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Preliminaries

iff for “if and only if”,
:= denotes equality by definition.
The symbol a indicates the end of a proof.
Expressions that differ only in the names of bound variables are
regarded as identical.
Substitution of expressions involves a systematic renaming
operation for bound variables, thereby avoiding clashes.
FV (e): the set of free variables of e.



Natural Deduction for Propositional Logic

Formulas: from propositional variables and a constant > (True) by
&,→.
We often drop outermost parentheses as well as parentheses
dividing terms in a conjunction or a disjunction.
Finite multisets are finite sequences modulo permutation.
The number of occurrences of each formula is important.



α, Γ = {α} ∪ Γ.
Γ,Σ is the multiset union of Γ and Σ:
{α, α}, {α, α, α} is {α, α, α, α, α} .
The [Γ,∆] a multiset union of Γ,∆ plus possible identification of
some formulas in ∆ with identical formulas in Γ. For example:

[{α, α, β, β}, {α, α, α, γ, γ}]

can be any of:

{α, α, α, α, α, β, β, γ, γ}, {α, α, α, α, β, β, γ, γ}, {α, α, α, β, β, γ, γ},

but not {α, α, β, β, γ, γ}.



Intuitionistic Propositional System NJp

Sequents: α1, . . . , αn ⇒ α

read “assumptions α1, . . . , αn imply α”.
α is the succedent, α1, . . . , αn constitute the antecedent.
Axioms:

α, Γ⇒ α, Γ⇒ >.

Inference rules (I ,E stand for introduction, elimination):

Γ⇒ α ∆⇒ β

[Γ,∆]⇒ α&β
&I

Γ⇒ α&β

Γ⇒ α
&E

Γ⇒ α&β

Γ⇒ β
&E

Γ⇒ (α→ β) ∆⇒ α

[Γ,∆]⇒ β
→ E

α, Γ⇒ β

Γ⇒ (α→ β)
→ I

Sequents written above the line are premises of the rule, and the
sequent written under the line is the conclusion.



Classical Propositional Calculus

: add α ∨ ¬α.
A natural deduction or a proof in NJp
is a tree beginning with axioms and proceeding by the inference
rules of the system. A sequent is deducible or provable if it is a last
sequent of a deduction.
A formula α is deducible or provable if the sequent ⇒ α is
provable.



d : Γ⇒ α: d is a natural deduction of Γ⇒ α.
Γ ` α: Γ⇒ α is derivable in NJp.
→ I discharges the assumption α.
→ E is called also detachment or modus ponens .



Ax α means the axiom α⇒ α.

p ⇒ p
p ⇒ q → p → I

⇒ p → (q → p)
→ I



Ax p → (q → r) p ⇒ p

p → (q → r), p ⇒ q → r
→ E Ax p → q p ⇒ p

p → q, p ⇒ q → E

p → (q → r), p → q, p ⇒ r
→ E

p → (q → r), p → q ⇒ p → r
→ I

p → (q → r)⇒ (p → q)→ (p → r)

d : ⇒ (p → (q → r))→ ((p → q)→ (p → r))
→ I

→ I

In the → E -inference above

p → (q → r), p ⇒ q → r p → q, p ⇒ q

p → (q → r), p → q, p ⇒ r
→ E

the assumption p is used twice, one time in each of the premises.



Implicit application of the contraction rule:

Γ, α, α⇒ γ

Γ, α⇒ γ

Another rule derivable in NJp is weakening:

Γ⇒ γ

α, Γ⇒ γ
weak

for example a → I rule in the form:

Γ⇒ β

Γ,∆⇒ (α→ β).



Substitution Rule

Γ(p, q, . . .)⇒ γ(p, q, . . .)

Γ(α, β, . . .)⇒ γ(α, β, . . .)

a
Traditional notation for natural deduction.

p → (q → r) p
q → r

p → q p
q

r
p → r

(p → q)→ (p → r)

d− : (p → (q → r))→ ((p → q)→ (p → r))



p&q
p

(p&q)→ p

p q

p&q

q → (p&q)

p → (q → (p&q))



Exercises

1. Prove
α→ (β → α)

(α→ (β → γ))→ ((α→ β)→ (α→ γ))

α→ (β → (α&β))

α&β → α

α&β → β

2.Prove (“translations” of all postulates of the system HCC below)
((A→ B)&A)→ B,
A→ B,A→ C ⇒ A→ B&C ,
A&B → C ⇒ A→ (B → C )



Derivable Rules

A series of inference rules treated as one rule.

