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Where we are

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
useful in syntax useful in semantics
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Where we are

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
useful in syntax useful in semantics

In some ways, the mathematics of transitions and observations
is less familiar than that of sets and operations.

Coalgebra is trying to be the general mathematics of transitions
and observations.
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Final Coalgebras: why and what?

Final coalgebras are like the most abstract collections of
“transitions” or “observations”.
I know that this is very vague,
and so perhaps the examples throughout this talk will help.

The main questions that this talk seeks to address are:
Given F , does the initial algebra exist?
Does the final coalgebra?
How can we get our hands on them?
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Given F , how can we get our hands on an initial
algebra for F?

Answer: generalize Kleene’s Theorem

Kleene’s Theorem
Let (A ,≤) be poset with a least element 0 and with the property
that every countable chain C ⊆ A has a least upper bound

∨
C.

Let F : A → A be monotone and ω-continuous.

Then there is a least µF such that F(µF) ≤ µF ,
and any such element is a least fixed point.
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Given F , how can we get our hands on an initial
algebra for F?

Answer: generalize Kleene’s Theorem

Kleene’s Theorem
Let (A ,≤) be poset with a least element 0 and with the property
that every countable chain C ⊆ A has a least upper bound

∨
C.

Let F : A → A be monotone and ω-continuous.

Then there is a least µF such that F(µF) ≤ µF ,
and any such element is a least fixed point.

Note that

0 ≤ F(0) ≤ F2(0) ≤ · · · ≤ Fn(0) ≤ · · ·

so we have a chain. Let µF =
∨
∞

n=0 Fn(0).
By continuity,

F(µF) = F(

∞∨
n=0

Fn(0)) =

∞∨
n=1

Fn(0) ≤ µF .

If Fx ≤ x, then we show by induction on n that Fn(0) ≤ x; hence
µF ≤ x as well.
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Given F , how can we get our hands on an initial
algebra for F?

Answer: generalize Kleene’s Theorem

Kleene’s Theorem
Let (A ,≤) be poset with a least element 0 and with the property
that every countable chain C ⊆ A has a least upper bound

∨
C.

Let F : A → A be monotone and ω-continuous.

Then there is a least µF such that F(µF) ≤ µF ,
and any such element is a least fixed point.

We still need to see that µF is also a fixed point.

As we know, F(µF) ≤ µF . So also FF(µF) ≤ F(µF).

Thus by what we have seen, µF ≤ F(µF).
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A

Category: a structure with
objects, morphisms, composition, and identity morphisms;
and some minimal requirements.
Example: sets and functions.
Example: a preorder (A ,≤) with a morphism from x to y iff
x ≤ y
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A

A � B: there are f : A → B and g : B → A
such that f · g = idB and g · f = idA .
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A

An initial object is an object 0 such that for every object A ,
there is a unique morphism !A : 0→ A .
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A

A functor F : A→A takes objects to objects
and morphisms to morphisms,
preserving identity morphisms and composition.
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A

An F-algebra is a pair (A ,a), where A is an object and
a : FA → A .
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The category-theoretic generalization
“Preorders are the poor person’s category”

order-theoretic concept category-theoretic generalization
preorder (A ,≤) category A
x ≤ y and y ≤ x A and B are isomorphic objects
least element 0 initial object 0
monotone F : A → A functor F : A→A

pre-fixed point: Fx ≤ x F-algebra: f : FA → A
countable chain functor from (ω,≤) to A
F is ω-continuous F preserves ω-colimits
least pre-fixed point: Fx ≤ x initial F-algebra: f : FA → A

I don’t want to define colimits in general.
The initial sequence of F is

0 ! // F0
F! // F20 · · · Fn0

Fn! // Fn+10 · · ·
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Limits and Colimits: the general idea

This is a diagram.
A

B
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Limits and Colimits: the general idea

A limit is an object A × B together with morphisms πA and πB .

A

A × B

πA

==zzzzzzzzzzzzzzz

πB

!!DDDDDDDDDDDDDDDD

B
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Limits and Colimits: the general idea

A limit is an object A × B together with morphisms πA and πB
subject to the following requirement:

Given any C, f , and g

A

C

f

88pppppppppppppppppppppppp

g

''NNNNNNNNNNNNNNNNNNNNNNNN

B
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Limits and Colimits: the general idea

A limit is an object A × B together with morphisms πA and πB
subject to the following requirement:

Given any C, f , and g

A

C

f

66mmmmmmmmmmmmmmmmmmmmmmmmmmmmm

g

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ
〈f ,g〉 // A × B

πA

==zzzzzzzzzzzzzzzz

πB

!!DDDDDDDDDDDDDDDD

B

there is a unique 〈f ,g〉 making the triangles commute.
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Limits and Colimits: the general idea

This is the same diagram again.

