
Introduction to categorical logic

Peter Selinger

Dalhousie University

Halifax, Canada

1

Categorical logic

Categorical logic is about the connections between the

following three areas:

• Logic (more precisely, proof theory),

• Computation (more precisely, programming languages),

• Category theory.

Our starting point: computation.

2

Part I: Introductory examples

3

Describing behavior

Semantics: to give a mathematical description of the behavior

of computer programs.

Method 1: (operational) Define a particular kind of machine

(Turing machine, Von Neumann machine, Abstract machine,

Virtual machine. . .). Then describe how to run each program

on this machine.

Method 2: (denotational) Give a mathematical description of

the behavior, independenly of any machine. Specifically, define

some mathematical space of behaviors, then map each program

to a point in that space.

4

What is a “mathematical description”?

Part of the basic fabric of mathematics (i.e., what every

mathematician learns near the beginning of their education) is

how to encode various mathematical objects (finite sets,

integers, rational numbers, real numbers, cartesian coordinates,

geometric objects, algebras, topologies, equivalence relations,

etc.) in set theory. We learn the standard encodings, and we

also learn how to create new encodings.

People often assume that computer science is about

programming some machine, for example the Intel Core i5-3570

processor running the Windows 7 operating system.

But in fact, many parts of computer science can also be

developed by encoding various computing concepts (functions,

data types, computational effects) in set theory.

5

What is a behavior of a computer program?

Set-theoretic (functional) interpretation:

• A type is a set. Examples:

– Bool = {true, false}.

– N = {0, 1, 2, . . .}.

– String = { " ", "a", "b", "ab", . . . }.

• The behavior of a program with inputs A and outputs B is

given by a function

f : A → B.

Note: in this functional notion of behavior, some aspects of the

program are lost, for example: How long does it take to

compute f(a)? Two programs are considered equal if they

compute equal outputs on equal inputs. This is called the

extensional view of behavior.

6

Examples from different programming languages

• In C or Java:

int f(int x) {

return x + 1;

}

• In Haskell:

f :: int -> int

f x = x+1

• In Mathematica:

f[x_] := x + 1

• In lambda calculus:

f = λx.x + 1

All define the same function f : N → N, namely f(x) = x + 1.

7

Compositionality

Programs are built up from smaller programs by means of

combinators.

The principle of compositionality states that the behavior of

the whole is uniquely determined by the behavior of the parts.

Therefore, parts that have equal behavior are interchangeable.

For example, the expressions f(x) = (2x + 4)/2 − 2 and f(x) = x + 1

are interchangeable.

For now, we only need to consider two combinators (more may

be added later): identity and composition.

id : A → A
f : A → B g : B → C

g ◦ f : A → C

8

Computational effects

The idea of a program as a function is only a first

approximation. In reality, programs do more than just mapping

inputs to outputs. For example, they may:

• not terminate;

• be non-deterministic;

• make probabilistic choices;

• write to a file or read from a file;

• be interactive;

• read and modify global variables;

• raise an exception or generate an error;

• . . .

Any such additional behaviors are called “computational

effects”.

9

Non-termination

Potentially non-terminating programs are easy to model. A

program with input A and output B is now described as a

partial function f : A ⇀ B.

Concretely, let ⊥ be a symbol that is not an element of any

type. The behavior of a potentially non-terminating program is

described as a function

f : A → B +⊥

with the information interpretation f(a) = b if f terminates on

input a with output b, and f(a) = ⊥ if f diverges.

Notations: A+B denotes disjoint union of sets A
.
∪ B. We wrote

A +⊥ instead of A + {⊥}.

10

Non-termination, continued

We also need to account for compositionality, i.e.: what

happens to non-termination when programs are combined?

id⊥ : A → A +⊥
f : A → B +⊥ g : B → C +⊥

g ◦⊥ f : A → C +⊥

It is clear how to define the operations id⊥ and ◦⊥:

• id⊥(a) = a (the identity program always terminates)

• (g ◦⊥ f)(a) =

{
g(b) if f(a) = b,

⊥ if f(a) = ⊥.

(a composition terminates iff each of the parts terminates)

11

Non-determinism

A program is non-deterministic if it may potentially return a

different output each time it is run. For example, a program

that computes the root of a polynomial might find a different

root on different runs — or maybe it will always find the same

root, but it is unspecified which one it finds.

Let P+(A) = {X | X ⊆ A, X 6= ∅} denote the non-empty powerset

of A.

We can describe the behavior of a non-deterministic program

with input type A and output type B as a function

f : A → P
+(B)

with the informal interpretation: f(a) = b1, . . . , bn if f may

non-deterministically return any of the outputs b1, . . . , bn on

input a.

12

Non-determinism, continued

idnd : A → P
+(A)

f : A → P+(B) g : B → P+(C)

g ◦nd f : A → P+(C)

How do non-deterministic programs compose?

• idnd(a) = {a} (the identity is deterministic)

• (g ◦nd f)(a) =
⋃
{g(b) | b ∈ f(a)}.

(apply g to every possible output of f)

13

Probabilistic computation

A program is probabilistic if is has access to a random number

generator. For example, a probabilistic program might output

true with probability 1
3 and false with probabililty 2

3.

Let Pr(A) denote the set of probability distributions on A.

We can describe the behavior of a probabilistic program with

input type A and output type B as a function

f : A → Pr(B)

with the informal interpretation: f(a)(b) = p if f(a) returns b

with probability p.