Definition
A deduction of S from S1, . . . ,Sn

is a tree beginning with axioms or sequents S1, . . . ,Sn and
proceeding by inference rules.
A rule

S1, . . . ,Sn

S

is derivable if there is a deduction of S from S1, . . . ,Sn.

The cut rule:
Γ⇒ α α, Γ⇒ β

Γ⇒ β
cut

α, Γ⇒ β

Γ⇒ α→ β Γ⇒ α

Γ⇒ β



Uniform versions of two-premise rules. A rule:

Γ⇒ α ∆⇒ β

Γ,∆⇒ φ

is derivable iff the rule

Γ⇒ α Γ⇒ β

Γ→ φ
R

is derivable too.



Some tautologies including

((p → q)→ p)→ p

are not derivable in NJp.



Hilbert-style system HJp

α α→ β

β
modus ponens

α→ (β → α)
(α→ (β → γ))→ ((α→ β)→ (α→ γ))
α→ (β → (α&β))
α&β → α
α&β → β
α→ (α ∨ β)
β → (α ∨ β)
(α→ γ)→ ((β → γ)→ ((α ∨ β)→ γ))
⊥ → α



BHK-interpretation

We write crα for “c realizes α” or ”c is a construction for α”:
cr(α0 ∧ α1) iff c is a pair c = p(a0, a1) and a0rα0 and a1ra1,
cr(α0 ∨ α1) iff (c = k0a and arα0) or (c = k1a and arα1),
cr(α→ β) iff c is a function and for every d , if drα then
c(d)rβ,
not cr⊥.
Realization t of (α0&α1)→ (β0&β1) is a program that for every
pair x = p(a0, a1) such that ai realizes αi , produces a pair
t(x) = p(b0, b1) such that bj realizes βj .



Exercise
What are realizations of formulas of the following form:

α→ (β&γ); (α→ (β → γ)) ((α→ β)→ γ).



Assignment T of Deductive Terms

A (&,→) language for writing realizations of formulas derivable in
NJp.
Pairing p with projections p0,p1 satisfying:

pi (p(t0, t1)) = ti , i = 0, 1 (1)

and lambda abstraction providing explicit definitions:

(λx .t)(u) = t[x/u], (2)

t[x ], t[u].
Application of a function t to an argument u is denoted by t(u).



For every formula φ: xφ, yφ, zφ, . . .



A term T (d) for a natural deduction d

Γ⇒ φ. (3)

We sometimes write tφ to stress this.
Every assignment depends on a context

zφ1 : φ1, . . . , z
φn : φn

with distinct typed variables for formulas in
Γ ≡ φ1, . . . , φn
written as z : Γ.
(3) is transformed into a statement:

zφ1 : φ1, . . . , z
φn : φn ⇒ u : φ or z : Γ⇒ u : φ



Contexts are treated as multisets. In particular z : Γ, z′ : ∆ stands
for the union of multisets.
Deductive terms and the assignment of a term to a deduction is
defined inductively. Assignments for axioms are given explicitly,
and for every logical inference rule, there is an operation that
transforms assignments for the premises into an assignment for the
conclusion of the rule.



Assignment Rules

Axioms: z : Γ, x : φ⇒ x : φ, ⇒ I : >
Inference rules:

z : Γ⇒ t : φ z′ : ∆⇒ u : ψ

z : Γ, z′ : ∆⇒ p(t, u) : (φ&ψ)
&I

z : Γ⇒ t : φ0&φ1

z : Γ⇒ pi t : φi
&E

i = 0, 1

z : Γ⇒ t : (φ→ ψ) z′ : ∆⇒ u : φ

z : Γ, z′ : ∆⇒ t(u) : ψ
→ E

x : φ, z : Γ⇒ t : ψ

z : Γ⇒ λx .t : (φ→ ψ)
→ I



Term assignment T (d) to a natural deduction d
Γ⇒ t : α or z : Γ⇒ t : α means that t = T (d) for some natural
deduction d : Γ⇒ α.

z : Γ⇒ u : φ

x : ψ, z : Γ⇒ u : φ
weak

x : ψ, y : ψ, z : Γ⇒ u : φ

x : ψ, z : Γ⇒ u[y/x ] : φ
contr



q → r ⇒ q → r
p → q ⇒ p → q p ⇒ p

p, p → q ⇒ q
p → q, q → r , p ⇒ r

p → q, q → r ⇒ p → r

p → q ⇒ (q → r)→ (p → r)

d : ⇒ (p → q)→ ((q → r)→ (p → r))

