
Coalgebras

Larry Moss
Indiana University, Bloomington

TACL’13 Summer School, Vanderbilt University

1/55

The conceptual comparison chart
Filling out the details is my goal for coalgebra

set with algebraic set with transitions
operations and observations
algebra for a functor coalgebra for a functor
initial algebra final coalgebra
least fixed point greatest fixed point
congruence relation bisimulation equivalence rel’n
equational logic modal logic
recursion: map out of corecursion: map into
an initial algebra a final coalgebra
Foundation Axiom Anti-Foundation Axiom
iterative conception of set coiterative conception of set
useful in syntax useful in semantics
bottom-up top-down

2/55

My goals for this part of the course

We have seen examples of circularly-defined sets such as

the set of streams
the set of infinite trees

One of the main goals of the course is to present a theory of
how these “solution spaces” work.
The theory is based on the concept of a coalgebra for a functor
and on similar notions from category theory.

Today’s lecture includes an introduction to the main concepts
which we’ll need.

But it is not a systematic presentation of the subject.

3/55

Review: a stream system

x ≈ 〈0, y〉
y ≈ 〈1, z〉
z ≈ 〈2, x〉

Let us construe such a system as a function
from its set of variables.

So let X = {x , y , z}.

We regard the system as a function e : X → N × X .
(e stands for “equation”.)

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

4/55

Review: a stream system

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

Let’s write N∞ for the set of streams on N.

The solution to our system e is a function e† : X → N∞.
Explicitly,

e†(x) = (0,1,2,0,1,2, . . .)
e†(y) = (1,2,0,1,2,0, . . .)
e†(z) = (2,0,1,2,0,1 . . .)

Now what we want to do is to talk
in an abstract way what the relation between
e and e†.

And what we say should hold for all systems.
5/55

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

e†(x) = (0,1,2,0,1,2, . . .)
e†(y) = (1,2,0,1,2,0, . . .)
e†(z) = (2,0,1,2,0,1 . . .)

Here is what we want to say:

X
e //

e†
��

N × X

idN×e†
��

N∞
〈hd,tail〉

// N × N∞

6/55

More on our diagram

I’m in the middle of explaining the diagram

X
e //

e†
��

N × X

idN×e†
��

N∞
〈hd,tail〉

// N × N∞

The hard part is the function idN × e†.

For this, I will need some general notation on products.

7/55

Product functions

If f : C → A and g : C → B, then we get a new function

〈f ,g〉 : C → A × B .

It is defined by

〈f ,g〉(c) = (f(c),g(c))

8/55

Product functions

If f : C → A and g : C → B, then we get a new function

〈f ,g〉 : C → A × B .

It is defined by

〈f ,g〉(c) = (f(c),g(c))

The product set A × B itself comes with projections

A A × B
πAoo πB // B

And then the diagram below commutes:

C

f

||yyyyyyyyyyyy

〈f ,g〉

��

g

""E
EEEEEEEEEEE

A A × BπA
oo

πB
// B

8/55

More on product functions

If f : C → A and g : D → B, then we get a new function

f × g : C × D → A × B .

It is defined by

(f × g)(c,d) = (f(c),g(d))

Note the difference between the notations 〈f ,g〉 and f × g.

They must be related, but how?

9/55

More on product functions
If f : C → A and g : D → B, then we get a new function

f × g : C × D → A × B .

It is defined by

(f × g)(c,d) = (f(c),g(d))

Note the difference between the notations 〈f ,g〉 and f × g.

They must be related, but how?

The f × g notation is a special case of pairing:

C × D

f ·πC

||yyyyyyyyyyyy

〈f ·πC ,g·πD 〉

��

g·πD

""E
EEEEEEEEEEE

A A × BπA
oo

πB
// B

So that
f × g = 〈f · πC ,g · πD〉.

9/55

More on our diagram

Let’s get back to the diagram

X
e //

e†
��

N × X

idN×e†
��

N∞
〈hd,tail〉

// N × N∞

Now we know about the function idN × e†.
idN is the identity function on N.

The definitions that we have seen tell us
that for i ∈ N and w ∈ X ,

(idN × e†)(i,w) = (i,e†(w)).