A

B
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Limits and Colimits: the general idea

A colimit is an object A + B together with morphisms iA and iB

A

iA

!!DDDDDDDDDDDDDDDD

A + B

B

iB

==zzzzzzzzzzzzzzzz
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Limits and Colimits: the general idea

A colimit is an object A + B together with morphisms iA and iB
subject to the following requirement:

Given any C, f , and g

A

f

''NNNNNNNNNNNNNNNNNNNNNNNN

C

B

g

77pppppppppppppppppppppppp
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Limits and Colimits: the general idea

A colimit is an object A + B together with morphisms iA and iB
subject to the following requirement:

Given any C, f , and g

A

iA

!!DDDDDDDDDDDDDDDD

f

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

A + B
[f ,g] // C

B

iB

==zzzzzzzzzzzzzzzz

g

66lllllllllllllllllllllllllllll

there is a unique [f ,g] making the triangles commute.
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Limits and Colimits: the general idea

In the category of Sets, if we start with the diagram
we always can find the limit:
It’s the product with the usual projections.

And we can always find the colimit:
the disjoint union
with the usual injections.

Actually, if we start with any diagram whatsoever,
we can again find a limit and a colimit
(when we generalize the definitions appropriately).
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Cocones and colimits of the initial sequence

The initial sequence of F is

0 ! // F0
F! // F20 · · · Fn0

Fn! // Fn+10 · · ·
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Cocones and colimits of the initial sequence

A cocone over the initial sequence is an object A of A and
a family of morphisms an : Fn0→ A such that an = an+1 · Fn!
for all n:

0 ! // F0
F! // F20 · · · Fn0

an

��

Fn! // Fn+10

an+1
zzvvvvvvvvv

· · ·

A
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Cocones and colimits of the initial sequence
A colimit of the initial sequence is
a cocone over it (L , ln : Fn1→ L)

0 ! // F0
F! // F20 · · · Fn0

ln
��

Fn! // Fn+10

ln+1zzvvvvvvvvvv
· · ·

L

with the universal property that if we have any cocone

0 ! // F0
F! // F20 · · · Fn0

ln
��

an

  

Fn! // Fn+10

ln+1zzvvvvvvvvvv

an+1

rr

· · ·

L

f
��

A

(A ,an : Fn1→ A)

then there is a unique factorizing morphism
f : L → A such that for all n, an = f · ln.
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Preserving the colimit

In place of ω-continuity, we have the condition that
F preserves colimits.
In our setting, this means that if we take a colimit

0 ! // F0
F! // F20 · · · Fn0

ln
��

Fn! // Fn+10

ln+1zzvvvvvvvvvv
· · ·

L

and apply F throughout, we get another colimit

F0
F! // F20

F! // F30 · · · Fn+10

Fln
��

Fn+1! // Fn+20

Fln+1yytttttttttt
· · ·

FL
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m : FL → L
Not every F preserves colimits.

But let’s assume that we are working with one that does
preserve
the colimit of the initial sequence.

We just saw the colimit cocone

F0
F! // F20

F! // F30 · · · Fn+10

Fln
��

Fn+1! // Fn+20

Fln+1yytttttttttt
· · ·

FL

and we of course have a similar cocone to L

forget 0 F0
F! // F20 · · · Fn0

ln
��

Fn! // Fn+10

ln+1zzvvvvvvvvvv
· · ·

L

So we get a unique m : FL → L so that for all n, ln = m · Fln
Now we have an F-algebra (L ,m : FL → L).
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A generalization of Kleene’s Theorem

Kleene’s Theorem
Let (A ,≤) be poset with a least element 0 and with the property
that every countable chain C ⊆ A has a least upper bound

∨
C.

Let F : A → A be monotone and ω-continuous.

Let µF =
∨

Fn(0).
Then µF is the least fixed point of F .

Adámek 1974
Let A be a category with initial object 0
and with the property that every ω-chain in A has a colimit.

Let F : A→A preserve ω-colimits,

let µF be the colimit of the initial sequence of F , and let
m : F(µF)→ F be the factorizing morphism.