Assign terms:

y : q → r ⇒ y : q → r

x : p → q ⇒ x : p → q z : p ⇒ z : p

z : p, x : p → q ⇒ x(z) : q

x : p → q, y : q → r , z : p ⇒ y(x(z)) : r

x : p → q, y : q → r ⇒ λzp.y(x(z)) : p → r

x : p → q ⇒ λyq→rλzp.y(x(z)) : (q → r)→ (p → r)

⇒ λxp→qλyq→rλzp.y(x(z)) : (p → q)→ ((q → r)→ (p → r))

Hence T (d) ≡ λxλyλz .y(x(z)).



Several more examples are

⇒ λxp.x : (p → p)

⇒ λxpλyq.x : p → (q → p)

⇒ λxpi .kix : (pi → p0 ∨ p1)



Exercise
Confirm the preceding realizations and find realizations for the
following formulas using deductions in NJp:

p&q → p, p&q → q, p → (q → p&q),

(p → q)→ ((p → (q → r))→ (p → r)).



Properties of Term Assignment T

The T (d) is defined up to renaming of free variables assigned to
axioms.
If d : Γ⇒ φ then z : Γ⇒ T (d) : φ.
The operation T is an isomorphism: It has an inverse operation D
preserving both syntactic identity and more important relation of
βη-equality



Operation D
For tφ with FV (t) = zΓ we define a deduction:

D(t) : Γ⇒ φ (4)

If tφ ≡ xφ then D(t) := φ⇒ φ (Axiom)
If tφi ≡ piu

φ0&φ1 then D(t) is obtained from D(u) by &E :

D(u) : Γ⇒ φ0&φ1

D(piu) : Γ⇒ φi
&E

If tφ&ψ ≡ p(uφ, vψ) with FV (u) ≡ zΣ, FV (v) ≡ z′∆, then:

D(u) : Σ⇒ φ D(v) : ∆⇒ ψ

D(p(u, v)) : [Σ,∆]⇒ φ&ψ
&I
,

where occurrences of identical assumptions in Σ and ∆ are
identified in [Σ,∆] exactly when these occurrences are assigned the
same variable in the contexts z : Σ and z′ : ∆.



If tψ ≡ uφ→ψ(vφ), then D(t) is obtained from D(u),D(v) by → E
with the same identification of assumptions as in the previous case.
If tφ→ψ ≡ λxφ.uψ, then:

D(u) : φ, Γ⇒ ψ

D(λxφ.u) : Γ⇒ φ→ ψ
→ I

,

Exercise. Write down a term assignment for → E .



Lemma
Up to renaming of free and bound variables,
(a) D(T (d)) ≡ d for every deduction d
(b) T (D(t)) ≡ t for every deductive term t



Computations with Deductions

Conversions and Reductions of Deductive Terms
Conversion relations = computation rules simplifying the l.h.s. into
r.h.s.
An operational semantics for the language of terms.

(λx .t)(t ′) conv t[x/t ′] (5)

pi (p(t0, t1)) conv ti i = 0, 1 (6)

t> conv I (7)

β-conversions. [Originally the term referred only to (5)].
One-step reduction red1 is a conversion of a subterm:

if u conv u′ then t[x/u] red1 t[x/u′]. (8)

Here u is a redex and u′ is a reductum.



The relation red is a transitive reflexive closure of red1:
t red t ′ if there is a reduction sequence:

t ≡ t0, . . . , tn ≡ t ′ (n ≥ 0)

such that ti red1 ti+1 for every i < n.
A term t is in normal form or t is normal if it does not contain a
redex; t has a normal form if there is a normal s such that t red s.
Reduction sequence is an analog of a computation, and a normal
form is an analog of a value.



Conversions and Reductions of Natural Deductions

Remove f an introduction rule immediately followed by an
elimination of the introduced connective
called cut here, a kind of detour to be rectified by a conversion.
There is a connection with the cut rule.
The &-conversion corresponding to the pairing conversion (6):

d0 : Γ⇒ φ0 d1 : ∆⇒ φ1

[Γ,∆]⇒ φ0&φ1
&I

d : [Γ,∆]→ φi
&E

conv di : Γ⇒ φi

A conversion can change the set of assumptions.



