
Exponential objects

Let C be a category with products, and let A, B be objects. We

say that the exponential of A and B exists if there is an object

E and a natural isomorphism

C(X× A,B) ∼= C(X, E).

(natural in X). In this case, we usually write E = BA, so that:

C(X× A, B) ∼= C(X, BA).

Informally, BA is a space of functions from A to B.

In other words, there is a bijective correspondence between

morphisms f : X× A → B and morphisms f : X → BA.

71

Exponential objects, continued

The definition of exponential objects can be understood in

several equivalent ways.

More abstractly: A is exponentiable if the functor F(X) = X× A

has a right adjoint. In this case, the right adjoint is written

G(B) = BA.

C(X× A,B) ∼= C(X, BA).

C(F(X), B) ∼= C(X,G(B)).

72

Exponential objects, continued

More concretely: An exponential for A and B is given by a

pair (BA, ǫ) where BA is an object, ǫ : BA × A → B is a morphism,

and such that the following property holds:

For any object X and morphism f : X× A → B, there exists a

unique morphism h : X → BA such that

BA × A
ǫ

B

X× A

f
h×A

Exponential objects, if they exist, are unique up to

isomorphism. We write h = f∗.

73

Cartesian-closed categories

Definition. A cartesian-closed category is a category with

finite products (i.e., a products and a terminal object) and with

exponential objects.

74

Part III: Lambda calculus

75

Recall: Types in programming

In computing, the type of a variable is the set of values that

the variable can take. Examples of simple types are:

bit,nat, int, string, . . .

We write x : A to indicate that the variable x has type A.

Simple types can be combined by type operations. Examples:

A× B : Cartesian product (pairs of an A and a B)
A + B : Disjoint union (either an A or a B)
listA : Type of lists of A’s

We write (x, y) for a pair, and π1(x, y) = x and π2(x, y) = y for the

first and second component, respectively.

76

Higher-order functions

We write f : A → B for a function that takes inputs of type A

and produces outputs of type B.

We can also regard A → B as a type, namely the type of all

functions from A to B. This is called a function space.

A higher order type is a type where a function space occurs in

a nested way, for example:

• a function that inputs another function: (A → B) → C,

• a function that outputs another function: A → (B → C),

• a pair of two functions: (A → B)× (C → D).

A higher order function is a function of higher order type.

We need a language for manipulating higher order functions.

77

Example: Arithmetic expressions

Arithmetic expressions are made up from variables (x, y, z . . .),

numbers (1, 2, 3, . . .), and operators (“+”, “−”, “×” etc.)

The expression x+ y stands for the result of an addition (not an

instruction to add, or the statement that something is being

added).

We write

A = (x + y)× z2

One could write this as sequence of instructions:

let w = x + y, then let u = z2, then let A = w× u.

But such instructions would be cumbersome to manipulate, and

algebraic laws impossible to state. Nested expressions are a

powerful tool (which we take for granted).

78

Lambda calculus

The lambda calculus is an expression language for functions.

We normally write

Let f be the function defined by f(x) = x2. Then consider A = f(5),

In the lambda calculus we can just write

A = (λx.x2)(5).

The expression λx.x2 stands for the function that maps x to x2

(as opposed to the instruction of squaring x, or the statement

that x is being squared).

As for arithmetic, some of the power of the notation derives

from the ability to nest expressions.

79

Examples

The composition operation ◦ of two functions:

We can write f ◦ g as λx.f(g(x)).

We can write C(f, g) = f ◦ g as

λf.λg.f ◦ g = λf.λg.λx.f(g(x)).

Here, if f : A → B and g : B → C, then f ◦ g : A → C, so the type of

C is

C : (A → B) → ((B → C) → (A → C))

80

Examples

The function mappair takes a function f and a pair (x, y), and

returns (f(x), f(y)). It is an example of a higher-order function.

mappair = λf.λp.(f(π1p), f(π2p)),

mappair : (A → B) → ((A× A) → (B× B)).

81

Some do-it-yourself examples

Find lambda terms of the following types:

• A → A× A,

• B → (A → A× B),

• (A → C) → (A× B → C),

• A → A× B,

• (A× (A → B)) → B.