10/55

More on our diagram
Let’s get back to the diagram

X
e //

e†
��

N × X

idN×e†
��

N∞
〈hd,tail〉

// N × N∞

Recall that X = {x , y , z} and that

e(x) = 〈0, y〉
e(y) = 〈1, z〉
e(z) = 〈2, x〉

e†(x) = (0,1,2,0,1,2, . . .)
e†(y) = (1,2,0,1,2,0, . . .)
e†(z) = (2,0,1,2,0,1 . . .)

We’ll check that the diagram really does commute,

Let’s start with y, for example, as a “random” element of X .

Across the top, we get 〈1, z〉.
Then going down, we get 〈1, (2,0,1,2,0,1 . . .)〉.
But starting again with y and going down, we get
(1,2,0,1,2,0, . . .).
And the head of this stream is 1; the tail is (2,0,1,2, . . .).

So it really does commute!
11/55

Reading the diagram

In fact, we can verbalize what it means to say that our diagram

X
e //

e†
��

N × X

idN×e†
��

N∞
〈hd,tail〉

// N × N∞

commutes.

For all w ∈ X , if e(w) = 〈i, v〉, then
e†(w) is a stream whose head is i, and whose tail is
e†(v).

12/55

Deterministic automata

Here is a deterministic automaton with no start state:

sa

t u
c

a,b

a,b c

b c

The set of states is S = {s, t ,u}.
We have one accepting state (in green).
The input alphabet is A = {a,b , c}.

We have a transition function t : S × A → S,
and also an output function o : S → 2.
(Here 2 = {0,1}, and o(s) = 1 iff s is accepting.)

13/55

Automata: the language of a state

sa

t u
c

a,b

a,b c

b c

For all states s, the empty word ε is accepted at s
if acc(s) = 1.

If w is a word and a an alphabet symbol, then

aw is accepted at s iff w is accepted at t(s,a)

14/55

Automata: the cooked form

So far a deterministic automaton on {a,b , c} is

(S , s,acc),

where S is a set,
s : S × A → S ,

and
acc : S → 2.

15/55

Automata: the cooked form

So far a deterministic automaton on {a,b , c} is

(S , s,acc),

where S is a set,
s : S × A → S ,

and
acc : S → 2.

We can curry s to get ŝ : S → SA .

We also use pairing

〈̂s × acc〉 : S → 2 × SA .

To match our earlier usage, we write e for 〈̂s × acc〉.

15/55

In full glory

sa, c

t u
c

a,b

a,b

b c

We have re-packaged the picture into a function

e : S → 2 × SA

It is
e(s) = (1, {(a, s), (b , t), (c, s)})
e(t) = (0, {(a, t), (b , t), (c,u)})
e(u) = (0, {(a, t), (b , t), (c, s)})

16/55

An important example: (L, `)

A ∗ is the set of finite words on A , including the empty word ε.

L = P(A ∗) is the set of languages X on A .

17/55

Language acceptance

We want to think of language acceptance in the same way
as we have seen for streams and sets.

syntax

��

S
e //

e†

��

2 × SA

id2×(e†)A

��
semantics languages

`
// 2 × languagesA

But this needs an explanation!

18/55

Language acceptance
We want to think of language acceptance in the same way
as we have seen for streams and sets.

syntax

��

S
e //

e†

��

2 × SA

id2×(e†)A

��
semantics languages

`
// 2 × languagesA

But this needs an explanation!
Let’s write L for the set of all languages on A .
(This is just P(A ∗).)

We make L into an automaton (!) in our cooked sense by

` : L → 2 × LA .

where
`(X) = (1 iff ε ∈ X ,a 7→ {w : aw ∈ X })

18/55

Taking f : X → Y to fA : XA
→ YA

To explain the map (e†)A ,
here is a general definition.

If f : X → Y , then fA : XA
→ YA is given by

g : A → X 7→ f · g.

19/55

Taking f : X → Y to fA : XA
→ YA

To explain the map (e†)A ,
here is a general definition.

If f : X → Y , then fA : XA
→ YA is given by

g : A → X 7→ f · g.