A Substitution Operation for Natural Deductions

.
Every undischarged assumption in a premise goes into the same
formula in the conclusion,
its immediate descendant.
The chain of such descendants stops at discharged assumptions.
Ancestors of a given formula are occurrences that have it as a
descendant.
A given antecedent formula is traceable to any of its ancestors
(including itself).
Important: ancestors of a given (occurrence of) assumption are
assigned one and the same variable in the assignment of deductive
terms to deductions.



Example. d : δ → q ⇒ q, where δ ≡ p ∨ (p → q).

δ → q ⇒ δ → q

δ → q ⇒ δ → q

p ⇒ p

p ⇒ δ

δ → q, p ⇒ q

δ → q ⇒ p → q

δ → q ⇒ δ

δ → q ⇒ q

Underlined occurrences of the assumption δ → q are ancestors of
the lowermost occurrence of this formula.



d : α, Γ⇒ β, and d ′ : ∆⇒ s : α.

x : α⇒ x : α
↖↑↗

x : α, z′ : Γ′ ⇒ t ′ : β′

↖↑↗
d : x : α, z : Γ⇒ t : β

y : ∆⇒ s : α
↖↑↗

z′, y : [Γ′,∆]⇒ t ′[x/s] : β′

↖↑↗
z, y : [Γ,∆]⇒ t[x/s] : β

The arrows ↖↑↗ show possible branching of the deduction at the
binary rules (&I ,→ E ).



Lemma
(a) All inference rules are preserved by substitution.
(b) Operations T ,D commute with substitution
(bT ) If a deduction e is the result of substituting a deduction
d ′ : ∆⇒ α for the assumption (occurrence) x : α into a
deduction d : x : α, Γ⇒ β, then:

T (e) ≡ T (d)[x/T (d ′)] (9)

(bD) The deduction D(tβ[xα/sα]) is the result of substituting a
deduction D(s) : ∆⇒ α for the assumption (occurrence) x : α
into a deduction
D(t) : x : α, Γ⇒ β.

Proof. Check the statement for each rule of NJp and apply
induction on the length of deduction. a



The →-conversion is now defined as follows:

u : α⇒ u : α
↖↑↗

z′ : Γ′, u : α⇒ t ′ : β′

↖↑↗
z : Γ, u : α⇒ t : β

z : Γ⇒ λu.t : α→ β y : ∆⇒ s : α

z, y : [Γ,∆]⇒ (λu.t)s : β conv

y : ∆⇒ u : α
↖↑↗

z′, y : [Γ′,∆]⇒ t ′[u/s] : β′

↖↑↗
z, y : [Γ,∆]⇒ t[u/s] : β

The result of conversion is obtained from the derivation of the
premise of → I in the original derivation by substitution. If there is
no dependence on the assumption α in the →-introduction, then
the result of conversion is just the given derivation of Γ⇒ β.



Curry-Howard Isomorphism

Terminology related to reduction and normalization is transferred
to natural deduction. In particular a deduction is normal if no
reduction is applicable to it.
In the case of &,→-derivations (that contain only
&,→-inferences) there is a perfect match between natural
deductions and deductive terms.



Theorem (Curry–Howard isomorphism between terms and
natural deductions)

(a) Every natural deduction d in NJp uniquely defines T (d) and
vice versa: Every term t uniquely defines a natural deduction D(t).
(b) Cuts in d uniquely correspond to redexes in T (d), and vice
versa.
(c) Every conversion in d uniquely corresponds to a conversion in
T (d), and reduction sequences for d uniquely correspond to
reduction sequences for T (d), and vice versa.
(d) The derivation d is normal iff the term T (d) is normal.



An Example
Let α :≡ ((p → q)→ p)→ p. Axϕ denotes here and below axiom
ϕ⇒ ϕ.

Ax p
p ⇒ α Ax α→ q
α→ q, p ⇒ q
α→ q ⇒ p → q

Ax p → q Ax (p → q)→ p

p → q, (p → q)→ p ⇒ p
p → q ⇒ α Ax α→ q

α→ q, p → q ⇒ q

α→ q ⇒ (p → q)→ q
→ I

α→ q ⇒ q → E

Let’s commpute the term assignment for this derivation.

zp

λw (p→q)→q.zp xα→q

xα→q(λw (p→q)→q.zp)

λzp.xα→q(λw (p→q)→q.zp)

vp→q u(p→q)→p

u(p→q)→p(vp→q)

λu(p→q)→p.u(p→q)→p(vp→q)xα→q

xα→q(λu(p→q)→p.u(p→q)→p(vp→q))

λvp→q.xα→q(λu(p→q)→p.u(p→q)→p(vp→q))

(λzp.xα→q(λw (p→q)→q.zp))(λvp→q.xα→q(λu(p→q)→p.u(p→q)→p(vp→q)))



In computation below we drop the superscript of variables to
simplify notation.
The pair of inferences → I , → E explicitly shown at the end of the
derivation constitutes a cut. Conversion of this cut leads to the
following deduction.

