Introduction to categorical logic

Peter Selinger

Dalhousie University Halifax, Canada

Categorical logic

Categorical logic is about the connections between the following three areas:

- Logic (more precisely, proof theory),
- Computation (more precisely, programming languages),
- Category theory.

Our starting point: computation.

Part I: Introductory examples

Describing behavior

Semantics: to give a mathematical description of the *behavior* of computer programs.

Method 1: (operational) Define a particular kind of machine (Turing machine, Von Neumann machine, Abstract machine, Virtual machine...). Then describe how to run each program on this machine.

Method 2: (denotational) Give a mathematical description of the behavior, independenly of any machine. Specifically, define some mathematical space of behaviors, then map each program to a point in that space.

What is a "mathematical description"?

Part of the basic fabric of **mathematics** (i.e., what every mathematician learns near the beginning of their education) is *how to encode various mathematical objects* (finite sets, integers, rational numbers, real numbers, cartesian coordinates, geometric objects, algebras, topologies, equivalence relations, etc.) *in set theory*. We learn the *standard encodings*, and we also learn how to create *new encodings*.

People often assume that **computer science** is about programming some machine, for example the Intel Core i5-3570 processor running the Windows 7 operating system.

But in fact, many parts of computer science can also be developed by *encoding various computing concepts* (functions, data types, computational effects) *in set theory*.

What is a behavior of a computer program?

Set-theoretic (functional) interpretation:

- A *type* is a *set*. Examples:
 - Bool = $\{true, false\}$.
 - $-\mathbb{N}=\{0,1,2,\ldots\}.$
 - String = {"", "a", "b", "ab", ...}.
- The behavior of a *program* with inputs A and outputs B is given by a *function*

$$f: A \rightarrow B$$
.

Note: in this functional notion of behavior, some aspects of the program are lost, for example: How *long* does it take to compute f(a)? Two programs are considered equal if they compute equal outputs on equal inputs. This is called the *extensional* view of behavior.

Examples from different programming languages

• In C or Java:

```
int f(int x) {
   return x + 1;
}
```

- In Haskell:
 - f :: int -> int
 - f x = x+1
- In Mathematica:

 $f[x_1] := x + 1$

• In lambda calculus:

 $f = \lambda x.x + 1$

All define the same function $f : \mathbb{N} \to \mathbb{N}$, namely f(x) = x + 1.

Compositionality

Programs are built up from smaller programs by means of *combinators*.

The principle of *compositionality* states that the behavior of the whole is uniquely determined by the behavior of the parts.

Therefore, parts that have equal behavior are *interchangeable*.

For example, the expressions f(x) = (2x+4)/2 - 2 and f(x) = x+1 are interchangeable.

For now, we only need to consider two combinators (more may be added later): *identity* and *composition*.

id:
$$A \to A$$

 $\frac{f: A \to B \quad g: B \to C}{g \circ f: A \to C}$

Computational effects

The idea of a program as a function is only a first approximation. In reality, programs do more than just mapping inputs to outputs. For example, they may:

- not terminate;
- be non-deterministic;
- make probabilistic choices;
- write to a file or read from a file;
- be interactive;
- read and modify global variables;
- raise an exception or generate an error;
- . . .

Any such additional behaviors are called "computational effects".

Non-termination

Potentially non-terminating programs are easy to model. A program with input A and output B is now described as a *partial function* $f : A \rightarrow B$.

Concretely, let \perp be a symbol that is not an element of any type. The behavior of a potentially non-terminating program is described as a function

 $f:A\to B+\bot$

with the information interpretation f(a) = b if f terminates on input a with output b, and $f(a) = \bot$ if f diverges.

Notations: A + B denotes disjoint union of sets $A \cup B$. We wrote $A + \bot$ instead of $A + \{\bot\}$.

Non-termination, continued

We also need to account for compositionality, i.e.: what happens to non-termination when programs are combined?

 $\mathsf{id}_{\perp}: \mathsf{A} \to \mathsf{A} + \bot \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{B} + \bot \quad \mathsf{g}: \mathsf{B} \to \mathsf{C} + \bot}{\mathsf{g} \circ_{\perp} \mathsf{f}: \mathsf{A} \to \mathsf{C} + \bot}$

It is clear how to define the operations id_{\perp} and o_{\perp} :

• $id_{\perp}(a) = a$ (the identity program always terminates)

•
$$(g \circ_{\perp} f)(a) = \begin{cases} g(b) & \text{if } f(a) = b, \\ \bot & \text{if } f(a) = \bot. \end{cases}$$

(a composition terminates iff each of the parts terminates)

Non-determinism

A program is *non-deterministic* if it may potentially return a different output each time it is run. For example, a program that computes the root of a polynomial might find a different root on different runs — or maybe it will always find the same root, but it is unspecified which one it finds.

Let $\mathscr{P}^+(A) = \{X \mid X \subseteq A, X \neq \emptyset\}$ denote the *non-empty powerset* of A.

We can describe the behavior of a non-deterministic program with input type A and output type B as a function

$$f: A \to \mathscr{P}^+(B)$$

with the informal interpretation: $f(a) = b_1, \ldots, b_n$ if f may non-deterministically return any of the outputs b_1, \ldots, b_n on input a.

Non-determinism, continued

$$\mathsf{id}_{\mathsf{nd}}: \mathsf{A} \to \mathscr{P}^+(\mathsf{A}) \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathscr{P}^+(\mathsf{B}) \quad \mathsf{g}: \mathsf{B} \to \mathscr{P}^+(\mathsf{C})}{\mathsf{g} \circ_{\mathsf{nd}} \mathsf{f}: \mathsf{A} \to \mathscr{P}^+(\mathsf{C})}$$

How do non-deterministic programs compose?

- $id_{nd}(a) = \{a\}$ (the identity is deterministic)
- $(g \circ_{nd} f)(a) = \bigcup \{g(b) \mid b \in f(a)\}.$

(apply g to every possible output of f)

Probabilistic computation

A program is *probabilistic* if is has access to a random number generator. For example, a probabilistic program might output true with probability $\frac{1}{3}$ and false with probability $\frac{2}{3}$.

Let Pr(A) denote the set of *probability distributions* on A.

We can describe the behavior of a probabilistic program with input type A and output type B as a function

 $f: A \rightarrow Pr(B)$

with the informal interpretation: f(a)(b) = p if f(a) returns b with probability p.

(Note: for simplicity, assume all probability distributions are countably supported.)

Probabilistic computation, continued

$$id_{pr}: A \to Pr(A) \qquad \qquad \frac{f: A \to Pr(B) \quad g: B \to Pr(C)}{g \circ_{pr} f: A \to Pr(C)}$$

How do probabilistic programs compose?