(Note: for simplicity, assume all probability distributions are

countably supported.)

14

Probabilistic computation, continued

idpr : A → Pr(A)
f : A → Pr(B) g : B → Pr(C)

g ◦pr f : A → Pr(C)

How do probabilistic programs compose?

• idpr(a)(b) =

{
1 if a = b

0 otherwise
(the identity is deterministic)

• (g ◦pr f)(a)(c) =
∑

b f(a)(b) · g(b)(c) (sum over all paths)

15

Output to a terminal

A computer program might write some characters while it runs;

for example, to a terminal (console) or to a file.

Let Σ be the set of characters (for example, the ASCII

alphabet; we will use Σ = {a, b, c}).

Let Σ∗ denote the set of strings, i.e., finite sequences of

elements of Σ. We will write ǫ for the empty string, and s · t for

concatenation of strings. Example: "ab" · "bc" = "abbc".

We describe the behavior of a program with input type A,

output type B, and writing some characters to a terminal, as a

function

f : A → B× Σ∗,

with the informal interpretation: f(a) = (b, s) if f(a) writes s and

returns b.

16

Output to a terminal, continued

idout : A → A× Σ∗ f : A → B× Σ∗ g : B → C× Σ∗

g ◦out f : A → C× Σ∗

How do such programs compose?

• idout(a) = (a, ǫ) (the identity function writes nothing)

• (g ◦out f)(a) = (c, s · t) where f(a) = (b, s) and g(b) = (c, t)

(f writes first, g writes second)

17

State

A program is stateful if it has access to some global state (for

example, some global variables) that it may read and update.

For example, a program may increment a counter, and use this

to return a different integer each time it is called.

Let S be the set of states.

We can describe the behavior of a stateful program with input

type A and output type B as a function

f : A× S → B× S

with the informal interpretation: f(a, s1) = (b, s2) if the program f

with input a, run in state s1, produces output b and updates

the state to s2.

18

State, continued

idst : A×S → A×S
f : A× S → B× S g : B× S → C× S

g ◦st f : A× S → C× S

How do stateful programs compose?

• idst(a, s) = (a, s) (the identity does not update the state)

• (g ◦st f)(a, s1) = (c, s3)

where f(a, s1) = (b, s2) and g(b, s2) = (c, s3).

(first f updates the state, then g is run in this new state)

19

Computational effects and monads

What do all these examples have in common? Eugenio Moggi

observed that computational effects all have the structure of a

monad.

In each case, we have some operation T on sets:

• T(A) = A +⊥ (non-termination)

• T(A) = P+(A) (non-determinism)

• T(A) = Pr(A) (probabilistic)

• T(A) = A× Σ∗ (terminal output)

• . . .

20

Computational effects and monads, continued

In each case, we define a function with computational effects,

with input type A and output type B, to be a set-theoretic

function

f : A → T(B).

Finally, in each case, we define an effectful identity and an

effectful composition:

idT : A → T(A)
f : A → T(B) g : B → T(C)

g ◦T f : A → T(C)

For this to make any sense, the operations T , idT , and ◦T must

satisfy certain properties, for example

idT ◦T f = f, g ◦T idT = g, h ◦T (g ◦T f) = (h ◦T g) ◦T f.

Such a structure (T, idT , ◦T) is called a monad.

21

The state monad

One of our examples does not seem to fit the pattern of a

monad. Namely, in the case of stateful computation, we used:

f : A× S → B× S.

However, this can easily be rewritten to fit the same pattern as

the other examples:

f : A → (B× S)S.

Here, XY = {g | g : Y → X} denotes the set of all functions from Y

to X.

We therefore have the state monad

T(A) = (A× S)S.

22

Part II: Introduction to category theory

23

Categories

A category C consists of:

• A collection |C| of objects A, B, C, . . .

• For each pair A, B of objects, a set of morphisms

C(A, B)

We also write f : A → B to indicate f ∈ C(A, B).

• with operations

f : A → B g : B → C

g ◦ f : A → C idA : A → A

Note: this notation just means:

◦ : C(B, C)×C(A, B) → C(A,C),

idA ∈ C(A,A).

24

Categories, continued

. . .

• subject to the equations:

idB ◦ f = f, f ◦ idA = f, (h ◦ g) ◦ f = h ◦ (g ◦ f).

25

Examples of categories

• the category Set of sets (and functions),

• the category Rel of sets (and relations),

• the category Grp of groups (and homomorphisms),

• the category Ab of abelian groups (and homomorphisms),

• the category Rng of rings (and ring homomorphisms),

• the category Vec of vector spaces (and linear functions),

• the category Top of topological spaces (and continuous

functions),

• logic: objects = propositions, morphisms = proofs

• computing: objects = data types, morphisms = programs

Concepts such as inverse, monomorphism (injection),

idempotent, product, etc, make sense in any category.

26

Functors

Let C and D be categories. A functor F : C → D is given by the

following data:

• A function F : |C| → |D| from the objects of C to the objects

of D;

• For every pair of objects A,B ∈ |C|, a function

F : C(A, B) → D(FA, FB);

• subject to the equations

F(idA) = idFA, F(g ◦ f) = Fg ◦ Ff

Note: we use F to denote both the object part and the

morphism part of the functor. We also often write FA, Ff, etc.,

instead of the more traditional F(A), F(f).

