
Exponential objects

Let C be a category with products, and let A, B be objects. We

say that the exponential of A and B exists if there is an object

E and a natural isomorphism

C(X× A,B) ∼= C(X, E).

(natural in X). In this case, we usually write E = BA, so that:

C(X× A, B) ∼= C(X, BA).

Informally, BA is a space of functions from A to B.

In other words, there is a bijective correspondence between

morphisms f : X× A → B and morphisms f : X → BA.
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Exponential objects, continued

The definition of exponential objects can be understood in

several equivalent ways.

More abstractly: A is exponentiable if the functor F(X) = X× A

has a right adjoint. In this case, the right adjoint is written

G(B) = BA.

C(X× A,B) ∼= C(X, BA).

C(F(X), B) ∼= C(X,G(B)).
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Exponential objects, continued

More concretely: An exponential for A and B is given by a

pair (BA, ǫ) where BA is an object, ǫ : BA × A → B is a morphism,

and such that the following property holds:

For any object X and morphism f : X× A → B, there exists a

unique morphism h : X → BA such that

BA × A
ǫ

B

X× A

f
h×A

Exponential objects, if they exist, are unique up to

isomorphism. We write h = f∗.
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Cartesian-closed categories

Definition. A cartesian-closed category is a category with

finite products (i.e., a products and a terminal object) and with

exponential objects.
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Part III: Lambda calculus
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Recall: Types in programming

In computing, the type of a variable is the set of values that

the variable can take. Examples of simple types are:

bit,nat, int, string, . . .

We write x : A to indicate that the variable x has type A.

Simple types can be combined by type operations. Examples:

A× B : Cartesian product (pairs of an A and a B)
A + B : Disjoint union (either an A or a B)
listA : Type of lists of A’s

We write (x, y) for a pair, and π1(x, y) = x and π2(x, y) = y for the

first and second component, respectively.
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Higher-order functions

We write f : A → B for a function that takes inputs of type A

and produces outputs of type B.

We can also regard A → B as a type, namely the type of all

functions from A to B. This is called a function space.

A higher order type is a type where a function space occurs in

a nested way, for example:

• a function that inputs another function: (A → B) → C,

• a function that outputs another function: A → (B → C),

• a pair of two functions: (A → B)× (C → D).

A higher order function is a function of higher order type.

We need a language for manipulating higher order functions.
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Example: Arithmetic expressions

Arithmetic expressions are made up from variables (x, y, z . . .),

numbers (1, 2, 3, . . .), and operators (“+”, “−”, “×” etc.)

The expression x+ y stands for the result of an addition (not an

instruction to add, or the statement that something is being

added).

We write

A = (x + y)× z2

One could write this as sequence of instructions:

let w = x + y, then let u = z2, then let A = w× u.

But such instructions would be cumbersome to manipulate, and

algebraic laws impossible to state. Nested expressions are a

powerful tool (which we take for granted).
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Lambda calculus

The lambda calculus is an expression language for functions.

We normally write

Let f be the function defined by f(x) = x2. Then consider A = f(5),

In the lambda calculus we can just write

A = (λx.x2)(5).

The expression λx.x2 stands for the function that maps x to x2

(as opposed to the instruction of squaring x, or the statement

that x is being squared).

As for arithmetic, some of the power of the notation derives

from the ability to nest expressions.
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Examples

The composition operation ◦ of two functions:

We can write f ◦ g as λx.f(g(x)).

We can write C(f, g) = f ◦ g as

λf.λg.f ◦ g = λf.λg.λx.f(g(x)).

Here, if f : A → B and g : B → C, then f ◦ g : A → C, so the type of

C is

C : (A → B) → ((B → C) → (A → C))
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Examples

The function mappair takes a function f and a pair (x, y), and

returns (f(x), f(y)). It is an example of a higher-order function.

mappair = λf.λp.(f(π1p), f(π2p)),

mappair : (A → B) → ((A× A) → (B× B)).

81



Some do-it-yourself examples

Find lambda terms of the following types:

• A → A× A,

• B → (A → A× B),

• (A → C) → (A× B → C),

• A → A× B,

• (A× (A → B)) → B.
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The Curry-Howard isomorphism

There is a fundamental connection between typed lambda

calculus and intuitionistic propositional logic.