Then (µF ,m) is an initial F-algebra.
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Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .
We get a cocone as follows:

0 ! // F0
F! // F20 · · · Fn0

Fn! // Fn+10 · · ·

A
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Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .

0 ! //

a0=!
++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX F0

F! // F20 · · · Fn0
Fn! // Fn+10 · · ·

A
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Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .

0 ! //

a0

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX F0
F! //

a1=a·Fa0

**VVVVVVVVVVVVVVVVVVVVVVVVV F20 · · · Fn0
Fn! // Fn+10 · · ·

A

a0 : 0→ A ,

F0
Fa0 // FA

a // A
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Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .

0 ! //

a0

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX F0
F! //

a1

**VVVVVVVVVVVVVVVVVVVVVVVVV F20 · · · Fn0

an

��

Fn! // Fn+10

an+1=a·Fanzzvvvvvvvvv
· · ·

A

an : Fn0→ A ,

F(Fn0)
Fan // FA

a // A

11/53



Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .
With this cocone, we get a† : L → A such that for all n,

Fn0
ln

}}{{{{{{{{ an

!!CCCCCCCC

L
a†

// A

We’ll show that this property of a† is also shared by a ·Fa† ·m−1.
That is, we’ll show that for all n, the diagram below commutes:

Fn0
ln

||yyyyyyyy
an

""EEEEEEEE

L

m−1

��

A

FL
Fa†

// FA

a

OO
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Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .
We have a† : L → A such that for all n,

Fn0
ln

}}{{{{{{{{ an

!!CCCCCCCC

L
a†

// A

We’ll show by induction on n that the diagram below commutes:

Fn0

Fln−1
�������

���������
Fan−1

3333333

��3
333333

ln

||yyyyyyyy
an

""EEEEEEEE

L

m−1

��

A

FL
Fa†

// FA

a

OO

For n = 0 it’s trivial. For n > 0 we use the preceding definitions.
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Initiality of (L ,m)

Let (A ,a) be any F-algebra, so a : FA → A .
We have a† : L → A so that

a† = a · Fa† ·m−1

That is,
a† ·m = a · Fa†

L
a† // A

FL

m

OO

Fa†
// FA

a

OO

So a† is an algebra morphism.
The uniqueness of a† is a similar argument.

11/53



Applications

We have already seen examples with three functors
F : Set→ Set:

initial algebra
FX = 1 + (X × X) finite binary trees
FX = PfinX hereditarily finite sets
FX = 1 + X natural numbers
FX = 1 + Bag(X) unordered finitely-branching

trees
FX = Pctbl(X) countably-branching

well-founded trees

Adámek’s Theorem is not the only way to get an initial algebra,
but it is the most common way.
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An existence theorem for final coalgebras

Adámek 1974
Let A be a category with initial object 0
and with the property that every ω-chain in A has a colimit.

Let F : A→A preserve ω-colimits,

let µF be the colimit of the initial sequence of F , and let
m : F(µF)→ F be the factorizing morphism.

Then (µF ,m) is an initial F-algebra.

Barr 1993
Let A be a category with final object 1
and with the property that every ωop-chain in A has a limit.

Let F : A→A preserve ωop-limits,

let νF be the limit of the final sequence of F , and let
m : F → F(νF) be the factorizing morphism.

Then (νF ,m) is a final F-coalgebra.
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The initial sequence and the final sequence

The initial sequence of an endofunctor F is

0 ! // F0
F! // F20 · · · Fn0

Fn! // Fn+10 · · ·

The final sequence goes the other way

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

and it also starts with the final object.
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Example: streams over 2 = {0,1}

Here our functor is FX = 2 × X .

1 is any one point set, say {∗}.

So F1 = 2 × 1 = {(0, ∗), (1, ∗)}.

F21 = 2 × F1 = {(0, (0, ∗)), (0, (1, ∗)), (1, (0, ∗)), (1, (1, ∗))}.

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

There are several natural descriptions of the limit.
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Example: streams over 2 = {0,1}

Here our functor is FX = 2 × X .

1 is any one point set, say {∗}.

So F1 = {0,1}.

F21 = {0,1]2}. The map F! drops the last element.

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO
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Example: streams over 2 = {0,1}

Here our functor is FX = 2 × X .

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

From a general construction, it is the set L of functions f
such that for all n, f(n) ∈ Fn1, and

Fn!(f(n + 1)) = f(n).