27

Examples of functors

On Set:

• F(A) = A + X (where X is a fixed set)

• F(A) = P(A) (powerset)

• F(A) = P+(A) (non-empty powerset)

• F(A) = Pr(A) (probability)

• F(A) = A× X (where X is a fixed set)

• F(A) = A× A

• F(A) = AX (where X is a fixed set)

• F(A) = X (where X is a fixed set: constant functor)

• F(A) = A∗ (list functor)

Exercise: supply the missing data making each of these
examples into a functor. A priori this is not unique!

28

Examples of functors from mathematics

• F : Grp → Set given by F(G) = |G|, the “underlying set” of the

group, and F(φ) = φ. This is called a “forgetful” functor.

• There are also forgetful functors Rng → Grp, Ring → Ab,

Ab → Grp, Top → Set, and so on.

• F : Set → Grp, where F(X) is the free group generated by X.

• F : Set → Vec, where F(X) is the vector space with basis X.

• F : Top∗ → Grp, where F(X) = π1(X) is the fundamental group

of X.

Exercise: supply the missing data, and check that each of

these is a functor.

29

Natural transformations

Let C,D be categories and let F, G : C → D be two functors. A

natural transformation η : F → G is given by the following data:

• for every object A ∈ |C|, a morphism ηA : FA → GA;

• subject, for every f : A → B in C, to the equation

FA

ηA

Ff FB

ηB

GA Gf GB.

Note: the diagram is just a notation for an equation

ηB ◦ Ff = Gf ◦ ηA.

30

Examples of natural transformations

On Set, let F be the list functor F(A) = A∗, and let G be the

powerset functor G(A) = P(A).

The function ηA : A∗ → P(A) defined by

ηA(x1, . . . , xn) = {x1, . . . , xn}

is a natural transformation.

The function ηA : A∗ → A∗ defined by

ηA(x1, . . . , xn) = (xn, . . . , x1)

is a natural transformation.

The function ηA : Pfin(A) → A∗ defined by

ηA{x1, . . . , xn} = (x1, . . . , xn)

(in some arbitrary but fixed order) is not a natural

transformation.

31

Monads

Let C be a category. A monad (T, η, µ) on C is given by the

following data:

• A functor T : C → C;

• Two natural transformations η : 1 → T and µ : T2 → T ;

• subject to the equations

T
ηT

idTη

T2

µ

T2
µ

T,

T3
µT

Tµ

T2

µ

T2
µ

T.

32

The Kleisli category of a monad

Recall our compositionality requirement from Part I:

idT : A → TA
f : A → TB g : B → TC

g ◦T f : A → TC

Given a monad (T, η, µ) on a category C, we actually have

enough data to define these operations. Specifically, we can

define

• idT = A
ηA
−−→ TA;

• g ◦T f = A
f
−→ TB

Tg
−−→ T(TC)

µC
−−→ TC.

Exercise: verify the three laws

idT ◦T f = f, g ◦T idT = g, h ◦T (g ◦T f) = (h ◦T g) ◦T f.

Exercise: show that these three laws are equivalent to the

equations in the definition of a monad.

33

Kleisli category, continued

Let (T, η, µ) be a monad on a category C. Recall that an

“effectful” map from A to B is given by

f : A → TB,

with identities and composition as on the previous slide. It is

then natural to make a new category, with the same objects as

C, but using the “effectful” maps as the morphisms. This is

called the Kleisli category of T , and denoted CT .

• Objects: CT has the same objects as C.

• Morphisms: CT (A,B) = C(A, TB).

• Identities and composition: as on the previous slide.

34

Composing functors

Horizontal composition (functors):

C F D G E

If F,G are functors, then so is G ◦ F. Defined on objects as

(G ◦ F)(A) = G(F(A)) and on morphisms as (G ◦ F)(f) = G(F(f)).

Identity (functors):

C
1C C

The identity functor 1C : C → C is defined as 1C(A) = A on

objects and 1C(f) = f on morphisms.

35

Composing natural transformations

Vertical composition (natural transformations):

C

H

G

F

D

α⇑

β⇑

If α : F → G and β : G → H are natural transformations, then so is

β • α : F → H. If it defined by (β • α)A = βA ◦ αA : FA → HA.

Identity (natural transformations):

C

F

F

D1F⇑

The identity natural transf. 1F : F → F is defined as (1F)A = 1FA.

By abuse of notation, we sometimes denote 1F by 1, or even F.

36

Composing natural transformations, continued

Whiskering (right):

C

G

F

Dα⇑ H E

If F,G : C → D and H : D → E are functors, and if α : F → G is a
natural transformation, the right whiskering

H ◦ α : H ◦ F → H ◦ G

is defined as (H ◦ α)A : H(FA) → H(GA) by (H ◦ α)A = H(αA). This
is indeed a natural transformation, i.e.,

H(FA)

H(Ff)

H(αA) H(GA)

H(Gf)

H(FB)
H(αB) H(GB).

In this case, it follows from the naturality of α and the
functoriality of H.

37

Composing natural transformations, continued

Whiskering (left):

C F D

H

G

Eα⇑

If F : C → D and G,H : D → E are functors, and if α : G → H is a

natural transformation, the left whiskering

α ◦ F : G ◦ F → H ◦ F

is defined as (α ◦ F)A : G(FA) → H(FA) by (α ◦ F)A = αFA. This is

indeed a natural transformation, i.e.,

G(FA)

G(Ff)

αFA H(FA)

H(Ff)

G(FB)
αFB H(FB).

