Exponential objects

Let C be a category with products, and let A, B be objects. We say that the exponential of \mathcal{A} and B exists if there is an object E and a natural isomorphism

$$
\mathbf{C}(X \times A, B) \cong \mathbf{C}(X, E)
$$

(natural in X). In this case, we usually write $E=B^{A}$, so that:

$$
C(X \times A, B) \cong C\left(X, B^{A}\right)
$$

Informally, B^{A} is a space of functions from A to B.

In other words, there is a bijective correspondence between morphisms $f: X \times A \rightarrow B$ and morphisms $f: X \rightarrow B^{A}$.

Exponential objects, continued

The definition of exponential objects can be understood in several equivalent ways.

More abstractly: \mathcal{A} is exponentiable if the functor $F(X)=X \times A$ has a right adjoint. In this case, the right adjoint is written $G(B)=B^{A}$.

$$
\begin{aligned}
C(X \times A, B) & \cong C\left(X, B^{A}\right) \\
C(F(X), B) & \cong C(X, G(B))
\end{aligned}
$$

Exponential objects, continued

More concretely: An exponential for A and B is given by a pair $\left(B^{A}, \epsilon\right)$ where B^{A} is an object, $\epsilon: B^{A} \times A \rightarrow B$ is a morphism, and such that the following property holds:

For any object X and morphism $f: X \times A \rightarrow B$, there exists a unique morphism $h: X \rightarrow B^{A}$ such that

Exponential objects, if they exist, are unique up to isomorphism. We write $h=f^{*}$.

Cartesian-closed categories

Definition. A cartesian-closed category is a category with finite products (i.e., a products and a terminal object) and with exponential objects.

Part III: Lambda calculus

Recall: Types in programming

In computing, the type of a variable is the set of values that the variable can take. Examples of simple types are:

bit, nat, int, string, . . .

We write $x: A$ to indicate that the variable x has type A.

Simple types can be combined by type operations. Examples:
$A \times B$: Cartesian product (pairs of an A and a B)
$A+B$: Disjoint union (either an A or a B)
list A: Type of lists of A's
We write (x, y) for a pair, and $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$ for the first and second component, respectively.

Higher-order functions

We write $\mathrm{f}: A \rightarrow B$ for a function that takes inputs of type A and produces outputs of type B.

We can also regard $A \rightarrow B$ as a type, namely the type of all functions from A to B. This is called a function space.

A higher order type is a type where a function space occurs in a nested way, for example:

- a function that inputs another function: $(A \rightarrow B) \rightarrow C$,
- a function that outputs another function: $A \rightarrow(B \rightarrow C)$,
- a pair of two functions: $(A \rightarrow B) \times(C \rightarrow D)$.

A higher order function is a function of higher order type.
We need a language for manipulating higher order functions.

Example: Arithmetic expressions

Arithmetic expressions are made up from variables ($x, y, z \ldots$), numbers ($1,2,3, \ldots$), and operators (" + ", " - ", " \times " etc.)

The expression $x+y$ stands for the result of an addition (not an instruction to add, or the statement that something is being added).

We write

$$
A=(x+y) \times z^{2}
$$

One could write this as sequence of instructions:

$$
\text { let } w=x+y \text {, then let } u=z^{2} \text {, then let } A=w \times u
$$

But such instructions would be cumbersome to manipulate, and algebraic laws impossible to state. Nested expressions are a powerful tool (which we take for granted).

Lambda calculus

The lambda calculus is an expression language for functions.
We normally write
Let f be the function defined by $f(x)=x^{2}$. Then consider $A=f(5)$, In the lambda calculus we can just write

$$
A=\left(\lambda x \cdot x^{2}\right)(5)
$$

The expression $\lambda x . x^{2}$ stands for the function that maps x to x^{2} (as opposed to the instruction of squaring x, or the statement that x is being squared).

As for arithmetic, some of the power of the notation derives from the ability to nest expressions.

Examples

The composition operation o of two functions:

We can write $f \circ g$ as $\lambda x . f(g(x))$.

We can write $C(f, g)=f \circ g$ as

$$
\lambda f . \lambda g . f \circ g=\lambda f . \lambda g . \lambda x . f(g(x)) .
$$

Here, if $f: A \rightarrow B$ and $g: B \rightarrow C$, then $f \circ g: A \rightarrow C$, so the type of C is

$$
C:(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))
$$

Examples

The function mappair takes a function f and a pair (x, y), and returns $(f(x), f(y))$. It is an example of a higher-order function.

$$
\begin{gathered}
\text { mappair }=\lambda f . \lambda p .\left(f\left(\pi_{1} p\right), f\left(\pi_{2} p\right)\right), \\
\text { mappair }:(A \rightarrow B) \rightarrow((A \times A) \rightarrow(B \times B)) .
\end{gathered}
$$

Some do-it-yourself examples

Find lambda terms of the following types:

- $A \rightarrow A \times A$,
- $B \rightarrow(A \rightarrow A \times B)$,
- $(A \rightarrow C) \rightarrow(A \times B \rightarrow C)$,
- $A \rightarrow A \times B$,
- $(A \times(A \rightarrow B)) \rightarrow B$.