Now we understand

syntax

language acceptance
��

S
e //

e†
��

2 × SA

id2×(e†)A

��
semantics L

`
// 2 × LA

19/55

In words

syntax

language acceptance
��

S
e //

e†
��

2 × SA

id2×(e†)A

��
semantics L

`
// 2 × LA

For all states s, language accepted at s has two
features:
I it contains the empty word iff s is an accepting state;

that is, if π2(e(s)) = 1.
I for all words w and all a, it contains aw iff w is in the

language accepted at πSA (e(s))(a).

20/55

The raw and the cooked

The reason for all these diagrams is that
they enable us see the same kind of pattern
coming up again and again.
We want an overall language to talk about it.

We have seen:

streams e : X → A × X
languages e : S → 2 × SA

Let’s think of A × X and PX as cooked versions of X .

So the kind of systems that we have seen are

functions from a raw object to a cooked version of it

Very soon, we’ll start calling this a coalgebra.

21/55

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

22/55

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In Set, ∅ is initial, and every singleton {x} is final.

Note that there is more than one final object, but they are
all isomorphic.

22/55

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In Pos, the empty poset is initial, and the one-point poset {x} is
final.

The same basically works for MS.

22/55

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In a poset P, an initial object would be a minimal element,
and a final object would be a maximal element.

(These may or may not exist.)

22/55

Initial and final objects

Let C be a category.

An initial object is an object c such that
for all d, there is unique morphism f : c → d.

An final object is an object c such that
for all d, there is unique morphism f : d → c.

In BiP, the initial object is any object
based on a two-element set: ({>,⊥},>,⊥).

We often write 0 for an initial object and 1 for a final one.

So in the category of pointed sets, 0 = 1.
22/55

Coalgebras for an endofunctor

Let F : C → C be an endofunctor.
A coalgebra for F is a pair (A ,a), where a : A → FA in C.
We have already seen many examples!

A morphism from (A ,a) to (B ,b) is h : A → B such that

A
a //

h
��

FA

Fh
��

B b
// FB

commutes.

So now we have a category of coalgebras for an endofunctor.

23/55

Comparing algebras and coalgebras
Let (A ,a : FA → A) and (B ,b : FB → B) be algebras.
A morphism in the algebra category of F is f : A → B in the same
underlying category so that

FA
a //

Ff
��

A

f
��

FB b
// B

commutes.

Let (A ,a : A → FA) and (B ,b : B → FB) be coalgebras.
A morphism in the coalgebra category of F is f : A → B in the same
underlying category so that

A
a //

f
��

FA

Ff
��

B b
// FB

commutes.
24/55

Initial algebras and final coalgebras

An initial algebra is an initial object of the algebra category.
A final coalgebra is a final object of the coalgebra category.

initial algebra FA
a //

Ff
��

A

f
��

FB b
// B

A
a //

f
��

FA

Ff
��

B b
// FB final coalgebra

(One could also consider final algebras and initial coalgebras,
but they turn out to be much less interesting.)

25/55

In a poset category

Recall that an endofunctor on a poset (P,≤)
is a monotone function f : P → P.
An algebra for f is some p such that f(p) ≤ p.

A coalgebra for f is some p such that p ≤ f(p).

An initial algebra for f is some p such that
I f(p) ≤ p.
I If f(q) ≤ q, then p ≤ q.

A final algebra for f is some p such that
I p ≤ f(p).
I If q ≤ f(q), then q ≤ p.

These correspond to
least fixed points and greatest fixed points,
respectively.

26/55

languages give a final coalgebra of 2 × XA

syntax

��

S
e //

e†

��

2 × SA

id2×(e†)A

��
semantics languages

`
// 2 × languagesA

e† takes a states s to the language of all words accepted if we
start at s.

It is important to check that the coalgebra morphisms are
exactly the usual morphisms of automata.

In general, final coalgebras are like the “semantic observation
spaces” for the type of coalgebra.

27/55

Stream systems as coalgebras, their solutions as
coalgebra morphisms

Let FX = N × X .
Coalgebras of F are stream systems;
that is, maps of the form e : X → FX .

Even more, the solution e† : X → N∞ would be a coalgebra
morphism:

X
e //

e†
��

FX

Fe†
��

N∞ id
// FN∞

The point is that for x ∈ X ,

Fe†(e(x)) = Fe†〈fst(e(x)), snd(e(x))〉
= 〈fst(e(x)),e†(snd(e(x)))〉

We have seen this formulation before.
28/55

F(X) = A × X on Set

Here A is a fixed set.