Then the cone maps ln : L → Fn1 are given by ln(f) = f(n).
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Example: streams over 2 = {0,1}

Here our functor is FX = 2 × X .

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

This amounts to taking the infinite sequences of 0s and 1s,
with ln : L → {0,1}n

taking a sequence to its first n terms.
In this case, m : L → 2 × L is the obvious 〈head, tail〉.
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Example: streams over 2 = {0,1}

Here our functor is FX = 2 × X .

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

Another way, special to this F :
take L to be the set 2N

of functions from natural numbers to 2.
ln : L → Fn1 is f 7→ (f(0), (f(1), (f(2), . . . f(n))))).

The coalgebra structure m : L → 2 × L is a little easier:
m(f) = (f(0),n 7→ f(n + 1)).
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Let’s try to understand how this works for a given
coalgebra

Suppose we are given ξ : X → 2 × X , say X = {x , y , z}

ξ(x) = 〈0, y〉
ξ(y) = 〈0, z〉
ξ(z) = 〈1, x〉

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

X

f0

OO

No choice here: 1 is a final object.
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Let’s try to understand how this works for a given
coalgebra

Suppose we are given ξ : X → 2 × X , say X = {x , y , z}

ξ(x) = 〈0, y〉
ξ(y) = 〈0, z〉
ξ(z) = 〈1, x〉

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

X

f0

OO

f1=Ff0·ξ

FF���������������

f1(x) = 0, f1(y) = 0, f1(z) = 1.
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Let’s try to understand how this works for a given
coalgebra

Suppose we are given ξ : X → 2 × X , say X = {x , y , z}

ξ(x) = 〈0, y〉
ξ(y) = 〈0, z〉
ξ(z) = 〈1, x〉

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

X

f0

OO

f1

FF���������������

f2=Ff1·ξ

=={{{{{{{{{{{{{{{{{{{

f2(x) = 00, f2(y) = 01, f2(z) = 10.
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Let’s try to understand how this works for a given
coalgebra

Suppose we are given ξ : X → 2 × X , say X = {x , y , z}

ξ(x) = 〈0, y〉
ξ(y) = 〈0, z〉
ξ(z) = 〈1, x〉

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

L

ln

OO

X

f0

OO

f1

FF���������������

f2

=={{{{{{{{{{{{{{{{{{{ f

22ffffffffffffffffffffffffffffffffff

f(x) = 001001001 · · · , f(y) = 01001001 · · · , f(z) = 100100 · · · .
Note that f is the coalgebra morphism from (X , ξ) to (L ,m).
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Where does the theorem apply?

Finitary Iteration
Let A be a category with final object 1
and with the property that every ωop-chain in A has a limit.

Let F : A→A preserve ωop-limits,
and consider the final ωop-chain of F :

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

Let νF be its limit, and let m : F → F(νF) be the factorizing
morphism.

Then (νF ,m) is a final F-coalgebra.

We don’t really need all limits, only the one shown.
And this is the only limit we need F to preserve.
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Where does the theorem apply?

Finitary iteration gives final coalgebras for all functors on Set
built from

I the identity functor
I constant functors
I the discrete measure functor D(X).

and using
I +, ×, FA for fixed sets A
I composition

But it doesn’t work for Pfin or its relatives Pκ.
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Where does the theorem apply?

Finitary iteration gives final coalgebras for all functors on
compact Hausdorff spaces built from

I the identity functor
I constant functors
I the Vietoris functor V.

V(X) is the hyperspace of X ,
the set of compact subsets of X , with a certain topology.
For f : X → Y and A ∈ VX ,

(Vf)A = f [A ].

I the Borel measure functor B. For f : X → Y and A ∈ VX ,

((Bf)µ)A = µ(f−1(A))

and using
I +, ×
I composition
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Where does the theorem apply?

Finitary iteration gives final coalgebras for all functors on MS
1-bounded metric spaces and non-expanding maps,
built from
I the identity functor
I constant functors
I εPk , the scaled version of the closed set functor Pk ,

using the Hausdorff distance

d(s, t) = max{sup
x∈s

inf
y∈t

d(x , y), sup
x∈s

inf
y∈t

d(x , y)}.

The distance from ∅ to any other closed set is 1.
ε < 1 scales distances.

I using +, ×, and composition.

van Breugel: Pk without scaling has no final coalgebra
on MS.
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Where does the theorem apply?