•
$$id_{pr}(a)(b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$$
 (the identity is deterministic)

• $(g \circ_{pr} f)(a)(c) = \sum_{b} f(a)(b) \cdot g(b)(c)$ (sum over all paths)

Output to a terminal

A computer program might write some characters while it runs; for example, to a terminal (console) or to a file.

Let Σ be the set of *characters* (for example, the ASCII alphabet; we will use $\Sigma = \{a, b, c\}$).

Let Σ^* denote the set of *strings*, i.e., finite sequences of elements of Σ . We will write ϵ for the empty string, and $s \cdot t$ for concatenation of strings. Example: "ab" \cdot "bc" = "abbc".

We describe the behavior of a program with input type A, output type B, and writing some characters to a terminal, as a function

$$f: A \to B \times \Sigma^*$$
,

with the informal interpretation: f(a) = (b, s) if f(a) writes s and returns b.

Output to a terminal, continued

$$\mathsf{id}_{\mathsf{out}}: A \to A \times \Sigma^* \qquad \qquad \frac{\mathsf{f}: A \to B \times \Sigma^* \quad \mathsf{g}: B \to C \times \Sigma^*}{\mathsf{g} \circ_{\mathsf{out}} \mathsf{f}: A \to C \times \Sigma^*}$$

How do such programs compose?

- $id_{out}(a) = (a, \epsilon)$ (the identity function writes nothing)
- $(g \circ_{out} f)(a) = (c, s \cdot t)$ where f(a) = (b, s) and g(b) = (c, t)

(f writes first, g writes second)

State

A program is *stateful* if it has access to some global *state* (for example, some global variables) that it may read and update. For example, a program may increment a counter, and use this to return a different integer each time it is called.

Let **S** be the set of states.

We can describe the behavior of a stateful program with input type A and output type B as a function

 $f: A \times S \to B \times S$

with the informal interpretation: $f(a, s_1) = (b, s_2)$ if the program f with input a, run in state s_1 , produces output b and updates the state to s_2 .

State, continued

 $\text{id}_{st}:A{\times}S\to A{\times}S$

 $\frac{f: A \times S \to B \times S \quad g: B \times S \to C \times S}{g \circ_{st} f: A \times S \to C \times S}$

How do stateful programs compose?

- $id_{st}(a, s) = (a, s)$ (the identity does not update the state)
- $(g \circ_{st} f)(a, s_1) = (c, s_3)$ where $f(a, s_1) = (b, s_2)$ and $g(b, s_2) = (c, s_3)$.

(first f updates the state, then g is run in this new state)

Computational effects and monads

What do all these examples have in common? Eugenio Moggi observed that computational effects all have the structure of a *monad*.

In each case, we have some operation T on sets:

- $T(A) = A + \bot$ (non-termination)
- $T(A) = \mathscr{P}^+(A)$ (non-determinism)
- T(A) = Pr(A) (probabilistic)
- $T(A) = A \times \Sigma^*$ (terminal output)
- . . .

Computational effects and monads, continued

In each case, we define a *function with computational effects*, with input type A and output type B, to be a set-theoretic function

$$f: A \rightarrow T(B)$$
.

Finally, in each case, we define an effectful identity and an effectful composition:

$$\mathsf{id}_{\mathsf{T}}: \mathsf{A} \to \mathsf{T}(\mathsf{A}) \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{T}(\mathsf{B}) \quad \mathsf{g}: \mathsf{B} \to \mathsf{T}(\mathsf{C})}{\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}: \mathsf{A} \to \mathsf{T}(\mathsf{C})}$$

For this to make any sense, the operations T, id_T , and o_T must satisfy certain properties, for example

 $id_T \circ_T f = f$, $g \circ_T id_T = g$, $h \circ_T (g \circ_T f) = (h \circ_T g) \circ_T f$. Such a structure (T, id_T, \circ_T) is called a *monad*.

The state monad

One of our examples does not seem to fit the pattern of a monad. Namely, in the case of stateful computation, we used:

 $f: A \times S \rightarrow B \times S$.

However, this can easily be rewritten to fit the same pattern as the other examples:

 $f: A \to (B \times S)^S$.

Here, $X^{Y} = \{g \mid g : Y \to X\}$ denotes the set of all functions from Y to X.

We therefore have the state monad

 $\mathsf{T}(\mathsf{A}) = (\mathsf{A} \times \mathsf{S})^{\mathsf{S}}.$

22

Part II: Introduction to category theory

Categories

A category C consists of:

- A collection |C| of *objects* A, B, C, ...
- For each pair A, B of objects, a set of morphisms

 $\mathbf{C}(A,B)$

We also write $f : A \rightarrow B$ to indicate $f \in C(A, B)$.

• with operations

$$\frac{f: A \to B \qquad g: B \to C}{g \circ f: A \to C} \qquad \frac{id_A: A \to A}{id_A: A \to A}$$

Note: this notation just means:

 \circ : **C**(B, C) × **C**(A, B) → **C**(A, C), id_A ∈ **C**(A, A).

Categories, continued

. . .

• subject to the *equations*:

 $id_B \circ f = f$, $f \circ id_A = f$, $(h \circ g) \circ f = h \circ (g \circ f)$.

Examples of categories

- the category **Set** of *sets* (and functions),
- the category **Rel** of *sets* (and relations),
- the category **Grp** of *groups* (and homomorphisms),
- the category Ab of abelian groups (and homomorphisms),
- the category **Rng** of *rings* (and ring homomorphisms),
- the category Vec of vector spaces (and linear functions),
- the category **Top** of *topological spaces* (and continuous functions),
- *logic:* objects = propositions, morphisms = proofs
- *computing:* objects = data types, morphisms = programs

Concepts such as *inverse*, *monomorphism* (injection), *idempotent*, *product*, etc, make sense in any category.

Functors

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is given by the following data:

- A function $F : |\mathbf{C}| \to |\mathbf{D}|$ from the objects of \mathbf{C} to the objects of \mathbf{D} ;
- For every pair of objects $A, B \in |\mathbf{C}|$, a function $F : \mathbf{C}(A, B) \rightarrow \mathbf{D}(FA, FB);$
- subject to the equations

$$F(id_A) = id_{FA}, F(g \circ f) = Fg \circ Ff$$

Note: we use F to denote both the object part and the morphism part of the functor. We also often write FA, Ff, etc., instead of the more traditional F(A), F(f).

Examples of functors

On Set:

- F(A) = A + X (where X is a fixed set)
- $F(A) = \mathscr{P}(A)$ (powerset)
- $F(A) = \mathscr{P}^+(A)$ (non-empty powerset)
- F(A) = Pr(A) (probability)
- $F(A) = A \times X$ (where X is a fixed set)
- $F(A) = A \times A$
- $F(A) = A^X$ (where X is a fixed set)
- F(A) = X (where X is a fixed set: constant functor)
- $F(A) = A^*$ (list functor)

Exercise: supply the missing data making each of these examples into a functor. A priori this is not unique!