82

The Curry-Howard isomorphism

There is a fundamental connection between typed lambda

calculus and intuitionistic propositional logic.

Translation:

• Basic types A,B, C are propositional symbols.

• Type operations ×, +, and → are logical connectives and,

or, and ⇒, respectively.

Proposition (Curry-Howard isomorphism): There exists a

closed lambda term of a given type if and only if that type

corresponds to a tautology of intuitionistic logic. Moreover,

lambda terms correspond to proofs.

83

Examples

• A ⇒ A and A Provable: λxA.(x, x)

• B ⇒ (A ⇒ A and B) Provable: λxB.λyA.(y, x)

• (A ⇒ C) ⇒ (A and B ⇒ C) Provable: λfA⇒C.λpAandB.f(π1(p))

• A ⇒ A and B Not provable.

• (A and (A ⇒ B)) ⇒ B Provable: λx.(pi2(x)(π1(x))).

Cf. the Brower-Heyting-Kolmogorov interpretation: a proof of

A and B is a pair of a proof of A and a proof of B. A proof of

A ⇒ B is a function that maps proofs of A to proofs of B.

84

The inference rules of intuitionistic logic

Assertions (“sequents”) are of the form:

A1, . . . , An ⊢ B,

meaning B is provable from assumptions A1, . . . , An.

Γ, A ⊢ A Γ ⊢ T

Γ, A ⊢ B
Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A
Γ ⊢ B

Γ ⊢ A Γ ⊢ B
Γ ⊢ A and B

Γ ⊢ A and B
Γ ⊢ A

Γ ⊢ A and B
Γ ⊢ B

85

The typing rules of simply-typed lambda calculus

Assertions (“judgments”) are of the form:

x1 : A1, . . . , xn : An ⊢ M : B,

meaning term M, with free variables x1, . . . , xn of respective

types A1, . . . , An, is well-typed of type B.

Γ, x : A ⊢ x : A Γ ⊢ ∗ : 1

Γ, x : A ⊢ M : B
Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M,N) : A× B

Γ ⊢ M : A× B
Γ ⊢ π1(M) : A

Γ ⊢ M : A× B
Γ ⊢ π2(M) : B

86

The evaluation of lambda terms

The basic computational rule of lambda calculus is β-reduction,

which means, applying a function to an argument:

(λx.M)N → M[N/x],

π1(M,N) → M, π2(M,N) → N.

We close these rules using transitivity, reflexivity, and

congruence.

Theorem (Normalization): Every simply-typed lambda term

reduces in a finite number of steps to a unique normal form.

Theorem (Subject reduction): If Γ ⊢ M : A is well-typed and

M →
∗ N, then Γ ⊢ N : A.

With this, the lambda calculus is a (simple) programming

language — see Lisp, ML, Haskell for real world examples.

87

The theory of βη conversion

It makes sense to consider two lambda terms equal if they have

the same normal form. Define β-equivalence, in symbols =β to

the the smallest congruence relation containing β-reduction.

It also makes sense to consider so-called η-rules:

λx.(Mx) =η M, where x is not free in M,

(π1M,π2M) = M, where M : A× B,

∗ = M, where M : 1.

Let =βη be the smallest congruence relation containing

β-reduction and η-equivalences.

88

The interpretation of simply-typed lambda calculus in Set

The simple type system can be interpreted in set theory, where

a type is identified with a set.

• Basic types are interpreted as specific sets: [[bit]] = {0, 1},

[[nat]] = N, etc.

• Type operations are interpreted as set operations:

[[1]] = 1,

[[A× B]] = [[A]] × [[B]],

[[A → B]] = [[B]][[A]].

• A context Γ = x1 : A1, . . . , xn : An is interpreted as a set:

[[Γ]] = [[A1]] × . . .× [[An]].

• A typing judgement Γ ⊢ M : B is interpreted as a function:

[[Γ ⊢ M : B]] : [[Γ]] → [[B]]

defined by recursion on M.
89

The interpretation of simply-typed lambda calculus in
cartesian-closed categories [Lambek]

Instead of sets, one can use the objects of any cartesian-closed

category.