In this case, it follows from the naturality of α.

38

Composing natural transformations, continued

Horizontal composition (natural transformations):

C

G

F

D

K

H

α⇑ β⇑ E

If F,G : C → D and H, K : D → E are functors, and if α : F → G

and β : H → K are natural transformations, the horizontal

composition

β ◦ α : H ◦ F → K ◦ G

can be defined in two different ways:

• Right whiskering followed by left whiskering:

β ◦ α = (β ◦ G) • (H ◦ α)

• Left whiskering followed by right whiskering:

β ◦ α = (K ◦ α) • (β ◦ F).

39

Composing natural transformations, continued

• Right whiskering followed by left whiskering:

β ◦ α = (β ◦ G) • (H ◦ α)

• Left whiskering followed by right whiskering:

β ◦ α = (K ◦ α) • (β ◦ F).

The two definitions coincide, because

[(β ◦ G) • (H ◦ α)]A = βGA ◦ H(αA), and

[(K ◦ α) • (β ◦ F)]A = K(αA) ◦ βFA, and

H(FA)
H(αA)

βFA

H(GA)

βGA

K(FA)
K(αA)

K(GA).

by naturality of β.

40

Some laws about whiskering

B E C

H

G

F

α⇑

β⇑
D K E

K ◦ (β • α) = (K ◦ β) • (K ◦ α)

K ◦ 1F = 1K◦F
1K ◦ α = K ◦ α

1K ◦ 1F = 1K◦F
(β • α) ◦ E = (β ◦ E) • (α ◦ E)

1F ◦ E = 1F◦E
α ◦ 1E = α ◦ E

41

The double interchange law

C
α⇑

β⇑
D

γ⇑

δ⇑
E

(δ ◦ β) • (γ ◦ α) = (δ • γ) ◦ (β • α)

42

Example: The list monad

Recall that F(A) = A∗ is the list monad. Here A∗ is the set of

finite lists (also known as words, strings) of elements from A.

F is a monad as follows:

• Functor: for f : A → B, define f∗ : A∗ → B∗ by

f∗[a1, . . . , an] = [f(a1), . . . , f(an)].

• Unit: we define ηA : A → A∗ by

ηA(a) = [a] (singleton).

• Multiplication: we define µA : A∗∗ → A∗ by

µA([l1, l2 . . . , ln]) = l1 · l2 · . . . · ln.

Verify the monad laws.

43

Free algebras

Let Σ be a signature, and let E be a set of equations (both in

the sense of universal algebra).

A signature consists of a set |Σ| = {f, g, . . .} of function symbols,

together with an assignment ar : |Σ| → N of an arity to each

function symbol.

Fix a signature. For example, let h be a function symbol of

arity 2, and let g be a function symbol of arity 1.

Let V be a set of variables. Then we can form the set of terms,

e.g.:

x, y, g(x), g(y), h(x, x), h(x, y),

h(g(x), y), h(g(g(x)), x), g(h(x, g(h(y, x)))), . . .

Let TermsΣ(V) be this set of terms.

44

Free algebras, continued

On the set TermsΣ(V), consider the smallest equivalence

relation ∼E such that:

(t = s) ∈ E

t ′ ∼E s ′
t1 ∼E s1, . . . , tn ∼E sn

f(t1, . . . , tn) ∼E f(s1, . . . , sn)

Then TermsΣ(V)/ ∼E is a (Σ, E)-algebra. We denote it by

TermsΣ,E(V).

In fact, it is the free (Σ, E)-algebra generated by V. Concretely,

this means: for any (Σ, E)-algebra A, and any function f : V → A,

there exists a unique homomorphism of (Σ, E)-algebras

g : TermsΣ,E(V) → A such that

V
f

TermsΣ,E(V) g A.

45

The term monad

Fix Σ and E. Consider the functor T : Set → Set given by

T(V) = TermsΣ,E(V).

This is a monad:

• Functor: for f : V → W, define

T(f) : TermsΣ,E(V) → TermsΣ,E(W) by “renaming” all the

variables in a term.

• Unit: ηV : V → TermsΣ,E(V) maps a variable x to the term x.

• Multiplication: µV : T(T(V)) → T(V) takes a term whose

“variables” are other terms. It is defined by “flattening”

this structure into a single term.

Check the monad laws!

46

The list monad as a term monad

In fact, the list monad A 7→ A∗ is the term monad for operations

“·” (arity 2), e (arity 0), with equations

(x · y) · z = x · (y · z), e · x = x, x · e = x.

In other words, A∗ is the free monoid on A. Also:

• T(A) = A +⊥ is the term monad over the signature Σ = {⊥}

(arity 0, no equations);

• T(A) = Pfin(A) is like the list monad, with the additional

equations

x · x = x, x · y = y · x;

• T(A) = Pfin,+ is the same, but without the constant e;

• T(A) = A× Σ∗ is the term monad over the signature

{wc | c ∈ Σ}, each with arity 1.

47

An alternative definition of monad [Manes]

Let C be a category, and let T : |C| → |C| be a function on

objects (here not a priori assumed to be a functor).

Suppose that T is equipped with the following two operations:

ηA : A → TA

f : A → TB

lift(f) : TA → TB

Satisfying:

(a) lift(ηA) = 1TA (b) (liftf)◦ηA = f (c) lift((liftg)◦f) = (liftg)◦(liftf)

Note: then T can be made into a functor like this:

f : A → B

ηB ◦ f : A → TB

lift(ηB ◦ f) : TA → TB

Exercise: prove that this is an equivalent definition of monad.