Finitary iteration gives final coalgebras for all functors on CMS
1-bounded complete metric spaces and non-expanding maps,
which are locally weakly contracting:
for f : X → X ,

d(Ff , idFX ) < εd(f , idX ) for some ε < 1

America, Rutten: Assume F∅ , ∅.
The inverse of an initial algebra of F is a final
coalgebra of F .
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Where does the theorem apply?

Finitary iteration gives final coalgebras for all functors on CMS
1-bounded complete metric spaces and non-expanding maps,
which are locally weakly contracting:
for f : X → X ,

d(Ff , idFX ) < εd(f , idX ) for some ε < 1

America, Rutten: Assume F∅ , ∅.
The inverse of an initial algebra of F is a final
coalgebra of F .

Example: final coalgebra of FX = 1 + 1
2(X × X)

is finite and infinite binary trees with the usual metric
and evident structure.
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Where does the theorem apply?
Finitary iteration gives final coalgebras for all functors on CMS
1-bounded complete metric spaces and non-expanding maps,
which are locally weakly contracting:
for f : X → X ,

d(Ff , idFX ) < εd(f , idX ) for some ε < 1

America, Rutten: Assume F∅ , ∅.
The inverse of an initial algebra of F is a final
coalgebra of F .

den Hartog and de Vink 2002: Scaled versions of the
functor giving compactly supported Borel measures
are locally contracting.
(at least in the case of ultrametric spaces).

Note that this category does not have limits in general.
Adámek and Reiterman 1994:
A version of this holds for categories enriched over CMS, too.
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Where does the theorem apply?

On KMS, the compact metric spaces and non-expanding maps,
again with functors which are locally weakly contracting:
for f : X → X ,

d(Ff , idFX ) < εd(f , idX ) for some ε < 1

Alessi, Baldan, Bellé 1995: Assume F∅ , ∅.
The inverse of an initial algebra of F is a final
coalgebra of F .
and F has a unique fixed point.
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Iteration in CPO⊥-enriched categories

A CPO⊥ is a complete partial order with ⊥.

A is CPO⊥-enriched if its homsets A(X ,Y)
carry the structure of a CPO with ⊥
and composition is strict (preserves the least element) and
continuous (preserves ω-joins) in both variables.

F : A→A is locally continuous if F
⊔

fn =
⊔

Ffn
for all ω-chains fn ∈ A(X ,Y).
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Iteration in CPO⊥-enriched categories

A CPO⊥ is a complete partial order with ⊥.

A is CPO⊥-enriched if its homsets A(X ,Y)
carry the structure of a CPO with ⊥
and composition is strict (preserves the least element) and
continuous (preserves ω-joins) in both variables.

F : A→A is locally continuous if F
⊔

fn =
⊔

Ffn
for all ω-chains fn ∈ A(X ,Y).

Theorem (Adamek, based on Smyth and Plotkin 1982)

Every locally continuous F : A→A has a canonical fixed point:
there is an initial algebra and it is the inverse of a final
coalgebra.

This result is at the core of Dana Scott’s construction of

D � [D → D]

giving a model of the lambda calculus.
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Where does the theorem apply?

SB = standard Borel spaces,
measurable spaces which use the Borel subsets of a Polish
space

∆ : SB→ SB takes M to the set of its probability measures with
σ-algebra generated by

{Bp(E) | p ∈ [0,1],E ∈ Σ},

where
Bp(E) = {µ ∈ ∆(M) | µ(E) ≥ p}.
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Where does the theorem apply?

SB = standard Borel spaces,
measurable spaces which use the Borel subsets of a Polish
space

Kolmogorov Consistency Theorem
Let

X0 X1
f0oo X2

f1oo · · · Xn Xn+1
fnoo · · ·

be an ωop-chain in SB, and assume in addition that each fn is
surjective. Let X = lim Xn, and let πn : X → Xn be the
projection. Let µn ∈ ∆Xn be Borel measures such that
∆fn(µn+1) = µn for all n. Then there is a unique µ ∈ ∆X so that
for all n, ∆πn(µ) = µn.

Thus ∆ : SB→ SB has a final coalgebra, as does a functor like

FX = ∆(X × [0,1])
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What about ∆ : Meas→ Meas?

Viglizzo 2005
The functor ∆ : Meas→ Meas does not preserve limits of
ωop-chains.
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What about ∆ : Meas→ Meas?

Viglizzo 2005
The functor ∆ : Meas→ Meas does not preserve limits of
ωop-chains.