α→ q

(p → q)→ p

α→ q
p
α

q
p → q

p
α

q

The term
(λz .x(λw .z))(λv .x(λu.u(v)))

assigned to our derivation admits a conversion with the result

x(λw .λv .x(λu.u(v))).



Normalization for (&,→)-derivations

Let us measure complexity of a formula by its length, that is, the
number of occurrences of logical connectives: lth(p) = 0;

lth(φ&ψ) = lth(φ ∨ ψ) = lth(φ→ ψ) := lth(φ) + lth(ψ) + 1

The complexity or cutrank of a cut in a deduction is the length of
its cut formula. In the language of deductive terms:

cutrank((λxφ.tψ)uφ) = cutrank(pip(tφ, sψ)) := lth(φ) + lth(ψ) + 1

Let maxrank(t) be the maximal complexity of redeces in a term t
(and 0 if t is normal).



Lemma
(a) If t, s are deductive terms, t 6= xφ, and t[xφ/sφ] is a redex,
then either t is a redex (and cutrank(t) = cutrank(t[x/s])) or one
of the following conditions is satisfied:

t ≡ x(t ′)
s ≡ λy .s ′ or

t ≡ pix
s ≡ p(s0, s1) (10)

and cutrank(t[x/s]) = lth(φ).
(b) If tφ conv t ′ and cutrank(t) > cutrank(s) for every proper
subterm s of t, then maxrank(t) = cutrank(t) > maxrank(t ′).



Proof. Part (a) says that really new redeces in a term can arise
after a substitution only where an elimination rule was applied to a
variable substituted by an introduction term. Indeed it is easy to
see by inspection that every other non redex goes into a non redex.
A complete proof is done by induction on the construction of t.
To prove (b), note that:

maxrank(t) = cutrank(t) > maxrank(s) (11)

for every proper subterm s by the assumption, and consider
possible cases. If t ≡ pip(t0, t1) conv ti , then
maxrank(t) > maxrank(ti ) by (11). If
t ≡ (λxφ.t0)(s) conv t0[x/s] ≡ t ′, then by Part (a) every redex in
t ′ either has the same cutrank as some redex in t0 [which is less
than cutrank(t) by the assumption] or has cutrank
length(φ) < cutrank(t).

a



Theorem (normalization theorem)

For the (&,→)-fragment,
(a) Every deductive term t can be normalized.
(b) Every natural deduction d can be normalized.

Proof. Part (b) follows from Part (a) by the Curry–Howard
isomorphism. For Part (a) we use a main induction on
n = maxrank(t) with a subinduction on m, the number of redeces
of cutrank n.
The induction base is obvious for both inductions.



For the induction step on m, choose in t the rightmost redex ρ of
the cutrank n and convert it into its reductum ρ′. Since ρ is the
rightmost, it does not have proper subterms of cutrank n. By
Lemma 3(b) maxrank(ρ) = n > maxrank(ρ′). Write t ≡ t ′[y/ρ] to
indicate the unique occurrence of ρ in t: The variable y has
exactly one occurrence in t ′, term t ′ has exactly m − 1 redeces of
cutrank n, and

t ≡ t ′[yφ/ρφ] conv t ′[y/ρ′]

Applying Lemma 3(a) to t ′[y/ρ′], new redeces have cutranks equal
to lth(φ) < maxrank(ρ′) < n, and old redeces preserve their
cutranks. Since the redex ρ of cutrank n disappeared, the m
decreased by one. a



Exercises
Prove following reductions.

b : A⇒ B c : A⇒ C
A⇒ B&C &+ Ax B&C

B&C ⇒ B &−

A⇒ B
cut

red b

Let β := (B → C )&B,

c+ =

A,B ⇒ A&B c : A&B ⇒ C

A,B → C
cut

A⇒ (B → C )

Note cuts on A and β in the following derivation

Ax A
A&B ⇒ A c+ : A⇒ B → C

A&B ⇒ (B → C )
Ax A&B

A&B ⇒ B

A&B ⇒ β

Ax β

β ⇒ B

Ax β

β ⇒ B → C

β ⇒ C

A&B ⇒ C

and reduce it to c .