Examples of functors from mathematics

- F: Grp \rightarrow Set given by F(G) = |G|, the "underlying set" of the group, and $F(\varphi) = \varphi$. This is called a "forgetful" functor.
- There are also forgetful functors Rng → Grp, Ring → Ab,
 Ab → Grp, Top → Set, and so on.
- $F : \mathbf{Set} \to \mathbf{Grp}$, where F(X) is the *free group* generated by X.
- $F : \mathbf{Set} \to \mathbf{Vec}$, where F(X) is the vector space with basis X.
- $F: \mathbf{Top}_* \to \mathbf{Grp}$, where $F(X) = \pi_1(X)$ is the fundamental group of X.

Exercise: supply the missing data, and check that each of these is a functor.

Natural transformations

Let C, D be categories and let $F, G : C \to D$ be two functors. A *natural transformation* $\eta : F \to G$ is given by the following data:

- for every object $A \in |\mathbf{C}|$, a morphism $\eta_A : FA \to GA$;
- subject, for every $f : A \rightarrow B$ in **C**, to the equation

Note: the diagram is just a notation for an equation

 $\eta_B \circ Ff = Gf \circ \eta_A.$

Examples of natural transformations

On **Set**, let F be the list functor $F(A) = A^*$, and let G be the powerset functor $G(A) = \mathscr{P}(A)$.

The function $\eta_A : A^* \to \mathscr{P}(A)$ defined by

$$\eta_A(x_1,\ldots,x_n)=\{x_1,\ldots,x_n\}$$

is a natural transformation.

The function $\eta_A : A^* \to A^*$ defined by

$$\eta_A(x_1,\ldots,x_n)=(x_n,\ldots,x_1)$$

is a natural transformation.

The function $\eta_A : \mathscr{P}^{fin}(A) \to A^*$ defined by

$$\eta_A\{x_1,\ldots,x_n\}=(x_1,\ldots,x_n)$$

(in some arbitrary but fixed order) is not a natural transformation.

Monads

Let **C** be a category. A monad (T, η, μ) on **C** is given by the following data:

- A functor $T : C \rightarrow C$;
- Two natural transformations $\eta: 1 \to T$ and $\mu: T^2 \to T$;
- subject to the equations

The Kleisli category of a monad

Recall our compositionality requirement from Part I:

$$\mathsf{id}_{\mathsf{T}}: \mathsf{A} \to \mathsf{T}\mathsf{A} \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{B} \quad \mathsf{g}: \mathsf{B} \to \mathsf{T}\mathsf{C}}{\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{C}}$$

Given a monad (T, η, μ) on a category **C**, we actually have enough data to define these operations. Specifically, we can define

•
$$id_T = A \xrightarrow{\eta_A} TA;$$

•
$$g \circ_T f = A \xrightarrow{f} TB \xrightarrow{Tg} T(TC) \xrightarrow{\mu_C} TC$$
.

Exercise: verify the three laws

 $\mathsf{id}_{\mathsf{T}} \circ_{\mathsf{T}} \mathsf{f} = \mathsf{f}, \quad \mathsf{g} \circ_{\mathsf{T}} \mathsf{id}_{\mathsf{T}} = \mathsf{g}, \quad \mathsf{h} \circ_{\mathsf{T}} (\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}) = (\mathsf{h} \circ_{\mathsf{T}} \mathsf{g}) \circ_{\mathsf{T}} \mathsf{f}.$

Exercise: show that these three laws are *equivalent* to the equations in the definition of a monad.

Kleisli category, continued

Let (T, η, μ) be a monad on a category **C**. Recall that an "effectful" map from A to B is given by

 $f: A \rightarrow TB$,

with identities and composition as on the previous slide. It is then natural to make a new category, with the same objects as C, but using the "effectful" maps as the morphisms. This is called the *Kleisli category* of T, and denoted C_T .

- Objects: C_T has the same objects as C.
- Morphisms: $C_T(A, B) = C(A, TB)$.
- Identities and composition: as on the previous slide.

Composing functors

Horizontal composition (functors):

 $\mathbf{C} \xrightarrow{F} \mathbf{D} \xrightarrow{G} \mathbf{E}$

If F, G are functors, then so is $G \circ F$. Defined on objects as $(G \circ F)(A) = G(F(A))$ and on morphisms as $(G \circ F)(f) = G(F(f))$.

Identity (functors):

 $\mathbf{C} \xrightarrow{\mathbf{1}_{\mathbf{C}}} \mathbf{C}$

The identity functor $1_{\mathbb{C}} : \mathbb{C} \to \mathbb{C}$ is defined as $1_{\mathbb{C}}(A) = A$ on objects and $1_{\mathbb{C}}(f) = f$ on morphisms.

Composing natural transformations

Vertical composition (natural transformations):

If $\alpha : F \to G$ and $\beta : G \to H$ are natural transformations, then so is $\beta \bullet \alpha : F \to H$. If it defined by $(\beta \bullet \alpha)_A = \beta_A \circ \alpha_A : FA \to HA$.

Identity (natural transformations):

The identity natural transf. $1_F : F \to F$ is defined as $(1_F)_A = 1_{FA}$. By abuse of notation, we sometimes denote 1_F by 1, or even F.
Whiskering (right):

If $F, G : \mathbb{C} \to \mathbb{D}$ and $H : \mathbb{D} \to \mathbb{E}$ are functors, and if $\alpha : F \to G$ is a natural transformation, the *right whiskering*

 $H \circ \alpha : H \circ F \to H \circ G$

is defined as $(H \circ \alpha)_A : H(FA) \to H(GA)$ by $(H \circ \alpha)_A = H(\alpha_A)$. This is indeed a natural transformation, i.e.,

$$H(FA) \xrightarrow{H(\alpha_{A})} H(GA)$$

$$H(Ff) \downarrow \qquad \qquad \downarrow H(Gf)$$

$$H(FB) \xrightarrow{H(\alpha_{B})} H(GB).$$

In this case, it follows from the naturality of α and the functoriality of H.

Whiskering (left):

If $F : \mathbb{C} \to \mathbb{D}$ and $G, H : \mathbb{D} \to \mathbb{E}$ are functors, and if $\alpha : G \to H$ is a natural transformation, the *left whiskering*

 $\alpha \circ F : G \circ F \to H \circ F$

is defined as $(\alpha \circ F)_A : G(FA) \to H(FA)$ by $(\alpha \circ F)_A = \alpha_{FA}$. This is indeed a natural transformation, i.e.,

$$\begin{array}{c} G(FA) \xrightarrow{\alpha_{FA}} H(FA) \\ G(Ff) & \downarrow H(Ff) \\ G(FB) \xrightarrow{\alpha_{FB}} H(FB). \end{array}$$

In this case, it follows from the naturality of α .