48

Kleisli category of a monad: CT

Let (T, η, µ) be a monad on a category C. Its Kleisli category CT

is defined as follows:

• Objects: CT has the same objects as C.

• Morphisms: CT (A,B) = C(A, TB).

• Identities and composition:

idT : A → TA
f : A → TB g : B → TC

g ◦T f : A → TC

Then CT is a well-defined category. Moreover, there is a

canonical functor F : C → CT mapping A to A and f to ηB ◦ f, and

a canonical functor G : CT → C mapping A to TA and g to lift(g).

49

Algebras of a monad: CT

Let (T, η, µ) be a monad on a category C.

Definition. An algebra for T is a pair (A, a), where A is an

object of C, and a : TA → A is a morphism, satisfing

T2A Ta

µA

TA

a

TA a A,

A
ηA

1A

TA

a

A.

Given two algebras (A, a) and (B, b), a homomorphism is given

by a map f : A → B satisfying

TA

a

Tf TB

b

A f B.

Consider what this means in case of the term monad for (Σ, E).

50

Eilenberg-Moore category of a monad: CT

Let (T, η, µ) be a monad on a category C. Its Eilenberg-Moore

category CT is defined as follows:

• Objects: algebras (A, a) for the monad T .

• Morphisms: algebra homomorphisms.

• Identities and composition: as in C.

Then CT is a well-defined category. Moreover, there is a

canonical functor F : C → CT mapping A to (TA, µA) and f to Tf.

There is also a canonical functor G : CT → C mapping (A, a) to

A.

51

Some small categories

• Let (P,≤) be a partially ordered set (i.e., ≤ is reflexive,

transitive, and antisymmetric). Then P is a category, where

the objects are the elements of P, and there exists a unique

morphism f : x → y iff x ≤ y.

• Let (M, •, e) be a monoid (i.e., • is an associative operation

with unit e). Then M is a category, where there is a unique

object ∗, and one morphism x : ∗ → ∗ for each element

x ∈ M, with composition x ◦ y = x • y and identity id = e.

• Let X be a set. Then X is a category, called the discrete

category, where the objects are the elements of X, and the

only morphisms are identities idx : x → x.

52

Cartesian product of two categories

If C,D are categories, then C×D is a category defined as:

• Objects: (A, B) where A ∈ |C| and B ∈ |D|;

• Morphisms: (f, g) : (A, B) → (A ′, B ′) where f : A → A ′ and

g : B → B ′;

• Composition and identities: componentwise.

53

Duality

If C is a category, then its dual category Cop is defined by

• Objects: Cop has the same objects as C;

• Morphisms: Cop(A,B) = C(B,A);

• Identities: same as those of C;

• Composition: in reverse order, i.e.: g ◦Cop f = f ◦C g.

For every definition or theorem about categories, there is a dual

definition or theorem, obtained by replacing the category by its

dual.

54

Adjunctions

Suppose F : C → D and G : D → C are two functors, and further
assume that there is a natural isomorphism of hom-sets

D(FA, B) ∼= C(A,GB).

Then F is called a left adjoint of G, and G is called a right
adjoint of F. We write F ⊣ G.

Equivalently (and more concretely), this means that there is
ηA : A → G(FA), and for every f : A → GB, there exists a unique
h : FA → B satisfying

A

ηA
f

GFA Gh GB.

Adjoints arise everywhere in mathematics. For example: if G is

a forgetful functor, and F is its left adjoint, then F is a free
functor.

55

Uniqueness of adjoints

Theorem. Suppose that G : D → C is a functor, and that

F, F ′ : C → D are two left adjoints of G. Then there exists a

natural isomorphism α : F → F ′ such that η ′ = Gα • η.

A

ηA
η ′
A

G(FA)
GαA G(F ′A)

56

Adjoints between posets

Remark. Let P,Q be partially ordered (or preordered) sets, and

let f : P → Q and g : Q → P be monotone functions. Then f is

left adjoint to g if and only if for all x ∈ P, y ∈ Q:

f(x) ≤ y ⇐⇒ x ≤ g(y).

(Equivalently, f is “residuated”, or f and g form a “Galois

connection”).

57

Adjunctions and monads

Every adjunction F ⊣ G, where F : C → D and G : D → C, defines

a monad on C, via

T = G ◦ F.

(Note: lots of details omitted).

Conversely, every monad arises in this way: actually in two

different ways that are canonical: If T is any monad on a

category C, then both the Kleisli construction and the

Eilenberg-Moore construction give rise to adjuctions, each

satisfying T = G ◦ F:

CT

G⊣

C

F

F
⊥ CT

G

58

Adjunctions and monads, continued

Both the Kleisli construction and the Eilenberg-Moore

construction give rise to adjuctions, each satisfying T = G ◦ F.

Moreover, they are universal: given any third adjunction F ⊣ G

between C and some category D, there exist unique functors

H : CT → D and K : D → CT such that

CT

G⊣

H
D

K
G

⊣

C

F

F
⊥

F

CT

G

59

Constructions within categories (blackboard)

• Monomorphism (dual: epimorphism)

• Isomorphism

• Terminal object (dual: initial object)

• Finite products (dual: coproducts)

• Equalizers (dual: coequalizers)

• Limits (dual: colimits)

60

Monomorphisms and epimorphisms

Let f : A → B be a morphism in a category. Then f is called a

monomorphism (or monic) if:

for all objects X, and all morphisms g, h : X → A,

f ◦ g = f ◦ h ⇒ g = h.

