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Then T = 1 + (T × T),
where 1 is an arbitrary singleton, and + is disjoint union.
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Recursion Principle for Finite Trees
For all sets X , all x ∈ X , all f : X × X → X ,
there is a unique ϕ : T → X
so that ϕ is

one-point tree 7→ x

t u

///////
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)))))) 7→ f(ϕ(t), ϕ(u))
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Binary trees
Let T be the set which starts out as
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• •
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Recall T = 1 + (T × T).

Recursion Principle for Finite Trees
For all sets X , all f : 1 + (X × X)→ X ,
there is a unique ϕ : T → X so that

1 + (T × T)
id //

1+(ϕ×ϕ)
��

T

ϕ

��
1 + (X × X)

f
// X

commutes, where (ϕ × ϕ)(t ,u) = (ϕ(t), ϕ(u)).
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Binary trees

If we only knew about the set operation

F(X) = X 7→ 1 + (X × X),

we could get our hands on T by taking
⋃

i F i(∅)

F1
∅ : •

F2
∅ : •,

• •
������

//////

F3
∅ : •,
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//////

, •

• •

������

///////

������

////// , •

• •

//////

�������

������

////// ,

• • • •

///////

�������

������

))))))

������

))))))

That is, T is the least fixed point of F on sets.
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Hereditarily finite sets

Let HF be the set which starts out as

∅ ∪ {∅} ∪ {∅, {∅}} ∪ {∅, {∅}, {∅, {∅}}, {{∅}}} ∪ · · ·

Note that every finite subset of HF is an element of HF .
(Usual notation is Vω.)
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Hereditarily finite sets

Let HF be the set which starts out as

∅ ∪ {∅} ∪ {∅, {∅}} ∪ {∅, {∅}, {∅, {∅}}, {{∅}}} ∪ · · ·

Note that every finite subset of HF is an element of HF .
(Usual notation is Vω.)
Then HF = Pfin(HF).
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Hereditarily finite sets

Let HF be the set which starts out as

∅ ∪ {∅} ∪ {∅, {∅}} ∪ {∅, {∅}, {∅, {∅}}, {{∅}}} ∪ · · ·

Note that every finite subset of HF is an element of HF .
(Usual notation is Vω.)

Recursion Principle for Hereditarily Finite Sets
For all sets X , all f : Pfin(X)→ X ,
there is a unique ϕ : HF → X so that

ϕ({a1, . . . ,an}) = f({ϕ(a1), . . . , ϕ(an)}).
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Hereditarily finite sets

Let HF be the set which starts out as

∅ ∪ {∅} ∪ {∅, {∅}} ∪ {∅, {∅}, {∅, {∅}}, {{∅}}} ∪ · · ·

Note that every finite subset of HF is an element of HF .
(Usual notation is Vω.)

Recursion Principle for Hereditarily Finite Sets
For all sets X , all f : Pfin(X)→ X ,
there is a unique ϕ : HF → X so that

Pfin(HF)
id //

Pfinϕ
��

HF

ϕ

��
Pfin(X)

f
// X

commutes, where Pfinϕ(A) = {ϕ(a) : a ∈ A }.
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Hereditarily finite sets

If we only knew about the set operation

Pfin(X),

we could get our hands on HF by taking
⋃

i P
i
fin(∅)

P
1
fin∅ : {∅}

P
2
fin∅ : {∅, {∅}}

P
3
fin∅ : {∅, {∅}, {∅, {∅}}, {{∅}}}

That is, HF is the least fixed point of Pfin on sets.
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The natural numbers

Let N be the set which starts out as

0 = ∅,1 + 0,1 + (1 + 0),1 + (1 + (1 + 0)), . . . ,

1 + X is the disjoint union of a singleton set and X .
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The natural numbers

Let N be the set which starts out as

0 = ∅,1 + 0,1 + (1 + 0),1 + (1 + (1 + 0)), . . . ,

1 + X is the disjoint union of a singleton set and X .
Then

N = 1 + N.

Or depending on how you “implement” disjoint unions,

N � 1 + N.
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The natural numbers

Let N be the set which starts out as

0 = ∅,1 + 0,1 + (1 + 0),1 + (1 + (1 + 0)), . . . ,

1 + X is the disjoint union of a singleton set and X .

