \tau\left(O_{A}\right)=I_{A} ; \\
\tau\left(\ell_{A B}\right)=\mathbf{p}_{0} x^{A \& B} ; & \tau\left(\mathbf{r}_{A B}\right)=\mathbf{p}_{1} x^{A \& B} ; \\
\tau(\langle b, c\rangle)=\mathbf{p}(\tau(b), \tau(c)) \text { for } A \xrightarrow{b} B, A \xrightarrow{c} C ; \\
\tau\left(\varepsilon_{A B}\right)=\mathbf{p}_{0} x\left(\mathbf{p}_{1} x\right) \text { for } x=x^{(A \supset B) \& A ;} ; \\
\tau\left(c^{+}\right)=\lambda x^{B} \cdot\left(\lambda x^{A \& B} \tau(c)\right) \mathbf{p}(\tau(a), \tau(b)) \text { for } C: A \& B \rightarrow C ; \\
\tau(b c)=\left(\lambda x^{C} \tau(b)\right)(\tau(c)) \text { for } A \xrightarrow{c} C \xrightarrow{b} B
\end{array}
$$

Note that last two clauses can be simplified:

$$
\begin{gathered}
\left.\tau\left[c^{+}\right) \text {red } \lambda x^{B} \cdot \tau(c)\right)\left[x^{A \& B} / \mathbf{p}(\tau(a), \tau(b))\right] \\
\tau(b c) \text { red } \tau(b))\left[x^{C} / \tau(c)\right]
\end{gathered}
$$

Translation c of Deductive Terms into Combinators

 $((A \& B) \& A) \& A \rightarrow A$ with the 2 -nd A matching the target A. $A, B, A, A \Rightarrow A$ with the 2 -nd A matching the target $A$$$
x: A, y: B, z: A, u: A \Rightarrow z: A
$$

or by the map

$$
\mathbf{r} \ell:(((I \& A) \& B) \& A) \& A \rightarrow A
$$

The general case.

$$
\begin{gathered}
\Gamma=x_{1}^{A_{1}}, \ldots, x_{n}^{A_{n}}, \quad \Delta=x_{n+1}^{A_{n+1}}, \ldots, x_{m}^{A_{m}} \\
K^{\prime}(\Gamma):=\left(\ldots\left(p_{1} \& p_{2}\right) \& \ldots \& p_{n}\right) \\
K^{\prime}(\Delta):=\left(\ldots\left(p_{n+1}^{\prime} 1 \& p_{n+2}^{\prime}\right) \& \ldots \& p_{m}^{\prime}\right)
\end{gathered}
$$

where $p_{j}^{\prime}=p_{i j}$ iff $x_{j}^{A_{j}}=x_{i_{j}}^{A_{i_{j}}}$ for $n+1 \leq j \leq m, 1 \leq i_{j} \leq n$.

$$
K(\Gamma):=\left(\ldots\left(I \& A_{1}\right) \& \ldots \& A_{n}\right)
$$

$$
\alpha_{\Gamma, \Delta}^{\prime}:=\alpha_{K^{\prime}(\Gamma), K^{\prime}(\Delta)}: K^{\prime}(\Gamma) \rightarrow K^{\prime}(\Delta) ; \quad \alpha_{\Gamma, \Delta}:=\alpha_{\Gamma, \Delta}^{\prime}\left[p_{i} / A_{i}\right] .
$$

$\Gamma \sim \Gamma^{\prime}: \Gamma^{\prime}$ is a permutation of Γ. Then $\alpha_{\Gamma, \Gamma^{\prime}}$ is an isomorphism:

$$
\begin{gathered}
\alpha_{\Gamma \Gamma^{\prime}} \alpha_{\Gamma^{\prime}, \Gamma} \equiv 1, \quad \alpha_{\Gamma \Gamma} \equiv 1, \\
\alpha \Gamma^{\prime} \Sigma \equiv \alpha_{\Gamma \Sigma} \alpha_{\Gamma^{\prime}, \Gamma} \equiv \alpha_{\Sigma \Gamma^{\prime}} \alpha_{\Sigma \Gamma}, \\
\alpha_{\Gamma x, \Delta x} \equiv\left\langle\alpha_{\Gamma \Delta} \ell, \mathbf{r}\right\rangle \text { if } x \notin \Gamma, \Delta \\
\alpha_{\Gamma \Sigma, \Delta} \equiv \alpha_{\Gamma, \Delta} \ell^{\Sigma} \quad \ell^{\Sigma} \alpha_{\Gamma, \Delta \Sigma} \equiv \alpha_{\Gamma, \Delta}
\end{gathered}
$$

where $\ell^{A, B, C}=\ell^{A} \ell^{B} \ell^{C}$.

$$
\mathbf{c}_{\Gamma}\left(t^{A}\right): K(\Gamma) \rightarrow A \quad\left\ulcorner\supset F V\left(T^{A}\right)\right.
$$

1. $\mathbf{c}_{\Pi x^{A} \Sigma}\left(x^{A}\right):=\alpha_{x^{\prime} \Pi x^{A} \Sigma, x^{A}} \equiv \mathbf{r} \ell^{\Sigma}$.
2. $\mathbf{c}_{\Gamma}\left((b(a)):=\varepsilon\left\langle\mathbf{c}_{\Gamma}(b), \mathbf{c}_{\Gamma}(a)\right\rangle\right.$.
3. $\mathbf{c}_{\Gamma}(\mathbf{p}(a, b)):=\left\langle\mathbf{c}_{\Gamma}(a), \mathbf{c}_{\Gamma}(b)\right\rangle$.
4. $\mathbf{c}_{\Gamma}\left(\lambda x^{A} b\right):=\left(\mathbf{c}_{\Gamma x^{A}}(b)\right)^{+}$if $x^{A} \notin \Gamma$. Otherwise $\mathbf{c}_{\Gamma}\left(\lambda x^{A} b\right):=\left(\mathbf{c}_{\Gamma y^{A}}\left(b_{x^{A}}\left[y^{A}\right]\right)\right)^{+}$for a fresh variable y^{A}.
5. $\mathbf{c}_{\Gamma}(f t):=\tilde{f} \mathbf{c}_{g} a(t)$ for $f \in\{\ell, \mathbf{r}\}$, with $\tilde{\ell}:=\mathbf{p}_{0}, \tilde{\mathbf{r}}:=\mathbf{p}_{1}$.
6. $\mathbf{c}_{\Gamma}(I):=O_{K_{\Gamma}}$.

Lemma

HCC proves $A \rightarrow B$ iff there is a deductive term t^{B} containing free no variables except x^{A}.
Proof. If $A \xrightarrow{b} B$ in HCC, take $\tau(b)$.
If t^{B} contains free at most x^{A} then
$\mathbf{c}_{x^{A}}\left(t^{B}\right): I \& A \rightarrow B$, hence $\mathbf{c}_{x^{A}}\left(t^{B}\right)\left\langle O_{A}, 1_{A}\right\rangle: A \rightarrow B$ as required.

The Relation between Translations τ and \mathbf{c}

Recall that \equiv for deductive terms means $\beta-\eta$ interconversion. We would like to have $\mathbf{c}(\tau(b)) \equiv b, \tau(\mathbf{c}(t)) \equiv t$.

Lemma
$\mathbf{c}_{x^{A}}(\tau(b)) \equiv b \mathbf{r}$ for $A \xrightarrow{b} B$.
Proof. Induction on b with some computations. Cf. G. Mints,
Proof Theory and Category Theory, in: Selected papers in Proof
Theory, North Holland/Bibliopolis p. 168,169.
Lemma
$a \equiv b$ implies $\tau(a) \equiv \tau(b)$
for all suitable combinators a, b, if the free variables for construction of $\tau(a), \tau(b)$ are chosen in the same way.
Proof. Induction on demostration of $a \equiv b$. (Exercise)