The initial algebra is the empty set.

The final coalgebra is the set of streams on A , with a structure

〈head, tail〉 : A∞ → A × A∞.

29/55

F(X) = A × X on Set

Here A is a fixed set.

The initial algebra is the empty set.

The final coalgebra is the set of streams on A , with a structure

〈head, tail〉 : A∞ → A × A∞.

If we change to F(X) = (A × X) + 1, then what would we get?

29/55

Finality at work: two examples of corecursion

Let’s use finality to define two functions.

First, the constant embedding c : A → A∞.
Second, for a fixed f : A → A , the function mapf : A∞ → A∞.

To start, what equations do we want these to satisfy?
Remember that streams are pairs, and that we have structure

〈head, tail〉 : A∞ → A × A∞.

Let’s also write the inverse with a colon : in infix notation.
So if a ∈ A and s ∈ A∞, then a : s ∈ A∞, and

head(a : s) = a tail(a : s) = s.

30/55

Finality at work: two examples of corecursion

Let’s use finality to define two functions.

First, the constant embedding c : A → A∞.
Second, for a fixed f : A → A , the function mapf : A∞ → A∞.

To start, what equations do we want these to satisfy?
Remember that streams are pairs, and that we have structure

〈head, tail〉 : A∞ → A × A∞.

Let’s also write the inverse with a colon : in infix notation.
So if a ∈ A and s ∈ A∞, then a : s ∈ A∞, and

head(a : s) = a tail(a : s) = s.

c(a) = a : c(a).

mapf (s) = f(head(s)) : mapf (tail(s)).
30/55

Defining c and mapf

We start with two coalgebras of A × X :

A
∆ // A × A A∞

〈h,t〉 // A × A∞
f×id // A × A∞

These immediately drive corecursions, by finality:

A
∆ //

c
��

A × A

id×c
��

A∞
〈h,t〉
// A × A∞

A∞
〈h,t〉 //

mapf
��

A × A∞
f×id // A × A∞

id×mapf
��

A∞
〈h,t〉

// A × A∞

31/55

Using the definitions c and mapf

Now we should be able to use the definitions and finality,
and general facts about functions on sets,
and nothing much else,
including nothing about the connections of streams and
functions,
to prove general facts.

What is the connection of c and mapf ?

32/55

Using the definitions c and mapf

Now we should be able to use the definitions and finality,
and general facts about functions on sets,
and nothing much else,
including nothing about the connections of streams and
functions,
to prove general facts.

What is the connection of c and mapf ?

c · f = mapf · c.

32/55

Using the definitions c and mapf

We want to put down one F-coalgebra (A ,g) and then show
that

c · f and mapf · c

are coalgebras morphisms from our coalgebra to the final one;
thus they are equal.

A
∆ // A × A

f×id // A × A

33/55

Using the definitions c and mapf

We want to put down one F-coalgebra (A ,g) and then show
that

c · f and mapf · c

are coalgebras morphisms from our coalgebra to the final one;
thus they are equal.

A
∆ // A × A

f×id // A × A

So we need to prove that both diagrams below commute:

A
∆ //

c·f
��

A × A
f×id // A × A

id×(c·f)
��

A∞
〈h,t〉

// A × A∞

A
∆ //

mapf ·c
��

A × A
f×id // A × A

id×(mapf ·c)
��

A∞
〈h,t〉

// A × A∞

33/55

Expand both diagrams, and fill them in with stuff

A
∆ //

f
��

c·f

��

A × A
f×id //

f×f
��

A × A

id×(c·f)

��

id×f

yyrrrrrrrrrr

A
∆ //

c
��

A × A
id×c

%%LLLLLLLLLL

A∞
〈h,t〉

// A × A∞

Why do all parts of the diagram commute?

34/55

Expand both diagrams, and fill them in with stuff

A
∆ //

c

��
mapf ·c

A × A
f×id //

id×c

��

A × A

id×c

��
id×(mapf ·c)

~~

A∞
〈h,t〉 //

mapf

��

A × A∞
f×id // A × A∞

id×mapf

��
A∞

〈h,t〉
// A × A∞

35/55

Expand both diagrams, and fill them in with stuff
So we have two coalgebra maps from the same coalgebra in to
the final one.