Consequences of Normalization

The principal premise of an elimination rule contains the principal
formula.
A subformula is positive in a formula if it is in the premise of an
even number (maybe 0) of implications.
It is strictly positive if it is not in the premise of any implication.
An occurrence is negative if it is not positive.
A sequent Γ⇒ α: &Γ→ α.
The main branch of a deduction ends in the final sequent and
containing principal premises of elimination rules with conclusions
in the main branch.



Theorem (properties of normal deductions)

Let d : Γ⇒ γ be a normal deduction in NJp.
(a) If d ends in an elimination rule, then the main branch contains
only elimination rules, begins with an axiom, and every sequent in
it is of the form Γ′ ⇒ α, where Γ′ ⊂ Γ and α is some formula.
(a1) In particular the axiom at the top of the main branch is of the
form α⇒ α where α ∈ Γ and every succedent in the main branch
is a strictly positive subformula of Γ.
(b) If Γ = ∅, then d ends in an introduction rule
(c) Every formula in d is a subformula of the endsequent.

α⇒ α. . .
α, Γ′ ⇒ g+. . .
α, Γ⇒ g



Proof. Part (a): If d ends in an elimination rule, then the main
branch does not contain an introduction rule:
Conclusion of such a rule would be a redex.
Now Part (a) is proved by induction on the number of rules in the
main branch using an observation: An antecedent of the principal
premise of an elimination rule is contained in the antecedent of the
conclusion.
Part (a1) immediately follows from (a) by induction on the length
of the branch.
Part (b): Otherwise the main branch of d cannot begin with an
axiom by (a).



Part (c). Induction on the derivation d . Induction base (axiom) is
obvious.
For induction step consider the last rule L of d . If L is an
introduction rule, apply IH since all introduction rule have the
subformula property.
If L is an elimination rule, the subformula property seems to be
lacking. However the principal formula is a (strictly positive)
subformula of Γ by (a1). Now apply IH. a



Pierce Formula is not Provable

Assume (p → q)→ p ` p.
Then the main branch begins with Ax (p → q)→ p followed by an
elimination rule, which can be only → E :

. . .
(p → q)→ p ⇒ (p → q) Ax (p → q)→ p

(p → q)→ p ⇒ p

But the minor premise (p → q)→ p ⇒ (p → q) is not even a
tautology: a contradiction.



η-reduction

For applications to category theory, we require a stronger reduction
relation than β-reduction. The η-conversion for deductive terms
corresponding to deductions in the language {&,→} is defined as
follows:

p(p0(t),p1(t)) conv t,

λx .(tx) conv t provided x 6∈ FV (t).

Corresponding conversions for deductions are as follows:

d : Γ⇒ φ0&φ1

Γ⇒ φ0

d : Γ⇒ φ0&φ1

Γ⇒ φ1

Γ⇒ φ0&φ1 conv d : Γ⇒ φ0&φ1

d : Γ⇒ α→ β α⇒ α

Γ, α⇒ β

Γ⇒ α→ β conv d : Γ⇒ α→ β

Hence the Curry–Howard isomorphism (Theorem 5.1) is preserved.



The βη-conversion is a combination of these conversions and
β-conversions (5),(6). The η-reduction, βη-reduction, and
corresponding normal forms |t|η, |t|βη are defined as for
β-conversion. These normal forms are unique, but we shall not
prove it here.

Lemma
(a) Every η-reduction sequence terminates.
(b) Every deductive term and every deduction has a βη-normal
form.

Proof. Part (a): Every η-conversion reduces the size of the term.
Part (b): A β-normal form |t|β exists by Theorem 5.2, and its
η-normal form [see Part (a)] is βη-normal, since η-conversions
preserve β-normal form. a



Equality of Derivations, Isomorphisms

Recall
b : α⇒ β g : β ⇒ γ

g [b] : α⇒ γ
cut

Cut is interpreted as a substitution.

Definition
Two derivations d , e : Γ→ γ are equal if they are βη-convertible
to one and the same derivation.
b : α⇒ β is an isomorphism iff there is a g such that

g [b] = Axα, b[g ] = Axβ

up to βη-conversion. In this case we say that α is isomorphic to β.