Recursion Principle for N
For all sets X , all x ∈ X , all f : X → X ,
there is a unique ϕ : N → X so that

ϕ(0) = x
ϕ(n + 1) = f(ϕ(x))
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The natural numbers

Let N be the set which starts out as

0 = ∅,1 + 0,1 + (1 + 0),1 + (1 + (1 + 0)), . . . ,

1 + X is the disjoint union of a singleton set and X .

Recursion Principle for N
For all sets X , all x ∈ X , all f : X → X ,
there is a unique ϕ : N → X so that

1 + N t //

1+ϕ
��

N
ϕ

��
1 + X

f
// X

commutes, where, for all n ∈ N, (1 + ϕ)(n) = ϕ(n) inside 1 + X .
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The natural numbers

If we only knew about the set operation

F(X) = 1 + X

we could get our hands on N by taking
⋃

i F i(∅)

F1
∅ : 1 + ∅

F2
∅ : 1 + F1

∅

F3
∅ : 1 + F2

∅

That is, N is the least fixed point of X + 1 on sets.
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Recursion on N is tantamount to Initiality
This important observation is due to Lawvere

Recursion on N: For all sets A , all a ∈ A , and all f : A → A ,
there is a unique ϕ : N → A so that
ϕ(0) = a, and ϕ(n + 1) = f(ϕ(n)) for all n.

Initiality of N: For all (A ,a), there is a unique homomorphism
ϕ : (N, t)→ (A ,a):

1 + N � //

1+ϕ
��

N
ϕ

��
1 + A a

// A

These are equivalent in set theory without Infinity.

5/39



Generalizing

At this point, we want to generalize the three examples which
we have seen.

The basic ingredients are
I Initial objects in categories.
I Functors, especially functors F : Set→ Set.
I Algebras of functors.
I Initial algebras.

I will introduce these in an expansive way,
much more generally than we actually need for the
three examples which we have seen.

After this, we turn to other examples, and then to coalgebraic
variations on what we have seen.
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Categories

A category C consists of
1 objects c, d, . . .

The collection of objects might be a proper class.
2 For each two objects c and d, a collection of

morphisms f , g, . . ..
with emphdomain c and codomain d.
We write f : c → d to say that f is such a morphism.

3 identity morphisms ida for all objects.
4 a composition operation:

if f : a → b and g : b → c, then g · f : a → c.
subject to the requirements that
I Composition is associative.
I If f : a → b, then idb · f = f = f · ida .
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First example: the category Set

The objects of Set are sets (all of them).

A morphism from X to Y is a function from X to Y .

The identity morphism ida for a set a is the identity function on
a.

The composition operation of morphisms
is the one we know from sets.
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Second example: the category Pos of posets

The objects of Pos are posets (P,≤).
(That is, ≤ is reflexive, transitive, and anti-symmetric.)

A morphism from P to Q is a monotone function f from X to Y .
(If p ≤ p′ in P, then f(p) ≤ f(p′) in Q .

The identity morphism ida for a poset P is the identity function
on the underlying set P.

The composition operation of morphisms
is again the one we know from sets.
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Second example: the category Pos of posets

The objects of Pos are posets (P,≤).
(That is, ≤ is reflexive, transitive, and anti-symmetric.)

A morphism from P to Q is a monotone function f from X to Y .
(If p ≤ p′ in P, then f(p) ≤ f(p′) in Q .

The identity morphism ida for a poset P is the identity function
on the underlying set P.

The composition operation of morphisms
is again the one we know from sets.

The anti-symmetry plays no role,
and we might as well generalize to preorders
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Third example: every poset is itself a category

Let (P,≤) be a poset.

We consider P to be a poset by taking its elements as the
objects.

The morphisms f : p → q are just the pairs (p,q) with p ≤ q.

Unlike sets, between any two objects there is either 0 or 1
morphisms.

The morphism idp is (p,p).

(q, r) · (p,q) = (p, r).
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The categories MS and CMS

MS is the category of metric spaces (X ,d),
with d : X × X → [0,1] satisfying the metric properties:
I d(x , x) = 0
I If d(x , y) = 0, then x = y.
I d(x , y) = d(y , x).
I d(x , z) ≤ d(x , y) + d(y , z).

A morphisms from (X ,d) to (Y ,d′) is a non-expanding function
f : X → Y .
This means that

d′(f(x), f(y)) ≤ d(x , y)

The category CMS is the same, but we use complete metric
spaces.
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The category BiP of bi-pointed sets

Objects are (X ,>,⊥), where X is a set and > and ⊥
are elements of X .
We require ⊥ , >.