A
∆ //

c
��

mapf ·c

%%

A × A
f×id //

id×c
��

A × A

id×c
��

id×(mapf ·c)

yy

A∞
〈h,t〉 //

mapf
��

A × A∞
f×id // A × A∞

id×mapf
��

A∞
〈h,t〉

// A × A∞

A
∆ //

f
��

c·f

��

A × A
f×id //

f×f
��

A × A

id×(c·f)

��

id×f

yyrrrrrrrrrr

A
∆ //

c
��

A × A
id×c

%%LLLLLLLLLL

A∞
〈h,t〉

// A × A∞

Thus
mapf · c = ((f × id) ·∆)† = c · f .

36/55

Infinite binary trees

Let FX = A × X × X .

The final coalgebra is the set T of infinite binary trees with
all points labeled by an element of A .

We have a structure t : T → A × T × T .

The trees are ordered, with a left child and a right child:

t = head(t) : left(t) : right(t)

Those children are both themselves trees.
Let swap : T × T → T × T be

swap(〈t ,u〉) = 〈u, t〉.

Now consider

T
t // A × T × T

id× swap // A × T × T

37/55

Still working with FX = A × X × X

T
t // A × T × T

id×swap // A × T × T

It’s a coalgebra for F .

So what is its map into the final coalgebra??

T
t //

mirror
��

A × T × T
id×swap // A × T × T

idA×mirror ×mirror
��

T t
// A × T × T

38/55

Still working with FX = A × X × X

T
t // A × T × T

id×swap // A × T × T

It’s a coalgebra for F .

So what is its map into the final coalgebra??

T
t //

mirror
��

A × T × T
id×swap // A × T × T

idA×mirror ×mirror
��

T t
// A × T × T

mirror(t) = head(t) : mirror(right(t)) : mirror(third(t))

38/55

How to define the left and right branch of a tree?

Let F(X) = A × X × X , with final coalgebra
(T , t = 〈head, left , right〉).

Let G(X) = A × X , with final coalgebra (A∞, 〈head, tail〉).

How can we define the left branch function lb : T → A∞?

39/55

How to define the left and right branch of a tree?

Let F(X) = A × X × X , with final coalgebra
(T , t = 〈head, left , right〉).

Let G(X) = A × X , with final coalgebra (A∞, 〈head, tail〉).

How can we define the left branch function lb : T → A∞?

T
t //

lb
��

A × T × T
id×π1 // A × T

idA×lb
��

A∞
〈head,tail〉

// A × A∞

We write down the coalgebra on the top, and then lb
comes automatically
by finality of the streams as a G-coalgebra.

39/55

lb ·mirror = rb

The right branch function rb is the coalgebra map for

T
t // A × T × T

id×π2 // A × T

and this is the same as

T
t // A × T × T

id×swap // A × T × T
id×π1 // A × T

So we need to show that the diagram below commutes:

T
t //

lb ·mirror
��

A × T × T
id×swap // A × T × T

id×π1 // A × T

id×(lb ·mirror)
��

A∞ t
// A × A∞

40/55

lb ·mirror = rb

T
t //

mirror
��

(id×π2)·t

''
A × (T × T)

id×swap // A × (T × T)

id× (mirror ×mirror)
��

id×π1 // A × T

id×mirror
��

T
t //

lb
��

A × (T × T)
id×π1 // A × T

id×lb
��

A∞
〈head,tail〉

// A × A∞

41/55

More on FX = R × X

R here is the set of real numbers.
For FX = R × X on Set,

I Initial algebra is the empty set
I Another representation of the final coalgebra:

Let RA be the set of functions which are real analytic at 0:
f (n)(0) exists for all n, and f agrees with its Taylor series
in a neighborhood of 0.

The coalgebra structure ϕ : RA → R × RA is given by

f 7→ (f(0), f ′).

42/55

Finality at work: FX = R × X

Consider a coalgebra (A ,a : A → R × A), where
A = {α, β, γ, δ}, and

a(α) = (0, β)
a(β) = (1, γ)

a(γ) = (0, δ)
a(δ) = (−1, α)

Query: What is the map h = a† below?