• Basic types are interpreted as specific objects [[A]], [[B]], etc.

• Type operations are interpreted using the cartesian-closed

structure:

[[1]] = 1,

[[A× B]] = [[A]] × [[B]],

[[A → B]] = [[B]][[A]].

• A context Γ = x1 : A1, . . . , xn : An is interpreted as an object:

[[Γ]] = [[A1]] × . . .× [[An]].

• A typing judgement Γ ⊢ M : B is interpreted as a morphism:

[[Γ ⊢ M : B]] : [[Γ]] → [[B]]

defined by recursion on M.
90

The interpretation of simply-typed lambda calculus in

cartesian-closed categories, continued

[[Γ, x : A ⊢ x : A]] = [[Γ]] × [[A]]
π2−−→ [[A]]

[[Γ ⊢ ∗ : 1]] = [[Γ]]
∗
−→ 1

[[Γ ⊢ λx.M : A → B]] = [[Γ]]
[[Γ,x:A⊢M:B]]∗
−−−−−−−−−−→ [[B]][[A]]

[[Γ ⊢ MN : B]] = [[Γ]]
〈[[Γ⊢M:A→B]],[[Γ⊢N:A]]〉
−−−−−−−−−−−−−−−−−→ [[B]][[A]] × [[A]]

ǫ
−→ [[B]].

[[Γ ⊢ (M,N) : A× B]] = [[Γ]]
〈[[Γ⊢M:A]],[[Γ⊢N:B]]〉
−−−−−−−−−−−−−−→ [[A]] × [[B]]

[[Γ ⊢ π1(M) : A]] = [[Γ]]
[[Γ⊢M:A×B]]
−−−−−−−−−→ [[A]] × [[B]]

π1
−−→ [[A]]

[[Γ ⊢ π2(M) : B]] = [[Γ]]
[[Γ⊢M:A×B]]
−−−−−−−−−→ [[A]] × [[B]]

π2
−−→ [[B]]

91

Theorem 1. The interpretation of the simply-typed lambda

calculus in cartesian-closed categories is sound. In other words,

if Γ ⊢ M = N : A, then [[Γ ⊢ M : A]] = [[Γ ⊢ N : A]]. (Easy, by

induction).

Theorem 2. The interpretation of the simply-typed lambda

calculus in cartesian-closed categories is complete. In other

words, if [[Γ ⊢ M : A]] = [[Γ ⊢ N : A]] for all interpretations in all

cartesian-closed categories, then Γ ⊢ M = N : A.

Theorem 3. The simply-typed lambda calculus is an internal

language for cartesian-closed categories.

(Roughly: there is a one-to-one correspondence between

models of the lambda calculus and cartesian-closed categories).

92

The term model

Fix a set of basic types. The term model of the simply-typed

lambda calculus is a category Λ, constructed as follows:

• The objects are types.

• A morphism f : A → B is a βη-equivalence class of typing

judgements of the form x : A ⊢ M : B.

Theorem 4. The term model Λ is a cartesian-closed category.

Moreover, for any cartesian-closed category C, there is a

bijective correspondence between:

• Maps assigning objects of C to basic types;

• Interpretations of the lambda calculus in C; and

• Cartesian closed functors F : Λ → C.

93

The Curry-Howard-Lambek isomorphism

By the results of the previous slides Λ is the free

cartesian-closed category, and cartesian-closed categories and

the lambda calculus (and therefore intuitionistic propositional

logic) are essentially the same.

Lambda calculus

Intuitionistic propositional logic Cartesian-closed categories

94

Extensions of the Curry-Howard isomorphism

The Curry-Howard isomorphism gives a basic connection
between programming languages and logic. This connection
can be usefully extended in both directions:

• given a programming language feature, one can ask for its
logical meaning.

• Given a logical feature, one can ask for its computational
meaning.

Examples:

Logic Programming

A or B Sum type A + B

∀ quantifier Polymorphism: λx.x : ∀A.A → A

∃ quantifier Data abstraction: ∃D.(A×D → B)×D

Classical logic A or ¬A Continuations
Type theory Dependently typed programming
Topos logic Set comprehension
.

95