Horizontal composition (natural transformations):

If $F, G : \mathbb{C} \to \mathbb{D}$ and $H, K : \mathbb{D} \to \mathbb{E}$ are functors, and if $\alpha : F \to G$ and $\beta : H \to K$ are natural transformations, the *horizontal* composition

 $\beta \circ \alpha : H \circ F \to K \circ G$

can be defined in two different ways:

- Right whiskering followed by left whiskering: $\beta \circ \alpha = (\beta \circ G) \bullet (H \circ \alpha)$
- Left whiskering followed by right whiskering: $\beta \circ \alpha = (K \circ \alpha) \bullet (\beta \circ F).$

- Right whiskering followed by left whiskering: $\beta \circ \alpha = (\beta \circ G) \bullet (H \circ \alpha)$
- Left whiskering followed by right whiskering: $\beta \circ \alpha = (K \circ \alpha) \bullet (\beta \circ F).$

The two definitions coincide, because $[(\beta \circ G) \bullet (H \circ \alpha)]_A = \beta_{GA} \circ H(\alpha_A), \text{ and}$ $[(K \circ \alpha) \bullet (\beta \circ F)]_A = K(\alpha_A) \circ \beta_{FA}, \text{ and}$

$$\begin{array}{c} H(FA) \xrightarrow{H(\alpha_A)} H(GA) \\ \beta_{FA} & \downarrow \beta_{GA} \\ K(FA) \xrightarrow{K(\alpha_A)} K(GA). \end{array}$$

by naturality of β .

Some laws about whiskering

The double interchange law

$$(\delta \circ \beta) \bullet (\gamma \circ \alpha) = (\delta \bullet \gamma) \circ (\beta \bullet \alpha)$$

Example: The list monad

Recall that $F(A) = A^*$ is the *list monad*. Here A^* is the set of finite *lists* (also known as *words*, *strings*) of elements from A.

F is a monad as follows:

• Functor: for $f:A \to B$, define $f^*:A^* \to B^*$ by

 $f^*[a_1,\ldots,a_n] = [f(a_1),\ldots,f(a_n)].$

• Unit: we define $\eta_A:A\to A^*$ by

 $\eta_A(a) = [a]$ (singleton).

• Multiplication: we define $\mu_A:A^{**}\to A^*$ by

 $\mu_{\mathcal{A}}([l_1, l_2 \dots, l_n]) = l_1 \cdot l_2 \cdot \dots \cdot l_n.$

Verify the monad laws.

Free algebras

Let Σ be a signature, and let E be a set of equations (both in the sense of universal algebra).

A signature consists of a set $|\Sigma| = \{f, g, ...\}$ of *function symbols*, together with an assignment ar : $|\Sigma| \to \mathbb{N}$ of an *arity* to each function symbol.

Fix a signature. For example, let h be a function symbol of arity 2, and let g be a function symbol of arity 1.

Let V be a set of *variables*. Then we can form the set of *terms*, e.g.:

 $\begin{array}{c} x, y, g(x), g(y), h(x, x), h(x, y), \\ h(g(x), y), h(g(g(x)), x), g(h(x, g(h(y, x)))), \dots \end{array}$

Let $\text{Terms}_{\Sigma}(V)$ be this set of terms.

Free algebras, continued

On the set $\text{Terms}_{\Sigma}(V)$, consider the smallest equivalence relation \sim_F such that:

$$\frac{(t=s)\in E}{t'\sim_E s'} \quad \frac{t_1\sim_E s_1, \ldots, t_n\sim_E s_n}{f(t_1,\ldots,t_n)\sim_E f(s_1,\ldots,s_n)}$$

Then $\text{Terms}_{\Sigma}(V)/\sim_E$ is a (Σ, E) -algebra. We denote it by $\text{Terms}_{\Sigma,E}(V)$.

In fact, it is the *free* (Σ, E) -algebra generated by V. Concretely, this means: for any (Σ, E) -algebra A, and any function $f: V \to A$, there exists a unique homomorphism of (Σ, E) -algebras $g: \operatorname{Terms}_{\Sigma, E}(V) \to A$ such that

$$V f$$

Terms _{Σ,E} (V) --- \bar{g} -->A.

The term monad

Fix Σ and E. Consider the functor $T : \mathbf{Set} \to \mathbf{Set}$ given by

 $T(V) = Terms_{\Sigma,E}(V).$

This is a monad:

- Functor: for $f: V \to W$, define $T(f): Terms_{\Sigma,E}(V) \to Terms_{\Sigma,E}(W)$ by "renaming" all the variables in a term.
- Unit: $\eta_V : V \to \mathsf{Terms}_{\Sigma,E}(V)$ maps a variable x to the term x.
- Multiplication: $\mu_V : T(T(V)) \rightarrow T(V)$ takes a term whose "variables" are other terms. It is defined by "flattening" this structure into a single term.

Check the monad laws!

The list monad as a term monad

In fact, the list monad $A \mapsto A^*$ is the term monad for operations "·" (arity 2), e (arity 0), with equations

 $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}), \quad \mathbf{e} \cdot \mathbf{x} = \mathbf{x}, \quad \mathbf{x} \cdot \mathbf{e} = \mathbf{x}.$

In other words, A^* is the *free monoid* on A. Also:

- $T(A) = A + \bot$ is the term monad over the signature $\Sigma = \{\bot\}$ (arity 0, no equations);
- T(A) = P^{fin}(A) is like the list monad, with the additional equations

$$x \cdot x = x, \quad x \cdot y = y \cdot x;$$

- $T(A) = \mathscr{P}^{fin,+}$ is the same, but without the constant e;
- $T(A) = A \times \Sigma^*$ is the term monad over the signature $\{w_c \mid c \in \Sigma\}$, each with arity 1.

An alternative definition of monad [Manes]

Let **C** be a category, and let $T : |\mathbf{C}| \to |\mathbf{C}|$ be a function on objects (here *not* a priori assumed to be a functor).

Suppose that T is equipped with the following two operations:

 $\frac{f:A \to TB}{\eta_A:A \to TA} \quad \frac{f:A \to TB}{\mathsf{lift}(f):TA \to TB}$

Satisfying:

(a) lift(η_A) = 1_{TA} (b) (liftf) $\circ \eta_A$ = f (c) lift((liftg) $\circ f$) = (liftg) \circ (liftf) Note: then T can be made into a functor like this: $\frac{f: A \to B}{\frac{\eta_B \circ f: A \to TB}{\text{lift}(\eta_B \circ f): TA \to TB}}$

Exercise: prove that this is an equivalent definition of monad.