Translation:

• Basic types A,B, C are propositional symbols.

• Type operations ×, +, and → are logical connectives and,

or, and ⇒, respectively.

Proposition (Curry-Howard isomorphism): There exists a

closed lambda term of a given type if and only if that type

corresponds to a tautology of intuitionistic logic. Moreover,

lambda terms correspond to proofs.
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Examples

• A ⇒ A and A Provable: λxA.(x, x)

• B ⇒ (A ⇒ A and B) Provable: λxB.λyA.(y, x)

• (A ⇒ C) ⇒ (A and B ⇒ C) Provable: λfA⇒C.λpAandB.f(π1(p))

• A ⇒ A and B Not provable.

• (A and (A ⇒ B)) ⇒ B Provable: λx.(pi2(x)(π1(x))).

Cf. the Brower-Heyting-Kolmogorov interpretation: a proof of

A and B is a pair of a proof of A and a proof of B. A proof of

A ⇒ B is a function that maps proofs of A to proofs of B.
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The inference rules of intuitionistic logic

Assertions (“sequents”) are of the form:

A1, . . . , An ⊢ B,

meaning B is provable from assumptions A1, . . . , An.

Γ, A ⊢ A Γ ⊢ T

Γ, A ⊢ B
Γ ⊢ A ⇒ B

Γ ⊢ A ⇒ B Γ ⊢ A
Γ ⊢ B

Γ ⊢ A Γ ⊢ B
Γ ⊢ A and B

Γ ⊢ A and B
Γ ⊢ A

Γ ⊢ A and B
Γ ⊢ B
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The typing rules of simply-typed lambda calculus

Assertions (“judgments”) are of the form:

x1 : A1, . . . , xn : An ⊢ M : B,

meaning term M, with free variables x1, . . . , xn of respective

types A1, . . . , An, is well-typed of type B.

Γ, x : A ⊢ x : A Γ ⊢ ∗ : 1

Γ, x : A ⊢ M : B
Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A
Γ ⊢ MN : B

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M,N) : A× B

Γ ⊢ M : A× B
Γ ⊢ π1(M) : A

Γ ⊢ M : A× B
Γ ⊢ π2(M) : B
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The evaluation of lambda terms

The basic computational rule of lambda calculus is β-reduction,

which means, applying a function to an argument:

(λx.M)N → M[N/x],

π1(M,N) → M, π2(M,N) → N.

We close these rules using transitivity, reflexivity, and

congruence.

Theorem (Normalization): Every simply-typed lambda term

reduces in a finite number of steps to a unique normal form.

Theorem (Subject reduction): If Γ ⊢ M : A is well-typed and

M →
∗ N, then Γ ⊢ N : A.

With this, the lambda calculus is a (simple) programming

language — see Lisp, ML, Haskell for real world examples.
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The theory of βη conversion

It makes sense to consider two lambda terms equal if they have

the same normal form. Define β-equivalence, in symbols =β to

the the smallest congruence relation containing β-reduction.

It also makes sense to consider so-called η-rules:

λx.(Mx) =η M, where x is not free in M,

(π1M,π2M) = M, where M : A× B,

∗ = M, where M : 1.

Let =βη be the smallest congruence relation containing

β-reduction and η-equivalences.
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The interpretation of simply-typed lambda calculus in Set

The simple type system can be interpreted in set theory, where

a type is identified with a set.

• Basic types are interpreted as specific sets: [[bit]] = {0, 1},

[[nat]] = N, etc.

• Type operations are interpreted as set operations:

[[1]] = 1,

[[A× B]] = [[A]] × [[B]],

[[A → B]] = [[B]][[A]].

• A context Γ = x1 : A1, . . . , xn : An is interpreted as a set:

[[Γ ]] = [[A1]] × . . .× [[An]].

• A typing judgement Γ ⊢ M : B is interpreted as a function:

[[Γ ⊢ M : B]] : [[Γ ]] → [[B]]

defined by recursion on M.
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The interpretation of simply-typed lambda calculus in
cartesian-closed categories [Lambek]

Instead of sets, one can use the objects of any cartesian-closed

category.