LM and Viglizzo 2006
Every functor F : Meas→ Meas built from

∆ : Meas→ Meas

and the usual stuff has a final coalgebra.

The proof used a version of probabilistic modal logic,
using the set of all theories of all points in all spaces,
and also using the π-λ Theorem of measure theory.
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But the method does not always work!

Consider Pfin on Set, and the terminal sequence:

1 Pfin1!oo P
2
fin1

Pfin!
oo · · · P

n
fin1 P

n+1
fin 1

P
n
fin!
oo · · ·

It happens that m : FL → L is not surjective.
[Worrell 2005]
So m cannot be part of a final coalgebra structure.

Lambek’s Lemma
The structure morphisms of initial algebras and final coalgebras
are always isomorphisms.
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Let’s think about coalgebras of Pfin

These are finitely branching graphs, suitably re-packaged:

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

is a picture of the coalgebra (G,e), with G = {1,2a,2b , . . . ,3c}

e(1) = {2b ,3b ,2c}
e(2a) = {2c,3a}
e(2b) = {2a,3b}
e(2c) = {2b ,3c}

e(3a) = ∅

e(3b) = ∅

e(3c) = ∅

e(3d) = ∅
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Caution

The coalgebra morphisms in this case are not
the usual graph morphisms
(edge preserving maps).

They are rather the “p-morphisms” of modal logic,
done without atomic sentences:

ϕ : G → H would be a morphism if for all g ∈ G,

{ϕ(g′) : g → g′ in G} = {h : ϕ(g)→ h in H}.

In words, ϕ preserves sets of children.
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Bisimulations on graphs

Let (G,→) be a graph.
A relation R on G is a bisimulation iff the following holds:
whenever xRy,

(zig) If x → x′, then there is some y → y′ such that x′Ry′.
(zag) If y → y′, then there is some x → x′ such that x′Ry′.
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Example

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

The largest bisimulation on our graph G is the relation that
relates 1 to itself,
all 2-points to all 2-points,
and all 3-points to all 3-points.

Note that this is an equivalence relation: reflexive, symmetric,
and transitive.
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Review of the syntax/semantics of modal logic

The modal sentences are the smallest collection containing a
constant true and closed under the boolean ¬, ∧, and ∨
and a unary modal operator �.
That is, the modal sentences are the initial algebra of a functor
related to the signature HΣmodal , where Σmodal contains true, ¬,
∧, �.
Given a P-coalgebra (X ,e), we define x |= ϕ, by recursion on
L as follows:

x |= true always
x |= false never
x |= ¬ϕ iff it is not the case that x |= ϕ
x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ
x |= �ϕ iff for all y ∈ e(x), y |= ϕ
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Modal logic: examples

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

3a |= true ∧ �false
2b |= (♦�false) ∧ ♦♦true.

The theory of a point is the set of modal sentences it satisfies.
Bisimilar points have the same theory (but not conversely)
But in finitely branching graphs, points with the same theory are
bisimilar.
(the Hennessey-Milner property).
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Finitary functors andWorrell’s Theorem

A functor F : Set→ Set is finitary if
any of the following hold:

1 There is a (finitary) signature Σ and a natural
transformation η : HΣ → F
with ηX surjective for non-empty X .

2 For all X , and all x ∈ FX ,
there is a finite set S and some f : S → X
and some y ∈ FS such that x = Ff(y).

3 Etc. (lots of others)

Every functor built from Pfin, D, and the signature functors
using composition is finitary.
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the ∇ notation

For any set S of modal sentences, let us write ∇S for

�
∨
ϕ∈S

ϕ ∧
∧
ϕ∈S

♦ϕ

So a point x satisfies ∇S if
I every ϕ in S is satisfied by some child of x.
I every child of x satisfies some sentence in S.

Now write

1 = {true}
F1 = {∇(a) : a ⊆ 1} = {∇∅,∇{true}}
F2 = {∇(a) : a ⊆ F1}

Fn+1 = {∇(a) : a ⊆ Fn}

Fn+1 ≈ PFn
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Facts on the formulas in Fn

Fine 1974
For all n,
every point in every graph satisfies a unique ϕ ∈ Fn.

If ϕ,ψ ∈ Fn, then either |= ϕ↔ ψ, or |= ϕ→ ¬ψ.

For all ϕ ∈ Fn+1, there is a unique ϕ′ ∈ Fn such that
|= ϕ→ ϕ′.