Kleisli category of a monad: C_T

Let (T, η, μ) be a monad on a category **C**. Its *Kleisli category* **C**_T is defined as follows:

- Objects: C_T has the same objects as C.
- Morphisms: $C_T(A, B) = C(A, TB)$.
- Identities and composition:

 $\mathsf{id}_{\mathsf{T}}: \mathsf{A} \to \mathsf{T}\mathsf{A} \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{B} \quad \mathsf{g}: \mathsf{B} \to \mathsf{T}\mathsf{C}}{\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{C}}$

Then C_T is a well-defined category. Moreover, there is a canonical functor $F : \mathbb{C} \to \mathbb{C}_T$ mapping A to A and f to $\eta_B \circ f$, and a canonical functor $G : \mathbb{C}_T \to \mathbb{C}$ mapping A to TA and g to lift(g).

Algebras of a monad: C^T

Let (T, η, μ) be a monad on a category **C**.

Definition. An *algebra* for T is a pair (A, a), where A is an object of C, and $a : TA \rightarrow A$ is a morphism, satisfing

Given two algebras (A, a) and (B, b), a *homomorphism* is given by a map $f : A \to B$ satisfying

Consider what this means in case of the term monad for (Σ, E) .

Eilenberg-Moore category of a monad: C^T

Let (T, η, μ) be a monad on a category **C**. Its *Eilenberg-Moore* category **C**^T is defined as follows:

- Objects: algebras (A, a) for the monad T.
- Morphisms: algebra homomorphisms.
- Identities and composition: as in **C**.

Then \mathbf{C}^{T} is a well-defined category. Moreover, there is a canonical functor $F : \mathbf{C} \to \mathbf{C}^{\mathsf{T}}$ mapping A to $(\mathsf{T}A, \mu_A)$ and f to $\mathsf{T}f$. There is also a canonical functor $G : \mathbf{C}^{\mathsf{T}} \to \mathbf{C}$ mapping (A, \mathfrak{a}) to A.

Some small categories

- Let (P, \leq) be a partially ordered set (i.e., \leq is reflexive, transitive, and antisymmetric). Then P is a category, where the objects are the elements of P, and there exists a unique morphism $f: x \to y$ iff $x \leq y$.
- Let (M, •, e) be a monoid (i.e., is an associative operation with unit e). Then M is a category, where there is a unique object *, and one morphism x : * → * for each element x ∈ M, with composition x ∘ y = x y and identity id = e.
- Let X be a set. Then X is a category, called the *discrete* category, where the objects are the elements of X, and the only morphisms are identities $id_x : x \to x$.

Cartesian product of two categories

If C, D are categories, then $C \times D$ is a category defined as:

- Objects: (A, B) where $A \in |\mathbf{C}|$ and $B \in |\mathbf{D}|$;
- Morphisms: $(f, g) : (A, B) \to (A', B')$ where $f : A \to A'$ and $g : B \to B'$;
- Composition and identities: componentwise.

Duality

If **C** is a category, then its *dual category* **C**^{op} is defined by

- Objects: C^{op} has the same objects as C;
- Morphisms: $\mathbf{C}^{\mathrm{op}}(A, B) = \mathbf{C}(B, A);$
- Identities: same as those of C;
- Composition: in reverse order, i.e.: $g \circ_{\mathbf{C}^{OP}} f = f \circ_{\mathbf{C}} g$.

For every definition or theorem about categories, there is a *dual* definition or theorem, obtained by replacing the category by its dual.

Adjunctions

Suppose $F: \mathbf{C} \to \mathbf{D}$ and $G: \mathbf{D} \to \mathbf{C}$ are two functors, and further assume that there is a *natural isomorphism of hom-sets*

 $\mathbf{D}(FA, B) \cong \mathbf{C}(A, GB).$

Then F is called a *left adjoint* of G, and G is called a *right adjoint* of F. We write $F \dashv G$.

Equivalently (and more concretely), this means that there is $\eta_A : A \to G(FA)$, and for every $f : A \to GB$, there exists a unique $h : FA \to B$ satisfying

Adjoints arise everywhere in mathematics. For example: if G is a *forgetful functor*, and F is its left adjoint, then F is a *free functor*.

Uniqueness of adjoints

Theorem. Suppose that $G : D \to C$ is a functor, and that $F, F' : C \to D$ are two left adjoints of G. Then there exists a natural isomorphism $\alpha : F \to F'$ such that $\eta' = G\alpha \bullet \eta$.

Adjoints between posets

Remark. Let P, Q be partially ordered (or preordered) sets, and let $f : P \to Q$ and $g : Q \to P$ be monotone functions. Then f is left adjoint to g if and only if for all $x \in P$, $y \in Q$:

 $f(x) \le y \quad \iff \quad x \le g(y).$

(Equivalently, f is "residuated", or f and g form a "Galois connection").

Adjunctions and monads

Every adjunction $F \dashv G$, where $F : \mathbb{C} \to \mathbb{D}$ and $G : \mathbb{D} \to \mathbb{C}$, defines a monad on \mathbb{C} , via

 $\mathsf{T}=\mathsf{G}\circ\mathsf{F}.$

(Note: lots of details omitted).

Conversely, every monad arises in this way: actually in *two* different ways that are canonical: If T is any monad on a category C, then both the *Kleisli construction* and the *Eilenberg-Moore construction* give rise to adjuctions, each satisfying $T = G \circ F$:

$$\mathbf{C}_{\mathsf{T}}$$

$$\mathsf{F} \mid \mathsf{G}$$

$$\mathbf{C} \xrightarrow{\mathsf{F}}_{\mathsf{G}} \mathbf{C}^{\mathsf{T}}$$

Adjunctions and monads, continued

Both the Kleisli construction and the Eilenberg-Moore construction give rise to adjuctions, each satisfying $T = G \circ F$. Moreover, they are *universal*: given any third adjunction $F \dashv G$ between C and some category D, there exist *unique* functors $H : C_T \rightarrow D$ and $K : D \rightarrow C^T$ such that

Constructions within categories (blackboard)

- Monomorphism (dual: epimorphism)
- Isomorphism
- Terminal object (dual: initial object)
- Finite products (dual: coproducts)
- Equalizers (dual: coequalizers)
- Limits (dual: colimits)

Monomorphisms and epimorphisms

Let $f : A \rightarrow B$ be a morphism in a category. Then f is called a *monomorphism* (or *monic*) if:

for all objects X, and all morphisms $g, h: X \rightarrow A$,

$$f \circ g = f \circ h \quad \Rightarrow \quad g = h.$$

The dual concept is called an *epimorphism* (or *epic*).

Isomorphisms

A morphism $f : A \to B$ in a category is called an *isomorphism* if it is invertible, i.e., there exists some $g : B \to A$ such that $f \circ g = 1_B$ and $g \circ f = 1_A$.