Prove the following isomorphisms.

1. A&B ∼ B&A

2. (A&B)→ C ∼ A→ (B → C )



Coherence Theorem

Consider NJp→-deductions of implicative formulas and
corresponding deductive terms modulo βη-conversion:
The d = d ′ stands for |d |βη = |d ′|βη and similarly for t = t ′.
A sequent is balanced if every propositional variable occurs there
at most twice and at most once with a given sign (positively or
negatively).
Example. p → (q → r)⇒ q → (p → r) and
(p → q)→ r ⇒ q → r are balanced,
but p, p → p ⇒ p is not.
We prove that a balanced sequent has unique deduction up to
βη-equality.
For non-balanced sequents that is false: The sequent
p, p → p ⇒ p has infinitely many different normal proofs:



p → p ⇒ p → p p ⇒ p

d1 : p, p → p ⇒ p

p → p ⇒ p → p dn : p, p → p ⇒ p

dn+1 : p, p → p ⇒ p

The dn can be described as a “component” of the unique proof of
the balanced sequent p1, p1 → p2, . . . , pn → pn+1 ⇒ pn+1

obtained by identifying all variables with p.



Note

Formulas of NJp→ as objects and the normal NJp-deductions as
morphisms form a →-part of a Cartesian closed category. Theorem
4 below shows that a morphism d : α⇒ β with a balanced α→ β
is unique. In fact Theorem 4 extends to the language {&,→} [A.
Babaev,S. Solovjev].
Abbreviation: (α1 . . . αn → β) := (α1 → . . .→ (αn → β) . . .).
The next Lemma shows that some of the redundant assumptions
are pruned by normalization.
Notation δ0, Γ⇒ α means that δ may be present or absent.



Lemma (pruning lemma)

(a) Assume that Σ, α are implicative formulas, propositional
variable q does not occur positively in Σ⇒ α, and a deduction
d : (∆→ q)0,Σ⇒ α is normal; then d : Σ⇒ α.
(b) If NJp→ ` (α1, . . . , αn → q), then one of αi contains q
positively.

Proof. For Part (a) use induction on d . Induction base and the
case when d ends in an introduction rule are obvious. Let d end in
an → E . Consider the main branch of d .



A ⇒ (α1 . . . αn → α)
. . .

[A, Γ1, . . . , Γi−1]⇒ (αi . . . αn → α) (∆→ q)′, Γi ⇒ αi

[A, (∆→ q)∗∗, Γ1, . . . , Γi ]⇒ (αi+1 . . . αn → α)
. . .

[A, (∆→ q)0, Γ1, . . . , Γn]⇒ α

Since q is not positive in α, the formula A is distinct from
(∆→ q). Since A occurs in the antecedent of the endsequent, q
is not negative in A, and hence it is not positive in αi , since
(αi , . . . , αn → α) is strictly positive in A. All other formulas in the
minor premises (∆→ q)′, Γi ⇒ αi have the same sign in the last
sequent. Hence IH is applicable to all minor premises, and
(∆→ q) is not present in the antecedent.



(b) If NJp→ ` (α1, . . . , αn → q), then one of αi contains q
positively.
Part (b): Assign q := 0, p := 1 for all p 6≡ q and compute by truth
tables. If all αi are of the form Π→ p, and hence true, then
α1, . . . , αn → q is false under our assignment. Thus it is not even
a tautology. Alternatively, apply (a). a



Theorem (coherence theorem)

(a) Let d , d ′ : ⇒ α for a balanced implicative formula α; then
d = d ′.
(b) Let [Γ, Γ′]⇒ α be balanced, d : Γ⇒ α, d ′ : Γ′ ⇒ α; then
d = d ′.

Proof. Part (a) follows from Part (b), which claims that Γ and Γ′

are pruned during normalization into one and the same set of
formulas. Since [Γ, Γ′] is balanced, each of Γ, Γ′ is balanced. To
prove Part (b), we apply induction on the length of [Γ, Γ′]⇒ α.
Assume d : Γ⇒ t : α, d : Γ′ ⇒ t ′ : α and recall that d = d ′ iff
t = t ′.