A morphism f : (X ,>,⊥)→ (Y ,>,⊥) is a function
f : X → Y such that
f(>) = > and f(⊥) = ⊥.

The rest of the structure is as in Set, or any other
concrete category.
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Initial objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.
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Initial objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

In Set, ∅ is initial.

Recall that the empty function is a function from ∅ to any set.
Also, there is no function from any non-empty set to ∅.
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Initial objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

In Pos, the empty poset is initial.

The same basically works for MS.
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Initial objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

In a poset P, an initial object would be a minimal element.

(This may or may not exist.)
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Initial objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

In BiP, the initial object is any object
based on a two-element set: ({>,⊥},>,⊥).

We often write 0 for an initial object.
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Variations on Set

Set,∅: the non-empty sets, as a
full subcategory of Set.
(This means that we use all morphisms in the big category.)

Setp: the pointed sets.

Objects: (X , x), where X is a set and x ∈ X .
Morphisms f : (X , x)→ (Y , y) is a function f : X → Y such that
f(x) = y.

Do these have initial objects?
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Functors

Let C and D be categories.
A functor from C to D consists of
I An object mapping a 7→ Fa, taking objects of C to objects

of D.
I A morphism mapping f 7→ Ff , taking morphisms of C to

morphisms of D.
such that
I If f : a → b, then Ff : Fa → Fb.
I Fida = idFa .
I F(f · g) = Ff · Fg.

A functor from C to itself is an endofunctor.
(In our terminology, an endofunctor is a “recipe for cooking”.
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FX = 1 + X as a functor Set→ Set

1 here is any one-element set, and to emphasize the
arbitrariness
one often writes it as {∗}.

+ is disjoint union, the categorical coproduct.

X X * FX

16/39



FX = 1 + X as a functor Set→ Set

1 here is any one-element set, and to emphasize the
arbitrariness
one often writes it as {∗}.

+ is disjoint union, the categorical coproduct.

X X * FX

Y Y * FY

f Ff

Ff is defined to preserve the new points.
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The power set endofunctor P : Set→ Set

For any set X , PX is the set of subsets of X .
P extends to an endofunctor, taking

f : X → Y

to
Pf : PX → PY

given by direct images: for a ⊆ X , Pf(a) = f [a] = {f(x) : x ∈ a}.

We similarly have functors such as the finite power set functor
Pfin.

17/39



Examples of F : Set→ Set which we will use later

I For any set A , FX = A × X .
If f : X → Y , then Ff : A × X → A × Y is

Ff(a, x) = (a, fx).

I F(X) = XA , where A is a fixed set.
(Here XA is the set of functions from A to X .)

If f : X → Y , then Ff : XA
→ YA is given by

Ff = g 7→ f · g.

That is,
Ff(g) = f · g.
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The discrete measure functorD

A discrete measure on a set A is a function m : A → [0,1] such
that

1 m has finite support: {a ∈ A |m(a) > 0} is finite.
2
∑

a∈A m(a) = 1.
D(A) is the set of discrete measures on A .
We make D into a functor by setting,
for f : A → B, Df(m)(b) = m(f−1(b));
this is

∑
{m(a) : f(a) = b}.
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The discrete measure functorD
A discrete measure on a set A is a function m : A → [0,1] such
that

1 m has finite support: {a ∈ A |m(a) > 0} is finite.
2
∑

a∈A m(a) = 1.
D(A) is the set of discrete measures on A .
We make D into a functor by setting,
for f : A → B, Df(m)(b) = m(f−1(b));
this is

∑
{m(a) : f(a) = b}.

Incidentally, this ∆ is a monad:
ηX : X → ∆XC is ηX (x) = δx (the Dirac δ):

ηX (x)(y) = 1 iff y = x, otherwise 0

µX : ∆∆X → ∆X is “mixing”:

µX (m)(x) =
∑

q∈∆(X)

m(q)(x)
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Other examples of functors and endofunctors

I upclosed : Pos→ Pos
taking a poset P to the set of upward closed subsets,
under ⊆.

If f : (P,≤)→ (Q ,≤), you might like to think about how Ff
should work.

I On a particular poset P, a functor F : P → P is the same
thing as a monotone function F : P → P.

In fact the monotonicity property of an endofunction
corresponds to the functoriality property F(f · g) = Ff · Fg
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A functor on BiP
Let (X ,>,⊥) be a bipointed set.
We define X ⊕ X to be
I two separate copies of X which I’ll write as X1 and X2.
I The ⊥ of X ⊕ X is the ⊥ of X1.
I The > of X ⊕ X is the > of X2.
I The > of X1 is identified with the ⊥ of X2.