A natural transformation $\alpha : F \to G$ is called a *natural isomorphism* if $\alpha_A : FA \to GA$ is an isomorphism for all A.

A category in which *all* morphisms are invertible is called a *groupoid*. (Or in case there is only one object, it is called a *group*).

Example: in **Set**, monomorphism = injective, epimorphism = surjective, isomorphism = bijective.

In **Top**, monomorphism = injective, epimorphism = dense, isomorphism = homeomorphism.

Terminal object

An object A in a category is called *terminal* if:

for all objects X, there exists a *unique* morphism $g: X \to A$.

Note: a terminal object, if it exists, is unique up to isomorphism.

The dual concept is called an *initial* object.

Example: in **Set**, $1 = \{*\}$ is terminal and $0 = \emptyset$ is initial.

In Vec, Grp, and Set |, 1 is initial and terminal.

Categorical product

Let A, B be objects in a category. A categorical product of A and B is a triple (C, π_1, π_2) , where C is an object, $\pi_1 : C \to A$ and $\pi_2 : C \to B$ are morphisms, and such that the following property holds:

For all objects X and all morphisms $f: X \to A$ and $g: X \to B$, there exists a *unique* morphism $h: X \to C$ such that $f = \pi_1 \circ h$ and $g = \pi_2 \circ h$.

Categorical product, continued

Note: a categorical product, if it exists, is unique up to isomorphism.

Notation: we often write $C = A \times B$, $h = \langle f, g \rangle$.

Example: In Set, Grp, Top, Vec, Pos, categorical product is cartesian product (with the pointwise structure).

In a poset, categorical product is *meet*, i.e., *greatest lower bound*.

Products, continued

Proposition. In any category where they exist, categorical products satisfy

 $(A \times B) \times C \cong A \times (B \times C), \quad A \times B \cong B \times A$

If 1 is a terminal object, then we also have

 $1 \times A \cong A \cong A \times 1.$

Moreover, the above isomorphisms are natural.

Categorical coproduct

The dual concept of a product is a *coproduct*.

Example: In Set, coproduct is disjoint union. In Vec and Ab coproduct is direct sum. What is the coproduct, if any, in Set_ \perp ?

Equalizers

Let $f, g : A \to B$ be morphisms in a category. An *equalizer* of f and g is a pair (E, e) where E is an object, $e : E \to A$ is a morphism, and such $f \circ e = g \circ e$, and such that the following property holds:

For all objects X and all morphisms $x : X \to A$ with $f \circ x = g \circ x$, there exists a *unique* morphism $h : X \to E$ such that $x = e \circ h$.

Example: in **Set**, an equalizer is the graph of an equation, i.e., $E = \{x \in A \mid f(x) = g(x)\}.$

Coequalizers

The dual concept of an equalizer is a coequalizer. In **Set**, this corresponds to the quotient of an *equivalence relation*.

Products and adjoints

Let ${\bf C}$ be a category with products. Consider the functors

 $F: \mathbf{C} \to \mathbf{C} \times \mathbf{C}, \quad G: \mathbf{C} \times \mathbf{C} \to \mathbf{C}$

given by

- F(A) = (A, A) (and similarly on morphisms),
- $G(A, B) = A \times B$.

Then F is a *left adjoint* of G:

 $(\mathbf{C} \times \mathbf{C})((\mathbf{X}, \mathbf{X}), (\mathbf{A}, \mathbf{B})) \cong \mathbf{C}(\mathbf{X}, \mathbf{A} \times \mathbf{B}).$

Concretely, this means that morphisms $(f, g) : (X, X) \rightarrow (A, B)$ in $C \times C$ are in natural bijective correspondence with morphisms $h : X \rightarrow A \times B$.

Moreover, because adjoints are unique, this property is *equivalent* to the definition of products.

Exponential objects

Let **C** be a category with products, and let A, B be objects. We say that the *exponential* of A and B exists if there is an object **E** and a natural isomorphism

 $\mathbf{C}(\mathbf{X} \times \mathbf{A}, \mathbf{B}) \cong \mathbf{C}(\mathbf{X}, \mathbf{E}).$

(natural in X). In this case, we usually write $E = B^A$, so that:

 $\mathbf{C}(\mathbf{X} \times \mathbf{A}, \mathbf{B}) \cong \mathbf{C}(\mathbf{X}, \mathbf{B}^{\mathbf{A}}).$

Informally, B^A is a space of functions from A to B.

In other words, there is a bijective correspondence between morphisms $f : X \times A \rightarrow B$ and morphisms $f : X \rightarrow B^A$.

Exponential objects, continued

The definition of exponential objects can be understood in several equivalent ways.

More abstractly: A is *exponentiable* if the functor $F(X) = X \times A$ has a *right adjoint*. In this case, the right adjoint is written $G(B) = B^A$.

 $\mathbf{C}(\mathbf{X} \times \mathbf{A}, \mathbf{B}) \cong \mathbf{C}(\mathbf{X}, \mathbf{B}^{\mathbf{A}}).$

 $\mathbf{C}(\mathbf{F}(\mathbf{X}),\mathbf{B})\cong\mathbf{C}(\mathbf{X},\mathbf{G}(\mathbf{B})).$
Exponential objects, continued

More concretely: An *exponential* for A and B is given by a pair (B^A, ϵ) where B^A is an object, $\epsilon : B^A \times A \to B$ is a morphism, and such that the following property holds:

For any object X and morphism $f: X \times A \to B$, there exists a *unique* morphism $h: X \to B^A$ such that

Exponential objects, if they exist, are unique up to isomorphism. We write $h = f^*$.

Cartesian-closed categories

Definition. A *cartesian-closed category* is a category with finite products (i.e., a products and a terminal object) and with exponential objects.

Part III: Lambda calculus

Recall: Types in programming

In computing, the *type* of a variable is the set of values that the variable can take. Examples of simple types are:

bit, nat, int, string, ...

We write x : A to indicate that the variable x has type A.

Simple types can be combined by type operations. Examples:

 $A \times B$: Cartesian product (pairs of an A and a B) A + B: Disjoint union (either an A or a B) **list** A: Type of lists of A's

We write (x, y) for a pair, and $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$ for the first and second component, respectively.

Higher-order functions

We write $f : A \rightarrow B$ for a *function* that takes inputs of type A and produces outputs of type B.

We can also regard $A \rightarrow B$ as a *type*, namely the type of all functions from A to B. This is called a *function space*.

A *higher order type* is a type where a function space occurs in a nested way, for example:

- a function that inputs another function: $(A \rightarrow B) \rightarrow C$,
- a function that outputs another function: $A \rightarrow (B \rightarrow C)$,
- a pair of two functions: $(A \rightarrow B) \times (C \rightarrow D)$.