• Basic types are interpreted as specific objects [[A]], [[B]], etc.

• Type operations are interpreted using the cartesian-closed

structure:

[[1]] = 1,

[[A× B]] = [[A]] × [[B]],

[[A → B]] = [[B]][[A]].

• A context Γ = x1 : A1, . . . , xn : An is interpreted as an object:

[[Γ ]] = [[A1]] × . . .× [[An]].

• A typing judgement Γ ⊢ M : B is interpreted as a morphism:

[[Γ ⊢ M : B]] : [[Γ ]] → [[B]]

defined by recursion on M.
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The interpretation of simply-typed lambda calculus in

cartesian-closed categories, continued

[[Γ, x : A ⊢ x : A]] = [[Γ ]] × [[A]]
π2−−→ [[A]]

[[Γ ⊢ ∗ : 1]] = [[Γ ]]
∗
−→ 1

[[Γ ⊢ λx.M : A → B]] = [[Γ ]]
[[Γ,x:A⊢M:B]]∗
−−−−−−−−−−→ [[B]][[A]]

[[Γ ⊢ MN : B]] = [[Γ ]]
〈[[Γ⊢M:A→B]],[[Γ⊢N:A]]〉
−−−−−−−−−−−−−−−−−→ [[B]][[A]] × [[A]]

ǫ
−→ [[B]].

[[Γ ⊢ (M,N) : A× B]] = [[Γ ]]
〈[[Γ⊢M:A]],[[Γ⊢N:B]]〉
−−−−−−−−−−−−−−→ [[A]] × [[B]]

[[Γ ⊢ π1(M) : A]] = [[Γ ]]
[[Γ⊢M:A×B]]
−−−−−−−−−→ [[A]] × [[B]]

π1
−−→ [[A]]

[[Γ ⊢ π2(M) : B]] = [[Γ ]]
[[Γ⊢M:A×B]]
−−−−−−−−−→ [[A]] × [[B]]

π2
−−→ [[B]]
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Theorem 1. The interpretation of the simply-typed lambda

calculus in cartesian-closed categories is sound. In other words,

if Γ ⊢ M = N : A, then [[Γ ⊢ M : A]] = [[Γ ⊢ N : A]]. (Easy, by

induction).

Theorem 2. The interpretation of the simply-typed lambda

calculus in cartesian-closed categories is complete. In other

words, if [[Γ ⊢ M : A]] = [[Γ ⊢ N : A]] for all interpretations in all

cartesian-closed categories, then Γ ⊢ M = N : A.

Theorem 3. The simply-typed lambda calculus is an internal

language for cartesian-closed categories.

(Roughly: there is a one-to-one correspondence between

models of the lambda calculus and cartesian-closed categories).
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The term model

Fix a set of basic types. The term model of the simply-typed

lambda calculus is a category Λ, constructed as follows:

• The objects are types.

• A morphism f : A → B is a βη-equivalence class of typing

judgements of the form x : A ⊢ M : B.

Theorem 4. The term model Λ is a cartesian-closed category.

Moreover, for any cartesian-closed category C, there is a

bijective correspondence between:

• Maps assigning objects of C to basic types;

• Interpretations of the lambda calculus in C; and

• Cartesian closed functors F : Λ → C.
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The Curry-Howard-Lambek isomorphism

By the results of the previous slides Λ is the free

cartesian-closed category, and cartesian-closed categories and

the lambda calculus (and therefore intuitionistic propositional

logic) are essentially the same.

Lambda calculus

Intuitionistic propositional logic Cartesian-closed categories
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Extensions of the Curry-Howard isomorphism

The Curry-Howard isomorphism gives a basic connection
between programming languages and logic. This connection
can be usefully extended in both directions:

• given a programming language feature, one can ask for its
logical meaning.

• Given a logical feature, one can ask for its computational
meaning.

Examples:

Logic Programming

A or B Sum type A + B

∀ quantifier Polymorphism: λx.x : ∀A.A → A

∃ quantifier Data abstraction: ∃D.(A×D → B)×D

Classical logic A or ¬A Continuations
Type theory Dependently typed programming
Topos logic Set comprehension
. . . . . .

95