X
g

h

A f B.

The dual concept is called an epimorphism (or epic).

61

Isomorphisms

A morphism f : A → B in a category is called an isomorphism if

it is invertible, i.e., there exists some g : B → A such that

f ◦ g = 1B and g ◦ f = 1A.

A natural transformation α : F → G is called a natural

isomorphism if αA : FA → GA is an isomorphism for all A.

A category in which all morphisms are invertible is called a

groupoid. (Or in case there is only one object, it is called a

group).

Example: in Set, monomorphism = injective, epimorphism =

surjective, isomorphism = bijective.

In Top, monomorphism = injective, epimorphism = dense,

isomorphism = homeomorphism.

62

Terminal object

An object A in a category is called terminal if:

for all objects X, there exists a unique morphism g : X → A.

Note: a terminal object, if it exists, is unique up to

isomorphism.

The dual concept is called an initial object.

Example: in Set, 1 = {∗} is terminal and 0 = ∅ is initial.

In Vec, Grp, and Set⊥, 1 is initial and terminal.

63

Categorical product

Let A, B be objects in a category. A categorical product of A

and B is a triple (C, π1, π2), where C is an object, π1 : C → A and

π2 : C → B are morphisms, and such that the following property

holds:

For all objects X and all morphisms f : X → A and g : X → B,

there exists a unique morphism h : X → C such that f = π1 ◦ h

and g = π2 ◦ h.

X

f g

h

C

π1 π2

A B

64

Categorical product, continued

Note: a categorical product, if it exists, is unique up to

isomorphism.

Notation: we often write C = A× B, h = 〈f, g〉.

X

f g

〈f,g〉

A× B

π1 π2

A B

Example: In Set, Grp, Top, Vec, Pos, categorical product is

cartesian product (with the pointwise structure).

In a poset, categorical product is meet, i.e., greatest lower

bound.

65

Products, continued

Proposition. In any category where they exist, categorical

products satisfy

(A× B)× C ∼= A× (B× C), A× B ∼= B× A

If 1 is a terminal object, then we also have

1× A ∼= A ∼= A× 1.

Moreover, the above isomorphisms are natural.

66

Categorical coproduct

The dual concept of a product is a coproduct.

A B

A + B

i1 i2

X

f g

[f,g]

Example: In Set, coproduct is disjoint union. In Vec and Ab

coproduct is direct sum. What is the coproduct, if any, in

Set⊥?

67

Equalizers

Let f, g : A → B be morphisms in a category. An equalizer of f

and g is a pair (E, e) where E is an object, e : E → A is a

morphism, and such f ◦ e = g ◦ e, and such that the following

property holds:

For all objects X and all morphisms x : X → A with f ◦ x = g ◦ x,

there exists a unique morphism h : X → E such that x = e ◦ h.

E e A
f

g
B

X

xh

Example: in Set, an equalizer is the graph of an equation, i.e.,

E = {x ∈ A | f(x) = g(x)}.

68

Coequalizers

The dual concept of an equalizer is a coequalizer. In Set, this

corresponds to the quotient of an equivalence relation.

EeA
f

g
B

X

x h

69

Products and adjoints

Let C be a category with products. Consider the functors

F : C → C×C, G : C×C → C

given by

• F(A) = (A,A) (and similarly on morphisms),

• G(A, B) = A× B.

Then F is a left adjoint of G:

(C×C)((X, X), (A,B)) ∼= C(X,A× B).

Concretely, this means that morphisms (f, g) : (X, X) → (A,B) in

C×C are in natural bijective correspondence with morphisms

h : X → A× B.

Moreover, because adjoints are unique, this property is

equivalent to the definition of products.

70

Exponential objects

Let C be a category with products, and let A, B be objects. We

say that the exponential of A and B exists if there is an object

E and a natural isomorphism

C(X× A,B) ∼= C(X, E).

(natural in X). In this case, we usually write E = BA, so that:

C(X× A, B) ∼= C(X, BA).

Informally, BA is a space of functions from A to B.

In other words, there is a bijective correspondence between

morphisms f : X× A → B and morphisms f : X → BA.

71

Exponential objects, continued

The definition of exponential objects can be understood in

several equivalent ways.

More abstractly: A is exponentiable if the functor F(X) = X× A

has a right adjoint. In this case, the right adjoint is written

G(B) = BA.

C(X× A,B) ∼= C(X, BA).

C(F(X), B) ∼= C(X,G(B)).

72

Exponential objects, continued

More concretely: An exponential for A and B is given by a

pair (BA, ǫ) where BA is an object, ǫ : BA × A → B is a morphism,

and such that the following property holds:

For any object X and morphism f : X× A → B, there exists a

unique morphism h : X → BA such that

BA × A
ǫ

B

X× A

f
h×A

Exponential objects, if they exist, are unique up to

isomorphism. We write h = f∗.

73

Cartesian-closed categories

Definition. A cartesian-closed category is a category with

finite products (i.e., a products and a terminal object) and with

exponential objects.

74

Part III: Lambda calculus

75

Recall: Types in programming

In computing, the type of a variable is the set of values that

the variable can take. Examples of simple types are:

bit,nat, int, string, . . .