Every ordinary modal sentence of modal height n
is equivalent to
some disjunction of elements of Fn.
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The final sequence of Pfin, reworked

When dealing with F = Pfin, we plan to replace

1 F1
!oo F21

F!oo · · · Fn1 Fn+11
Fn!oo · · ·

by

1 F1
!oo F2oo · · · Fn Fn+1oo · · ·

The maps take a sentence in Fn+1 to the sentence in Fn which
it implies.
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The maps into the limit are observations

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

1 F1oo F2oo · · · Fn Fn+1oo · · ·

L

ln

OO

G

f0

OO

1 = {true}, so f1(g) = true for all g ∈ G.
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The maps into the limit are observations

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

1 F1
!oo F2oo · · · Fn Fn+1oo · · ·

L

ln

OO

G

f0

OO

f1=Ff0·ξ

GG���������������

f1(3a) = ∇∅ = f1(3b) = f1(3c) = f1(3d).
f1(1) = ∇{true} = f1(2a) = f1(2b) = f1(2c).
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The maps into the limit are observations

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

1 F1
!oo F2oo · · · Fn Fn+1oo · · ·

L

ln

OO

G

f0

OO

f1

GG���������������

f2=Ff1·ξ

>>}}}}}}}}}}}}}}}}}}}

f2(1) = ∇{f1(2b), f1(2c), f1(3b)} = ∇{∇{true}}.
In general, f2(g) is the most informative modal sentence of
height 2 that g satisfies.
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The maps into the limit are observations

3b

3a 2aoo

@A
//

2boo

=={{{{{{{{
1oo

OO

��

// 3c 3d

2c

=={{{{{{{{

aaCCCCCCCC

1 F1
!oo F2oo · · · Fn Fn+1oo · · ·

L

ln

OO

G

f0

OO

f1

GG���������������

f2

>>}}}}}}}}}}}}}}}}}}} f

33ffffffffffffffffffffffffffffffff

f(1) ≈ the theory of the point 1 in the graph.

Let’s check that the set of points in L is the set of worlds in
the canonical model of the modal logic K .

And f is the theory map.
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Every modal theory gives an element of L

Let T be a maximal consistent set in K .
By completeness, there is a model (W ,→) and a point w ∈W
such that

ϕ ∈ T iff w |= ϕ in W .

Let xT be the sequence so that

xT (n) = the normal form of height n satisfied by w in W .

Then xT ∈ P
ω
fin1.

In the other direction, let x ∈ L , and consider

{ϕ : for some n, ` ln(x)→ ϕ}.

This will be maximal consistent, by the properties of the normal
forms.
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The limit L is too big to be the final coalgebra

The limit L comes with m : L → FL .

In the case F = Pfin, m will not be surjective.
And so by Lambek’s Lemma, (L ,m : L → FL) will not be a final
coalgebra.

In fact, the theory maps f : G → L will not in general be
coalgebra morphisms.

39/53



The final coalgebra of Pfin

It is the set of all theories of all points in all coalgebras.
This means: the theories of all points in finitely branching
models.
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The final coalgebra of Pfin

It is the set of all theories of all points in all coalgebras.
This means: the theories of all points in finitely branching
models.
So it would exclude the theory of the top point in

•

wwoooooooooooooo

��~~~~~~~

�� ((QQQQQQQQQQQQQQQ

• •

��

•

��

· · · •

��

· · ·

• •

��

· · · •

��

· · ·

• · · · •

��

· · ·

· · · ...

The structure map in the final coalgebra is familiar from modal
logic:
take a theory T to the set of theories U such that
if �ϕ ∈ T , then ϕ ∈ U.
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Finitary functors andWorrell’s Theorem

For any functor F , we can consider the final sequence

1 F1
!oo F21oo · · · Fn1 Fn+11oo · · ·

And in Set, we can always take the limit cone,
and we always get m : FL → L .

Worrell’s Theorem 2005
If F : Set→ Set is finitary, then m is one-to-one.
So if we march forward with

L FL
moo F2L

Fmoo · · · FnL Fn+1L
Fnmoo · · ·

we get a decreasing sequence of sets,
the intersection is the limit, and F does preserve it.
Indeed, this smaller limit is a final coalgebra.

That is , the final coalgebra of F is Fω+ω1.

41/53



A different construction

Another idea for Pfin is to take the disjoint union of all
coalgebras
and then take the quotient by some equivalence relation.

Before taking the quotient, we have pairs (G,g) such that
g ∈ G, and

(G,g)→ (H,h) iff G = H and g → h in G.