Lemma

If $\Gamma \subset \Gamma^{\prime}$ are lists of typed variables without repetitions and $F V(t) \subset \Gamma$ then

$$
\mathbf{c}_{\Gamma^{\prime}}(t) \equiv \mathbf{c}_{\Gamma}(t) \alpha_{x^{\prime} \Gamma^{\prime}, x^{\prime} \Gamma}
$$

Proof. Induction on t. A half-page of computations
Lemma
$\mathbf{c}_{\Gamma}\left(\left(\lambda x A t^{B}\right)\left(a^{A}\right)\right) \equiv \mathbf{c}_{\Gamma}\left(t_{x^{B}}^{B}[a]\right)$.
Proof. Induction on t. A page of computations.
Lemma
$t \equiv t^{\prime}$ implies $\mathbf{c}_{\Gamma}(t) \equiv \mathbf{c}_{\Gamma}\left(t^{\prime}\right)$.
Proof. . Go through the definition of $t \equiv t^{\prime}$. Use previous Lemmata.

Theorem
For any combinators a, b,

$$
a \equiv b \text { iff } \tau(a) \equiv \tau(b)
$$

Free CCC

Let $[f]$ means the equivalence class of f modulo \equiv.
Ob CCC: the set of all $\&, \supset, I$ propositional formulas.
Mor CCC: the set of all equivalence classes [f]
of combinators f modulo \equiv.

$$
C C C=(O b C C C, M o r C C C)
$$

$f=g$ means $f \equiv g$.
This is expressed by saying that maps are combinators f considered modulo \equiv.

Lemma
CCC is a cartesian closed category.
Proof. All category and cc properties are explicitly postulated.
In fact CCC is the free (minimal) ccc category in a suitable sense.

Exercise. Write down natural deductions for all combinators.
Exercise. If $a \equiv b$ then a, b have the same source and same target. Exercise. Prove that if $A \rightarrow B$ is provable in HCC then $A \supset B$ is a tautology.
*Prove that HCC is in fact contained in intuitionistic propositional calculus. This is not too difficult, but takes time.
Prove that If A is a conjunction of atoms (variables and I) and B is a variable not contained in A then $A \supset B$ is not a tautology.
Exercise. Write down and prove (1) for \mathbf{r}.
Prove uniqueness for $\alpha_{A(B \& C)}$ from one for $\alpha_{A B}, \alpha_{A C}$ by passing to projections.
Exercise. Write down the types of all formulas in the definition of C_{Γ}.
Exercise. Do several steps in the proof of Lemma 5.

Provable Isomorphism of Types

after D.Bruce,R. Di Cosmo, Guiseppe Longo.
Propositional Formulas $\&, \supset, I$. A deductive term $M: A \rightarrow B$ is an isomorphism iff there is an $M: B \rightarrow A$ such that

$$
M(N) \equiv 1, \quad N(M) \equiv 1
$$

Implicational Formulas

$$
A \supset(B \supset(C \supset D)) \sim C \supset(B \supset(A \supset D))
$$

Finite hereditary permutation: $A \sim A$,

$$
A \supset(B \supset(C \supset D)) \sim C^{\prime} \supset\left(B^{\prime} \supset\left(A^{\prime} \supset D^{\prime}\right)\right)
$$

Theorem (essentialy Dezani, 1976)
An implicational term M is $\lambda \beta \eta$-invertible iff M is a f.h.p.

Elimination of I

$$
A \& I \sim A ; \quad A \supset I \sim I
$$

Both of these isomorphisms are natural, therefore I can be eliminated.
Elimination of \&

$$
\begin{gathered}
(A \& B) \supset C \sim A \supset(B \supset C) \\
A \supset(B \& C) \sim(A \supset B) \&(A \supset C)
\end{gathered}
$$

This reduces the problem to the $\&$-free case:

$$
A \& B \& C \sim C^{\prime} \& A^{\prime} \& B^{\prime}
$$

up to permutation in the outermost $\&$.