A
a //

h
��

R × A

Fh
��

RA ϕ
// R × RA

43/55

Finality at work: FX = R × X

Consider a coalgebra (A ,a : A → R × A), where
A = {α, β, γ, δ}, and

a(α) = (0, β)
a(β) = (1, γ)

a(γ) = (0, δ)
a(δ) = (−1, α)

Query: What is the map h = a† below?

A
a //

h
��

R × A

Fh
��

RA ϕ
// R × RA

It is

α 7→ sin x , β 7→ cos x , γ 7→ − sin x , γ 7→ − cos x

h is defined by corecursion.
43/55

What functor are these two coalgebras of?

. .
.

5/6 1/6

5/6 1/6

5/6 1/6

5/6

5/6

1/6 1/6

44/55

What functor are these two coalgebras of?

. .
.

5/6 1/6

5/6 1/6

5/6 1/6

5/6

5/6

1/6 1/6

FX = {fail, success}+ ∆X .

We’ll call the coalgebras of this F
Markov chains with observations (MCO’s).

44/55

In more detail

0

s01

2 s1

3 s2

. .
.

5/6 1/6

5/6 1/6

5/6 1/6

The set S of states is {0,1,2, . . . , s0, s1, s2, . . .}.
m(0) is given by m(0)(1) = 5/6, m(0)(s0) = 1/6.
m(1) is given by m(1)(2) = 5/6, m(1)(s1) = 1/6.
m(s0) = success
...

We’ll call this MCO S.

The fact that 0 is a start state is not reflected, but adding it
gives a pointed Markov chain with observations.

45/55

In more detail

odd

succ

even

fail

5/6

5/6

1/6 1/6

The set T of states is {odd,even, succ, fail}.
We’ll call this structure T .

46/55

Quotients

We have two Markov chain with observations, and we want to
say why the smaller one is a quotient of the larger one.

quotient: a surjective image preserving relevant structure

We need a notion of a mapping between Markov chains with
observations

ϕ : S → T .

47/55

Maps betweenMCOs

Given S = (S ,m), and T = (T ,n), a map between them is a
coalgebra morphsim.
This is a function ϕ : S → T so that

S
m //

ϕ

��

∆S + Obs

∆ϕ+idObs
��

T n
// ∆T + Obs

48/55

Maps betweenMCOs

Given S = (S ,m), and T = (T ,n), a map between them is a
coalgebra morphsim.
This is a function ϕ : S → T so that

S
m //

ϕ

��

∆S + Obs

∆ϕ+idObs
��

T n
// ∆T + Obs

One can check that in our examples, the following is a map
between MCOs:

2k 7→ even
2k + 1 7→ odd
s2k 7→ succ
s2k+1 7→ fail

48/55

Another thing we can do

Given a Markov chain without observations, say
(S ,m : S → ∆S),
and some measure µ ∈ ∆S,
we might want to talk about the next step measure next(µ).

The way we get this is via

∆S
∆m // ∆∆S

mixS // ∆S

Here mixS : ∆∆S → ∆S takes a
discrete measure on discrete measures on S
to another discrete measure on S by mixing.

49/55

Another thing we can do

Given a Markov chain without observations, say
(S ,m : S → ∆S),
and some measure µ ∈ ∆S,
we might want to talk about the next step measure next(µ).

The function mixS is then a composition:

∆S
∆m //

next

$$
∆∆S

mixS // ∆S

µ 7→ next(µ)

49/55

Since you have been learning about natural
transformations

Let’s check that if f : M → N, then ∆f · nextS = nextT ·∆f :

∆S
nextS //

∆f
��

∆S

∆f
��

∆T nextT
// ∆T

50/55

Since you have been learning about natural
transformations

Let’s check that if f : M → N, then ∆f · nextS = nextT ·∆f :

∆S
nextS //

∆f
��

∆S

∆f
��

∆T nextT
// ∆T

∆S
nextS //

∆f
��

∆S

∆f
��

∆T nextT
// ∆T

∆S
∆m //

∆f
��

nextS

##
∆∆S

mixS //

∆∆f
��

∆S

∆f
��

∆T
∆n
//

nextT

;;∆∆S mixT

// ∆T

50/55

The initial algebra and the final coalgebra

For our functor FX = {fail, success}+ ∆X ,

I Initial algebra is finite probabilistic trees ending in
observations, such as

4
9

1
1
9

4
9

5
7

2
7

I Final coalgebra is harder to come by, but it does exist
(One way to get it is to use
coalgebraic generalizations of modal logic.)