The equivalence notion is maximal bisimulation:

(G,g) ≡ (H,h)

if there is a bisimulation between G and H which relates g to h.

42/53



Summary of resuls on Pωfin1

It has many faces:
? the set of theories in K
? the Cauchy completion of HF
? the carrier of the final coalgebra of V on compact

Hausdorff spaces.
These were shown by Abramsky 2005.

The final coalgebra is smaller, and also has many faces:

? the theories of points in finitely-branching graphs.
? Pω+ω

fin 1, by Worell’s Theorem.
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Summary of resuls on Pωfin1

It has many faces:
? the set of theories in K
? the Cauchy completion of HF
? the carrier of the final coalgebra of V on compact

Hausdorff spaces.
These were shown by Abramsky 2005.

The final coalgebra is smaller, and also has many faces:
? the theories of points in finitely-branching graphs.
? Pω+ω

fin 1, by Worell’s Theorem.
All aspects of this development generalize.

Although final coalgebras are very interesting,
Fω1 is often also an interesting object!
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Still, there are matters I didn’t resolve.

Let BiP be the category of bi-pointed sets.
These are (X ,>,⊥) with >,⊥ ∈ X and > , ⊥.

F : BiP→ BiP takes the disjoint union of two copies of X ,

({0} × X) ∪ ({1} × X),

then identifies (0,>) with (1,⊥).

Come to my lecture tomorrow
to hear about the final coalgebra of this functor.
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Returning to Day 1

. .
.

5/6 1/6

5/6 1/6

5/6 1/6

5/6

5/6

1/6 1/6

The second is the quotient of the first
by the maximum coalgebraic bisimulation.

That is, we can generalize:

bisimulation
graphs

=
???

coalgebras of a functor F
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For that matter

We can generalize:

modal logic
graphs

=
???

coalgebras of a functor F

This subject of coalgebraic modal logic is one of the most
active areas of coalgebra.

For more on it, one should see papers of

Alexander Kurz
Dirk Pattinson
Lutz Schröder

A good portion of the papers get presented at an annual
conference,
Coalgebraic Methods in Computer Sciecne.
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The universe of sets

Consider the category A of classes.

(A class is like a set, but it could be “too big” to be a set.
For example, the class V of all sets is a set.

Classes can be taken to be formulas in the language of set
theory,
allowing sets as parameters.)

P : A→A gives the class of subsets of a given class.

Note that PV = V .
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The universe of sets

Work in ZF − Foundation
The Foundation Axiom (FA) is equivalent to the assertion that

(V , id : PV → V)

is an initial algebra of P.

The Anti-Foundation Axiom (AFA) is equivalent to the assertion
that

(V , id : V → PV)

is a final coalgebra of P.
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Continuous roulette

Take a roulette wheel labeled with points in [0,1].
Spin it successively, until the total of the spins is ≥ 1.

It might happen in 2 spins, or 3, or 6238.

What is the average number of spins that it
would take to get a total of > 1?

49/53



Continuous roulette

Let E(t) = the average number of spins that it
would take to get a total of > t .

So E(0) = 1.

How can we get a formula for E(t)?
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Continuous roulette

Fix a number t .

If we spin the wheel once, we get some number, say x.

If x > t , we’re done on the first spin.

If x ≤ t , we need to continue.
How many further spins are needed, on average?
For x ≤ t , we on average will need E(t − x).

We would want to take the probability of getting x, and then
multiply it by 1 + E(t − x).

But the probability of getting x exactly is 0, and
thus we integrate.
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Continuous roulette

E(t) =
∫ 1

t 1 dx +
∫ t

0 1 + E(t − x) dx

= 1 +
∫ t

0 E(t − x) dx

= 1 +
∫ t

0 E(u) du

(We made a substitution u = t − x.)

By the Fundamental Theorem of Calculus, E′(t) = E(t).

Combined with E(0) = 1, we see that

E(t) = et ,

and the answer to the original problem is e.
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The conceptual comparison chart
Filling out the details is my goal for coalgebra

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
least fixed point greatest fixed point
congruence relation bisimulation equivalence rel’n
equational logic modal logic
recursion: map out of corecursion: map into
an initial algebra a final coalgebra
Foundation Axiom Anti-Foundation Axiom
iterative conception of set coiterative conception of set
typical of syntactic objects typical of semantic spaces
bottom-up top-down
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Welcome to Logic

BEWARE OF CIRCULARITY!
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