We write x : A to indicate that the variable x has type A.

Simple types can be combined by type operations. Examples:

A× B : Cartesian product (pairs of an A and a B)
A + B : Disjoint union (either an A or a B)
listA : Type of lists of A’s

We write (x, y) for a pair, and π1(x, y) = x and π2(x, y) = y for the

first and second component, respectively.

76

Higher-order functions

We write f : A → B for a function that takes inputs of type A

and produces outputs of type B.

We can also regard A → B as a type, namely the type of all

functions from A to B. This is called a function space.

A higher order type is a type where a function space occurs in

a nested way, for example:

• a function that inputs another function: (A → B) → C,

• a function that outputs another function: A → (B → C),

• a pair of two functions: (A → B)× (C → D).

A higher order function is a function of higher order type.

We need a language for manipulating higher order functions.

77

Example: Arithmetic expressions

Arithmetic expressions are made up from variables (x, y, z . . .),

numbers (1, 2, 3, . . .), and operators (“+”, “−”, “×” etc.)

The expression x+ y stands for the result of an addition (not an

instruction to add, or the statement that something is being

added).

We write

A = (x + y)× z2

One could write this as sequence of instructions:

let w = x + y, then let u = z2, then let A = w× u.

But such instructions would be cumbersome to manipulate, and

algebraic laws impossible to state. Nested expressions are a

powerful tool (which we take for granted).

78

Lambda calculus

The lambda calculus is an expression language for functions.

We normally write

Let f be the function defined by f(x) = x2. Then consider A = f(5),

In the lambda calculus we can just write

A = (λx.x2)(5).

The expression λx.x2 stands for the function that maps x to x2

(as opposed to the instruction of squaring x, or the statement

that x is being squared).

As for arithmetic, some of the power of the notation derives

from the ability to nest expressions.

79

Examples

The composition operation ◦ of two functions:

We can write f ◦ g as λx.f(g(x)).

We can write C(f, g) = f ◦ g as

λf.λg.f ◦ g = λf.λg.λx.f(g(x)).

Here, if f : A → B and g : B → C, then f ◦ g : A → C, so the type of

C is

C : (A → B) → ((B → C) → (A → C))

80

Examples

The function mappair takes a function f and a pair (x, y), and

returns (f(x), f(y)). It is an example of a higher-order function.

mappair = λf.λp.(f(π1p), f(π2p)),

mappair : (A → B) → ((A× A) → (B× B)).

81

Some do-it-yourself examples

Find lambda terms of the following types:

• A → A× A,

• B → (A → A× B),

• (A → C) → (A× B → C),

• A → A× B,

• (A× (A → B)) → B.

82

The Curry-Howard isomorphism

There is a fundamental connection between typed lambda

calculus and intuitionistic propositional logic.

Translation:

• Basic types A,B, C are propositional symbols.

• Type operations ×, +, and → are logical connectives and,

or, and ⇒, respectively.

Proposition (Curry-Howard isomorphism): There exists a

closed lambda term of a given type if and only if that type

corresponds to a tautology of intuitionistic logic. Moreover,

lambda terms correspond to proofs.

83

Examples

• A ⇒ A and A Provable: λxA.(x, x)

• B ⇒ (A ⇒ A and B) Provable: λxB.λyA.(y, x)

• (A ⇒ C) ⇒ (A and B ⇒ C) Provable: λfA⇒C.λpAandB.f(π1(p))

• A ⇒ A and B Not provable.

• (A and (A ⇒ B)) ⇒ B Provable: λx.(pi2(x)(π1(x))).

Cf. the Brower-Heyting-Kolmogorov interpretation: a proof of

A and B is a pair of a proof of A and a proof of B. A proof of

A ⇒ B is a function that maps proofs of A to proofs of B.

84

The inference rules of intuitionistic logic

Assertions (“sequents”) are of the form:

A1, . . . , An ⊢ B,

meaning B is provable from assumptions A1, . . . , An.

Γ, A ⊢ A Γ ⊢ T

Γ, A ⊢ B
Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A
Γ ⊢ B

Γ ⊢ A Γ ⊢ B
Γ ⊢ A and B

Γ ⊢ A and B
Γ ⊢ A

Γ ⊢ A and B
Γ ⊢ B

85

The typing rules of simply-typed lambda calculus

Assertions (“judgments”) are of the form:

x1 : A1, . . . , xn : An ⊢ M : B,

meaning term M, with free variables x1, . . . , xn of respective

types A1, . . . , An, is well-typed of type B.

Γ, x : A ⊢ x : A Γ ⊢ ∗ : 1

Γ, x : A ⊢ M : B
Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M,N) : A× B

Γ ⊢ M : A× B
Γ ⊢ π1(M) : A

Γ ⊢ M : A× B
Γ ⊢ π2(M) : B

86

The evaluation of lambda terms

The basic computational rule of lambda calculus is β-reduction,

which means, applying a function to an argument:

(λx.M)N → M[N/x],

π1(M,N) → M, π2(M,N) → N.

We close these rules using transitivity, reflexivity, and

congruence.

Theorem (Normalization): Every simply-typed lambda term

reduces in a finite number of steps to a unique normal form.

Theorem (Subject reduction): If Γ ⊢ M : A is well-typed and

M →∗ N, then Γ ⊢ N : A.

With this, the lambda calculus is a (simple) programming

language — see Lisp, ML, Haskell for real world examples.