51/55

What functor is this a coalgebras of?

b | 1

p | 1

c | −1

a | 1

1

0
0

1

0,1

0,1

The set of states is the carrier of the coalgebra.
On the first day, we saw how to map
states to streams on {1,−1},
using binary expansions.

52/55

What functor is this a coalgebras of?

b | 1

p | 1

c | −1

a | 1

1

0
0

1

0,1

0,1

The set of states is the carrier of the coalgebra.
On the first day, we saw how to map
states to streams on {1,−1},
using binary expansions.

F(X) = {1,−1} × X × X .

But, we are now used to thinking of the final
coalgebra of this F as the trees, not the streams!

52/55

A different final coalgebra of FX = A × X × X

A × A∞ × A∞ → A∞

given by taking the inverse of the one-to-one function

a, s, t 7→ a : zip(s, t)

For each coalgebra (A ,e : X → A × X × X),
the map e† : A → A∞

takes a state a ∈ A
to the stream whose nth term is obtained
by writing n in binary, reading the digits into the coalgebra
starting with the least significant one,
and then taking the output at the end.

(Kupke and Rutten 2011)

53/55

Some semantic models

I Kripke model

I conditional frame

I Markov chain with observations

I belief space

54/55

Some semantic models

I A Kripke model is a set W of worlds,
together with an accessibility relation R ⊆W ×W
and a valuation telling which atomic sentences are true at
which worlds.

I A conditional frame is a set W together with a selection
function f : W × P(W)→ P(W).

I A Markov chain with observations is a set S
such that each s ∈ S either

1 comes with an observation set from {success, fail}
2 or there are outgoing arrows s → t whose labels sum to 1.

I A belief space (for two players, over a space S) is a pair

(T1,T2,m1,m2)

where m1 : T1 → ∆(S × T2), and m2 : T2 → ∆(S × T1).
(This is from Heifetz and Samet 1998; other definitions
exist.)

54/55

Some semantic models

To put things under one roof, we use some
standard “repackaging”:

I trade in a relation R ⊆ A × B for fR : A → PB.
I trade in the valuation on a Kripke model for a function

from worlds to sets of atomic sentences.
I trade in f : A × B → C for f ∗ : A → CB .
I trade two functions f : A → B and g : A → C for
〈f ,g〉 : A → B × C.

I trade in a choice between
a member of A and a member of B
for a member of A + B (disjoint union).

54/55

Some semantic models

I A Kripke model is (W , f : W → PW × P(AtSen))

I A conditional frame is a

(W , f : W → P(W)P(W))

I A Markov chain with observations is

(S ,m : S → ∆S + Obs),

where Obs = {success, fail},
and ∆ is described below.

I A belief space (for two players, over a space S) is

(T ,m : T → FT)

where T is a pair (T1,T2) of measurable spaces,
and FT = (∆(S × T2),∆(S × T1)).

54/55

Caution

Morphisms of Kripke models are the coaglebraic morphisms:

W //

f
��

PW × P(AtSen)

Pf×id
��

W ′ // PW ′
× P(AtSen)

These are usually called p-morphisms.

55/55

Caution
Morphisms of Kripke models are the coaglebraic morphisms:

W //

f
��

PW × P(AtSen)

Pf×id
��

W ′ // PW ′
× P(AtSen)

These are usually called p-morphisms.

Indeed, based on what we have seen for automata, we
might expect
the final coalgebra to be the canonical model C of modal logic

W //

th
��

PW × P(AtSen)

Pth×id
��

C // PC × P(AtSen)

with the “theory” map th : W → C defined by

th(w) = {ϕ : w |= ϕ in the model W }

Unfortunately this is false!
th isn’t a coalgebra morphism,
and in the first place, the functor doesn’t have a final coalgebra.

55/55

Caution

Morphisms of Kripke models are the coaglebraic morphisms:

W //

f
��

PW × P(AtSen)

Pf×id
��

W ′ // PW ′
× P(AtSen)

These are usually called p-morphisms.

Next time I’ll try to tell you quite a bit about the general
constructions of final coalgebras.

55/55