Case 1. α ≡ (β → γ); then
[(β, Γ), Γ′]⇒ γ ≡ [(β, Γ), (β, Γ′)]⇒ γ is balanced, and IH is
applicable to sequents obtained by applying → E -rule with the
minor premise β ⇒ β to d , d ′. This corresponds to applying a new
variable xβ to deductive terms T (d), T (d ′). We have
(T (d), xβ) = (T (d ′), xβ); hence
T (d) = λxβ(T (d), xβ) = λxβ(T (d ′), xβ) = T (d ′) and d = d ′.
Case 2. The α is a propositional variable; then each of the
βη-normal forms |d |, |d ′| is an axiom or ends in → E .
Case 2.1. The |d | is an axiom α⇒ α; then no member of [Γ, Γ′]
different from α contains α positively, and by the Lemma 5 (a), we
have |d ′| : α⇒ α; that is, d = d ′.



Case 2.2. Both |d | and |d ′| end in → E . Consider the main branch
of each of these deductions. Since α is strictly positive in the
axiom formula of the main branch, and [Γ, Γ′]⇒ α is balanced,
this axiom formula A ≡ α1 . . . αn → α is one and the same in |d |
and |d ′| and the number of → E -inferences in the main branch is
the same:

A ⇒ α1 . . . αn → α. . .
[A, Γ1, . . . , Γi−1]⇒ αi . . . αn → α di : Γi ⇒ αi

[A, Γ1, . . . , Γi ]⇒ αi+1 . . . αn → α
. . .

|d | : [A, Γ1, . . . , Γn]⇒ α

A ⇒ α1 . . . αn → α. . .
[A, Γ′1, . . . , Γ′i−1]⇒ αi . . . αn → α d ′i : Γ′i ⇒ αi

[A, Γ′1, . . . , Γ′i ]⇒ αi+1 . . . αn → α
. . .

|d ′| : [A, Γ′1, . . . , Γ′n]⇒ α



The only positive occurrence of variable α in

[A, Γ1, . . . , Γn]⇒ α

is the succedent, and the same is true for [A, Γ′1, . . . , Γ′n]⇒ α. In
particular α is not negative in Γ1, . . . , Γn, Γ′1, . . . , Γ

′
n and in A;

hence α is not positive in α1, . . . , αn. By the Lemma 5 (a) the
formula A is not a member of Γ1, . . . , Γn, Γ

′
1, . . . , Γ

′
n; hence each of

[Γi , Γ
′
i ]⇒ αi is balanced. Indeed compare the following:

[Γi , Γ
′
i ]⇒ αi and (α1, . . . , αi , . . . , αn → α), [Γ, Γ′]⇒ α.

Every occurrence in [Γi , Γ
′
i ] is uniquely matched with an occurrence

of the same sign in:

[Γ, Γ′] ≡ [(Γ1, . . . , Γi , . . . , Γn), (Γ′1, . . . , Γ
′
i , . . . , Γ

′
n)].

Every occurrence in αi is uniquely matched with an occurrence of
the same sign generated by an occurrence of αi in
A ≡ (α1 . . . , αi , . . . , αn → α). Applying IH to deductions of
Γi ⇒ Ai and Γ′i ⇒ αi yields di = d ′i ; hence |d | = |d ′| as required.
a



Elimination of I

We use the following isomorphisms:

α&I ∼ α

α→ I ∼ I

In more detail:

Ax α&I

p0xα&I : α&I ⇒ α
xα : α⇒ α I : α→ I
p(xα, I ) : α⇒ α&I

I : α→ I ⇒ I

I : I , α→ I

λxα.I : I ⇒ α→ I



Let’s check isomorphism relations.

I : (α→ I )⇒ I

I , α⇒ I

I ⇒ α→ I

α→ I ⇒ α→ I =
α⇒ I

λxα.I : ⇒ α→ I

1α→I =

I : α→ I , α⇒ I

λxα.I : α⇒ I ⇒ α→ I

α→ I ⇒ I I ⇒ α→ I
(α→ I )⇒ (α→ I ) = 1α→I

The opposite direction I ⇒ (α→ I )⇒ I is obvious since all maps
targeting I are equal to I.



Generally if there are isomorphisms

g : A→ A∗, h : B → B∗

we can define for every f : A→ B

f ∗ := hfg−1 : A∗
g−1

→ A
f→ B

h→ B∗.

Then for f , k : A→ B

f = k ↔ f ∗ = k∗

Indeed

f ∗ = k∗ ↔ hfg−1 = ghkg−1 ↔ hfg−1g = hkg−1g

↔ hf = hk ↔ f = k.