87

The theory of βη conversion

It makes sense to consider two lambda terms equal if they have

the same normal form. Define β-equivalence, in symbols =β to

the the smallest congruence relation containing β-reduction.

It also makes sense to consider so-called η-rules:

λx.(Mx) =η M, where x is not free in M,

(π1M,π2M) = M, where M : A× B,

∗ = M, where M : 1.

Let =βη be the smallest congruence relation containing

β-reduction and η-equivalences.

88

The interpretation of simply-typed lambda calculus in Set

The simple type system can be interpreted in set theory, where

a type is identified with a set.

• Basic types are interpreted as specific sets: [[bit]] = {0, 1},

[[nat]] = N, etc.

• Type operations are interpreted as set operations:

[[1]] = 1,

[[A× B]] = [[A]] × [[B]],

[[A → B]] = [[B]][[A]].

• A context Γ = x1 : A1, . . . , xn : An is interpreted as a set:

[[Γ]] = [[A1]] × . . .× [[An]].

• A typing judgement Γ ⊢ M : B is interpreted as a function:

[[Γ ⊢ M : B]] : [[Γ]] → [[B]]

defined by recursion on M.
89

The interpretation of simply-typed lambda calculus in
cartesian-closed categories [Lambek]

Instead of sets, one can use the objects of any cartesian-closed

category.

• Basic types are interpreted as specific objects [[A]], [[B]], etc.

• Type operations are interpreted using the cartesian-closed

structure:

[[1]] = 1,

[[A× B]] = [[A]] × [[B]],

[[A → B]] = [[B]][[A]].

• A context Γ = x1 : A1, . . . , xn : An is interpreted as an object:

[[Γ]] = [[A1]] × . . .× [[An]].

• A typing judgement Γ ⊢ M : B is interpreted as a morphism:

[[Γ ⊢ M : B]] : [[Γ]] → [[B]]

defined by recursion on M.
90

The interpretation of simply-typed lambda calculus in

cartesian-closed categories, continued

[[Γ, x : A ⊢ x : A]] = [[Γ]] × [[A]]
π2−−→ [[A]]

[[Γ ⊢ ∗ : 1]] = [[Γ]]
∗
−→ 1

[[Γ ⊢ λx.M : A → B]] = [[Γ]]
[[Γ,x:A⊢M:B]]∗
−−−−−−−−−−→ [[B]][[A]]

[[Γ ⊢ MN : B]] = [[Γ]]
〈[[Γ⊢M:A→B]],[[Γ⊢N:A]]〉
−−−−−−−−−−−−−−−−−→ [[B]][[A]] × [[A]]

ǫ
−→ [[B]].

[[Γ ⊢ (M,N) : A× B]] = [[Γ]]
〈[[Γ⊢M:A]],[[Γ⊢N:B]]〉
−−−−−−−−−−−−−−→ [[A]] × [[B]]

[[Γ ⊢ π1(M) : A]] = [[Γ]]
[[Γ⊢M:A×B]]
−−−−−−−−−→ [[A]] × [[B]]

π1
−−→ [[A]]

[[Γ ⊢ π2(M) : B]] = [[Γ]]
[[Γ⊢M:A×B]]
−−−−−−−−−→ [[A]] × [[B]]

π2
−−→ [[B]]

91

Theorem 1. The interpretation of the simply-typed lambda

calculus in cartesian-closed categories is sound. In other words,

if Γ ⊢ M = N : A, then [[Γ ⊢ M : A]] = [[Γ ⊢ N : A]]. (Easy, by

induction).

Theorem 2. The interpretation of the simply-typed lambda

calculus in cartesian-closed categories is complete. In other

words, if [[Γ ⊢ M : A]] = [[Γ ⊢ N : A]] for all interpretations in all

cartesian-closed categories, then Γ ⊢ M = N : A.

Theorem 3. The simply-typed lambda calculus is an internal

language for cartesian-closed categories.

(Roughly: there is a one-to-one correspondence between

models of the lambda calculus and cartesian-closed categories).

92

The term model

Fix a set of basic types. The term model of the simply-typed

lambda calculus is a category Λ, constructed as follows:

• The objects are types.

• A morphism f : A → B is a βη-equivalence class of typing

judgements of the form x : A ⊢ M : B.

Theorem 4. The term model Λ is a cartesian-closed category.

Moreover, for any cartesian-closed category C, there is a

bijective correspondence between:

• Maps assigning objects of C to basic types;

• Interpretations of the lambda calculus in C; and

• Cartesian closed functors F : Λ → C.

93

The Curry-Howard-Lambek isomorphism

By the results of the previous slides Λ is the free

cartesian-closed category, and cartesian-closed categories and

the lambda calculus (and therefore intuitionistic propositional

logic) are essentially the same.

Lambda calculus

Intuitionistic propositional logic Cartesian-closed categories

94

Extensions of the Curry-Howard isomorphism

The Curry-Howard isomorphism gives a basic connection
between programming languages and logic. This connection
can be usefully extended in both directions:

• given a programming language feature, one can ask for its
logical meaning.

• Given a logical feature, one can ask for its computational
meaning.

Examples:

Logic Programming

A or B Sum type A + B

∀ quantifier Polymorphism: λx.x : ∀A.A → A

∃ quantifier Data abstraction: ∃D.(A×D → B)×D

Classical logic A or ¬A Continuations
Type theory Dependently typed programming
Topos logic Set comprehension
.

95