A higher order function is a function of higher order type.

We need a language for manipulating higher order functions.

Example: Arithmetic expressions

Arithmetic expressions are made up from variables (x, y, z...), numbers (1, 2, 3, ...), and operators ("+", "-", "×" etc.)

The expression x + y stands for the *result* of an addition (not an *instruction* to add, or the *statement* that something is being added).

We write

$$A = (x + y) \times z^2$$

One could write this as sequence of instructions:

let w = x + y, then let $u = z^2$, then let $A = w \times u$.

But such instructions would be cumbersome to manipulate, and algebraic laws impossible to state. Nested expressions are a powerful tool (which we take for granted).

Lambda calculus

The lambda calculus is an expression language for functions. We normally write

Let f be the function defined by $f(x) = x^2$. Then consider A = f(5), In the lambda calculus we can just write

$$A = (\lambda x. x^2)(5).$$

The expression $\lambda x.x^2$ stands for the function that maps x to x^2 (as opposed to the *instruction* of squaring x, or the *statement* that x is being squared).

As for arithmetic, some of the power of the notation derives from the ability to nest expressions.

Examples

The composition operation o of two functions:

We can write $f \circ g$ as $\lambda x.f(g(x))$.

We can write $C(f,g) = f \circ g$ as

 $\lambda f.\lambda g.f \circ g = \lambda f.\lambda g.\lambda x.f(g(x)).$

Here, if $f:A\to B$ and $g:B\to C,$ then $f\circ g:A\to C,$ so the type of C is

$$C: (A \to B) \to ((B \to C) \to (A \to C))$$

Examples

The function mappair takes a function f and a pair (x, y), and returns (f(x), f(y)). It is an example of a higher-order function.

mappair = $\lambda f.\lambda p.(f(\pi_1 p), f(\pi_2 p))$, mappair : $(A \rightarrow B) \rightarrow ((A \times A) \rightarrow (B \times B))$.

Some do-it-yourself examples

Find lambda terms of the following types:

- $A \rightarrow A \times A$,
- $B \rightarrow (A \rightarrow A \times B)$,
- $(A \rightarrow C) \rightarrow (A \times B \rightarrow C)$,
- $A \rightarrow A \times B$,
- $(A \times (A \rightarrow B)) \rightarrow B$.

The Curry-Howard isomorphism

There is a fundamental connection between typed lambda calculus and intuitionistic propositional logic.

Translation:

- Basic types A, B, C are propositional symbols.
- Type operations ×, +, and → are *logical connectives* and, or, and ⇒, respectively.

Proposition (Curry-Howard isomorphism): There exists a closed lambda term of a given type if and only if that type corresponds to a *tautology* of intuitionistic logic. Moreover, lambda terms correspond to *proofs*.

Examples

- $A \Rightarrow A$ and A Provable: $\lambda x^{A}.(x, x)$
- $B \Rightarrow (A \Rightarrow A \text{ and } B)$ Provable: $\lambda x^B . \lambda y^A . (y, x)$
- $(A \Rightarrow C) \Rightarrow (A \text{ and } B \Rightarrow C)$ Provable: $\lambda f^{A \Rightarrow C} \cdot \lambda p^{A \text{ and } B} \cdot f(\pi_1(p))$
- $A \Rightarrow A$ and B Not provable.
- $(A \text{ and } (A \Rightarrow B)) \Rightarrow B$ Provable: $\lambda x.(pi_2(x)(\pi_1(x))).$

Cf. the *Brower-Heyting-Kolmogorov interpretation*: a proof of A and B is a pair of a proof of A and a proof of B. A proof of $A \Rightarrow B$ is a function that maps proofs of A to proofs of B.

The inference rules of intuitionistic logic

Assertions ("sequents") are of the form:

 $A_1,\ldots,A_n\vdash B$,

meaning B is provable from assumptions A_1, \ldots, A_n .

$$\overline{\Gamma}, \overline{A} \vdash \overline{A}$$
 $\overline{\Gamma} \vdash \overline{T}$ $\underline{\Gamma}, \overline{A} \vdash \overline{B}$ $\underline{\Gamma} \vdash A \Rightarrow \overline{B}$ $\overline{\Gamma} \vdash A$ $\Gamma \vdash A \Rightarrow \overline{B}$ $\overline{\Gamma} \vdash A \Rightarrow \overline{B}$ $\overline{\Gamma} \vdash \overline{B}$ $\underline{\Gamma} \vdash A \Rightarrow \overline{B}$

The typing rules of simply-typed lambda calculus

Assertions ("judgments") are of the form:

$$\mathbf{x}_1: \mathbf{A}_1, \ldots, \mathbf{x}_n: \mathbf{A}_n \vdash \mathbf{M}: \mathbf{B},$$

meaning term M, with free variables x_1, \ldots, x_n of respective types A_1, \ldots, A_n , is well-typed of type B.

$$\overline{\Gamma, x : A \vdash x : A}$$
 $\overline{\Gamma \vdash x : 1}$ $\overline{\Gamma, x : A \vdash M : B}$ $\overline{\Gamma \vdash M : A \rightarrow B}$ $\overline{\Gamma \vdash M : A \rightarrow B}$ $\overline{\Gamma \vdash \lambda x.M : A \rightarrow B}$ $\overline{\Gamma \vdash M : A \rightarrow B}$ $\overline{\Gamma \vdash MN : B}$ $\overline{\Gamma \vdash M : A \rightarrow B}$ $\overline{\Gamma \vdash M : A \times B}$ $\overline{\Gamma \vdash M : A \times B}$ $\overline{\Gamma \vdash (M, N) : A \times B}$ $\overline{\Gamma \vdash \pi_1(M) : A}$ $\overline{\Gamma \vdash \pi_2(M) : B}$

The evaluation of lambda terms

The basic computational rule of lambda calculus is β -reduction, which means, applying a function to an argument:

 $(\lambda x.M)N \rightarrow M[N/x],$

 $\pi_1(M, N) \to M, \quad \pi_2(M, N) \to N.$

We close these rules using *transitivity*, *reflexivity*, and *congruence*.

Theorem (Normalization): Every simply-typed lambda term reduces in a finite number of steps to a unique normal form.

Theorem (Subject reduction): If $\Gamma \vdash M : A$ is well-typed and $M \rightarrow^* N$, then $\Gamma \vdash N : A$.

With this, the lambda calculus is a (simple) programming language — see Lisp, ML, Haskell for real world examples.

The theory of $\beta\eta$ conversion

It makes sense to consider two lambda terms *equal* if they have the same normal form. Define β -equivalence, in symbols $=_{\beta}$ to the the smallest congruence relation containing β -reduction.