(This is called the midpoint of X ⊕ X .)

X XX X7→>⊥ >⊥

identify > of left with ⊥ of right

We get a functor F : BiP→ BiP by

FX = X ⊕ X

If f : X → Y is a BiP morphism, then Ff : X ⊕ X → Y ⊕ Y
works in the obvious way, preserving the midpoint.
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Constant functors

Let d be an object of D.
We get F : C → D, the constant functor d by:
Fc = d,
Ff = idd .

The composition of functors is again a functor.
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Algebras for an endofunctor

Let A be a category, and let F : A→A be a functor.

An F-algebra is a pair (A ,a), where a : FA → A .

Technically, these are pairs.
a is called the structure of the algebra, and A the carrier.
Let (A ,a : FA → A) and (B ,b : FB → B) be algebras.

An F-algebra morphism is f : A → B in the same underlying
category A so that

FA
a //

Ff
��

A

f
��

FB b
// B

commutes.

So now we have a category of algebras for an endofunctor.
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Algebras for an endofunctor

Let A be a category, and let F : A→A be a functor.

An F-algebra is a pair (A ,a), where a : FA → A .

Technically, these are pairs.
a is called the structure of the algebra, and A the carrier.
An initial F-algebra is one with a unique morphism to any
algebra.

FA
a //

Fϕ
��

A
there is a unique morphism ϕ

��
FB

for all b
// B

23/39



An Initial Algebra for FX = 1 + X on Set

For FX = 1 + X on Set,

I Initial algebra is (N, ν), with N the set of natural numbers,
and ν : 1 + N → N given by

∗ 7→ 0
n 7→ n + 1

Initiality “is” recursion, the most important definition
principle for functions on numbers.
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Initiality at work: FX = 1 + X

Consider an algebra (A ,a : 1 + A → A), where A = {α, β, γ, δ},
and

a(∗) = γ
a(α) = β
a(β) = γ

a(γ) = δ
a(δ) = α

Query: What is the map h below?

1 + N ν //

Fh
��

N

h
��

1 + A a
// A
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Initiality at work: FX = 1 + X

Consider an algebra (A ,a : 1 + A → A), where A = {α, β, γ, δ},
and

a(∗) = γ
a(α) = β
a(β) = γ

a(γ) = δ
a(δ) = α

Query: What is the map h below?

1 + N ν //

Fh
��

N

h
��

1 + A a
// A

It is

0 7→ γ 1 7→ δ 2 7→ α 3 7→ β 4 7→ γ 5 7→ δ . . .

h is defined by recursion.
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Our other examples on Set
For FX = PfinX , we have an algebra

Pfin(HF)
id // HF

and then initiality is the recursion principle for HF .

Pfin(HF)
id //

Pfinϕ
��

HF

ϕ

��
Pfin(X)

f
// X

The commutativity of the diagram means that for s ∈ HF ,

ϕ(s) = {ϕ(x) : x ∈ s}.

For FX = 1 + (X × X), initial algebra is the set T of finite binary
trees.
Again, we can take the structure to be the identity.
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In a poset category

Recall that an endofunctor on a poset (P,≤)
is a monotone function f : P → P.

An algebra for f is some p such that f(p) ≤ p.

An initial algebra for f is some p such that
I f(p) ≤ p.
I If f(q) ≤ q, then p ≤ q.

These are least fixed points of the functor.
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F(X) = X × X on Set

Initial algebra is the empty set ∅ × ∅ = ∅
together with the empty function F∅ → ∅.

Actually, if F0 = 0, then (0, id0) is an initial algebra.
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Uniqueness of initial algebras

In any category C, objects a and b are isomorphic if
there are

f : a → b
g : b → a

such that g · f = ida , and f · g = idb .

Isomorphic objects have the same categorical properties.
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Uniqueness of initial algebras

In any category C, objects a and b are isomorphic if
there are

f : a → b
g : b → a

such that g · f = ida , and f · g = idb .

Isomorphic objects have the same categorical properties.

Proposition
If a is an initial object of C, then the only f : a → a is ida .

Therefore:
If a and b are initial objects of C, then they are isomorphic.
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Uniqueness of initial algebras

In any category C, objects a and b are isomorphic if
there are

f : a → b
g : b → a

such that g · f = ida , and f · g = idb .