It also makes sense to consider so-called η -rules:

$$\lambda x.(Mx) =_{\eta} M$$
, where x is not free in M,
 $(\pi_1 M, \pi_2 M) = M$, where $M : A \times B$,
 $* = M$, where $M : 1$.

Let $=_{\beta\eta}$ be the smallest congruence relation containing β -reduction and η -equivalences.

The interpretation of simply-typed lambda calculus in Set

The simple type system can be interpreted in set theory, where a *type* is identified with a *set*.

- Basic types are interpreted as specific sets: [bit] = {0, 1}, [nat] = ℕ, etc.
- Type operations are interpreted as set operations:

$$\begin{bmatrix} 1 \end{bmatrix} = 1, \\ \begin{bmatrix} A \times B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix}, \\ \begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} B \end{bmatrix}^{\begin{bmatrix} A \end{bmatrix}}.$$

• A context $\Gamma = x_1 : A_1, \dots, x_n : A_n$ is interpreted as a set:

$$\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket \times \ldots \times \llbracket A_n \rrbracket.$$

• A typing judgement $\Gamma \vdash M : B$ is interpreted as a function:

 $\llbracket \Gamma \vdash M : B \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket B \rrbracket$

defined by recursion on M.

The interpretation of simply-typed lambda calculus in cartesian-closed categories [Lambek]

Instead of *sets*, one can use the objects of any *cartesian-closed category*.

- Basic types are interpreted as specific *objects* [A], [B], etc.
- Type operations are interpreted using the cartesian-closed structure:

$$\begin{bmatrix} \mathbb{I} \\ \mathbb{I} \end{bmatrix} = 1,$$
$$\begin{bmatrix} A \times B \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \times \begin{bmatrix} B \end{bmatrix},$$
$$\begin{bmatrix} A \to B \end{bmatrix} = \begin{bmatrix} B \end{bmatrix}^{\begin{bmatrix} A \end{bmatrix}}.$$

• A context $\Gamma = x_1 : A_1, \dots, x_n : A_n$ is interpreted as an *object*:

 $\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket \times \ldots \times \llbracket A_n \rrbracket.$

• A typing judgement $\Gamma \vdash M : B$ is interpreted as a *morphism*:

 $\llbracket \Gamma \vdash \mathcal{M} : B \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket B \rrbracket$

defined by recursion on M.

The interpretation of simply-typed lambda calculus in cartesian-closed categories, continued

$$\begin{split} & \llbracket \Gamma, \mathbf{x} : \mathbf{A} \vdash \mathbf{x} : \mathbf{A} \rrbracket &= \llbracket \Gamma \rrbracket \times \llbracket \mathbf{A} \rrbracket \xrightarrow{\pi_2} \llbracket \mathbf{A} \rrbracket \\ & \llbracket \Gamma \vdash \mathbf{x} : 1 \rrbracket &= \llbracket \Gamma \rrbracket \xrightarrow{*} 1 \\ & \llbracket \Gamma \vdash \lambda \mathbf{x} . \mathbf{M} : \mathbf{A} \to \mathbf{B} \rrbracket &= \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma, \mathbf{x} : \mathbf{A} \vdash \mathbf{M} : \mathbf{B} \rrbracket^*} \llbracket \mathbf{B} \rrbracket^{\llbracket \mathbf{A} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} \mathbf{N} : \mathbf{B} \rrbracket &= \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbf{B} \rrbracket, \llbracket \Gamma \vdash \mathbf{N} : \mathbf{A} \rrbracket} \\ & \llbracket \Gamma \vdash (\mathbf{M}, \mathbf{N}) : \mathbf{A} \times \mathbf{B} \rrbracket &= \llbracket \Gamma \rrbracket \xrightarrow{\langle \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbf{B} \rrbracket, \llbracket \Gamma \vdash \mathbf{N} : \mathbf{A} \rrbracket} \\ & \llbracket \Gamma \vdash \pi_1(\mathbf{M}) : \mathbf{A} \rrbracket = \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbf{B} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \rrbracket = \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbf{B} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \rrbracket = \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbb{B} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \rrbracket = \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbb{B} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \rrbracket = \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbb{B} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \rrbracket = \llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \to \mathbb{B} \rrbracket} \\ & \llbracket \Gamma \vdash \mathbf{M} : \mathbf{A} \rrbracket \times \llbracket \mathbf{B} \rrbracket \xrightarrow{\pi_1} \llbracket \mathbf{A} \rrbracket$$

Theorem 1. The interpretation of the simply-typed lambda calculus in cartesian-closed categories is *sound*. In other words, if $\Gamma \vdash M = N : A$, then $\llbracket \Gamma \vdash M : A \rrbracket = \llbracket \Gamma \vdash N : A \rrbracket$. (Easy, by induction).

Theorem 2. The interpretation of the simply-typed lambda calculus in cartesian-closed categories is *complete*. In other words, if $[\Gamma \vdash M : A] = [\Gamma \vdash N : A]$ for *all* interpretations in *all* cartesian-closed categories, then $\Gamma \vdash M = N : A$.

Theorem 3. The simply-typed lambda calculus is an *internal language* for cartesian-closed categories.

(Roughly: there is a one-to-one correspondence between models of the lambda calculus and cartesian-closed categories).

The term model

Fix a set of basic types. The *term model* of the simply-typed lambda calculus is a category Λ , constructed as follows:

- The *objects* are types.
- A morphism $f : A \to B$ is a $\beta\eta$ -equivalence class of typing judgements of the form $x : A \vdash M : B$.

Theorem 4. The term model Λ is a cartesian-closed category. Moreover, for any cartesian-closed category **C**, there is a bijective correspondence between:

- Maps assigning objects of **C** to basic types;
- Interpretations of the lambda calculus in C; and
- Cartesian closed functors $F : \Lambda \to \mathbb{C}$.

The Curry-Howard-Lambek isomorphism

By the results of the previous slides Λ is the *free* cartesian-closed category, and cartesian-closed categories and the lambda calculus (and therefore intuitionistic propositional logic) are essentially the same.

Lambda calculus

Intuitionistic propositional logic Cartesian-closed categories

Extensions of the Curry-Howard isomorphism

The Curry-Howard isomorphism gives a basic connection between *programming languages* and *logic*. This connection can be usefully extended in both directions:

- given a programming language feature, one can ask for its logical meaning.
- Given a logical feature, one can ask for its computational meaning.

Examples:

Logic	Programming
A or B	Sum type A + B
∀ quantifier	Polymorphism: $\lambda x.x : \forall A.A \rightarrow A$
∃ quantifier	Data abstraction: $\exists D.(A \times D \rightarrow B) \times D$
Classical logic A or ¬A	Continuations
Type theory	Dependently typed programming
Topos logic	Set comprehension