Isomorphic objects have the same categorical properties.

Proposition
If (a, f) and (b ,g) are initial algebras of F : C → C,
then these algebras are isomorphic (as algebras),
and in particular a and b are isomorphic as objects.
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Let’s study FX = 1 + X on another category

MS is category of metric spaces (X ,d) with distances ≤ 1,
and non-expanding maps:

d(fx , fy) ≤ d(x , y)

FX = 1 + X is the disjoint union of X with a one-point space,
with distance 1 to the new point.

Initial algebra is the discrete metric space on the natural
numbers.
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Let’s study FX = 1 + 1
2X on MS

1
2 X is the space X , but with distances scaled by 1

2 .

(X ,d) (X , 1
2d)(X ,d) *7→

d(∗, x) = 1 for x ∈ X

Initial algebra of this F turns out to be

((Nat,d), ϕ),

where Nat is the set of natural numbers, and for n , m,

d(n,m) = 2−min(n,m).

The structure ϕ : 1 + 1
2(Nat,d)→ (Nat,d) is the same as for N.
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1 + X and 1 + 1
2X on CMS

CMS is the subcategory of complete metric spaces.
(Again, distances bounded by 1, and non-expanding maps.)

Initial algebra of 1 + X is same as for MS: (N,ddiscrete).

For 1 + 1
2X : it’s N∞, again with

d(n,m) = 2−min(n,m),

treating ∞ as larger than all n ∈ N.

So it’s a Cauchy sequence together with its limit.
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1 + X and 1 + 1
2X on KMS

KMS is the subcategory of compact metric spaces.
(Again, distances bounded by 1, and non-expanding maps.)

Initial algebra of 1 + X doesn’t exist.

For 1 + 1
2X : it’s the same space as for this functor on CMS.
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FX = X ⊕ X on BiP

Recall F works as

X XX X7→>⊥ >⊥

identify > of left with ⊥ of right

Initial algebra is not so easy to guess, and we’ll develop tools to
compute it later.
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FX = X ⊕ X on BiP

Recall F works as

X XX X7→>⊥ >⊥

identify > of left with ⊥ of right

Initial algebra is not so easy to guess, and we’ll develop tools to
compute it later.

It may be described as the set D of
dyadic rational numbers in [0,1], with 0 = ⊥ and 1 = >.
What do you think the structure is?
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Lambek’s Lemma

Lemma (Lambek’s Lemma)

Let C be a category, let F : C → C be a functor,
and let (a, f) be an initial algebra for F.

Then f is an isomorphism:
there is a morphism g : Fa → a such that
g · f = ida and f · g = idFa .

The same statement holds for final coalgebras of F .
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Proof of Lambek’s Lemma

Note first that (Fa,Ff) is an algebra for F . The square below
commutes:

FFa

Ff
��

Ff // Fa

f
��

Fa
f

// a

By initiality, there is a morphism g : a → Fa so that the square
on the top commutes:

Fa

Fg
��

f // a

g
��

FFa

Ff
��

Ff // Fa

f
��

Fa
f

// a

The bottom is obvious, the outside of the figure thus commutes.
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Proof of Lambek’s Lemma, continued

By initiality, there is a morphism g : a → Fa so that the square
on the top commutes:

Fa

Fg
��

f //

F(f ·g)

��

a

g
��

f ·g

~~

FFa

Ff
��

Ff // Fa

f
��

Fa
f

// a

By initiality, we see that f · g = ida .
And then from that top square again,

g · f = Ff · Fg = F(f · g) = Fida = idFa .

This completes the proof.
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There are no initial algebras of P : Set→ Set

An isomorphism in Set is a bijection.

And there are no maps from any set onto its power set
(Cantor’s Theorem).

Together with Lambek’s Lemma, we see that P on Set has no
initial algebra.
To get around this, one either

1 moves from Set to the category Class of classes.
2 moves from P to Pκ, the functor giving the subsets of a set

of size < κ.

(Hκ, id) is an initial algebra of Pκ,
where Hκ is the set of sets of herediary cardinality < κ.
( So when κ = ℵ0, we get HF from before.)
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Induction on N

Recall that (N, ν) is the initial algebra of FX = 1 + X .

A subalgebra of (N, ν) is an F-algebra (M, µ)
such that
there is a one-to-one algebra morphism i : M → N.

Induction on N
If (M, µ) is a subalgebra of (N, ν),
then (M, µ) � N, ν).
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