The Curry-Howard isomorphism

There is a fundamental connection between typed lambda calculus and intuitionistic propositional logic.

Translation:

- Basic types A, B, C are propositional symbols.
- Type operations $\times,+$, and \rightarrow are logical connectives and, or, and \Rightarrow, respectively.

Proposition (Curry-Howard isomorphism): There exists a closed lambda term of a given type if and only if that type corresponds to a tautology of intuitionistic logic. Moreover, lambda terms correspond to proofs.

Examples

- $A \Rightarrow A$ and A
- $B \Rightarrow(A \Rightarrow A$ and $B)$
- $(A \Rightarrow C) \Rightarrow(A$ and $B \Rightarrow C) \quad$ Provable: $\lambda f^{A \Rightarrow C} . \lambda p^{A \text { andB }} . f\left(\pi_{1}(p)\right)$
- $A \Rightarrow A$ and B
- $(A$ and $(A \Rightarrow B)) \Rightarrow B$

Provable: $\lambda x^{A} \cdot(x, x)$
Provable: $\lambda x^{B} \cdot \lambda y^{A} \cdot(y, x)$

Not provable.
Provable: $\lambda x .\left(p i_{2}(x)\left(\pi_{1}(x)\right)\right)$.

Cf. the Brower-Heyting-Kolmogorov interpretation: a proof of A and B is a pair of a proof of A and a proof of B. A proof of $A \Rightarrow B$ is a function that maps proofs of A to proofs of B.

The inference rules of intuitionistic logic

Assertions ("sequents") are of the form:

$$
A_{1}, \ldots, A_{n} \vdash B
$$

meaning B is provable from assumptions A_{1}, \ldots, A_{n}.

$$
\begin{array}{cc}
\overline{\Gamma, A \vdash A} & \overline{\Gamma \vdash \mathrm{~T}} \\
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} & \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \\
\frac{\Gamma \vdash A \vdash A \vdash B}{\Gamma \vdash A \text { and } B} & \frac{\Gamma \vdash A \text { and } B}{\Gamma \vdash A}
\end{array} \frac{\Gamma \vdash A \text { and } B}{\Gamma \vdash B}
$$

The typing rules of simply-typed lambda calculus

Assertions ("judgments") are of the form:

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash M: B
$$

meaning term M, with free variables x_{1}, \ldots, x_{n} of respective types A_{1}, \ldots, A_{n}, is well-typed of type B.

$$
\begin{array}{ccc}
\overline{\Gamma, x: A \vdash x: A} & \overline{\Gamma \vdash *: 1} \\
\frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \rightarrow B} & \frac{\Gamma \vdash M: A \rightarrow B}{\Gamma \vdash M N: B} \\
\frac{\Gamma \vdash M: A}{\Gamma \vdash(M, N): A \times B} B & \frac{\Gamma \vdash M: A \times B}{\Gamma \vdash \pi_{1}(M): A} & \frac{\Gamma \vdash M: A \times B}{\Gamma \vdash \pi_{2}(M): B}
\end{array}
$$

The evaluation of lambda terms

The basic computational rule of lambda calculus is β-reduction, which means, applying a function to an argument:

$$
\begin{gathered}
(\lambda x . M) N \rightarrow M[N / x], \\
\pi_{1}(M, N) \rightarrow M, \quad \pi_{2}(M, N) \rightarrow N .
\end{gathered}
$$

We close these rules using transitivity, reflexivity, and congruence.

Theorem (Normalization): Every simply-typed lambda term reduces in a finite number of steps to a unique normal form.

Theorem (Subject reduction): If $\Gamma \vdash \mathrm{M}: \mathcal{A}$ is well-typed and $M \rightarrow{ }^{*} \mathrm{~N}$, then $\Gamma \vdash \mathrm{N}: \mathrm{A}$.

With this, the lambda calculus is a (simple) programming language - see Lisp, ML, Haskell for real world examples.

The theory of $\beta \eta$ conversion

It makes sense to consider two lambda terms equal if they have the same normal form. Define β-equivalence, in symbols $=_{\beta}$ to the the smallest congruence relation containing β-reduction.

It also makes sense to consider so-called η-rules:

$$
\begin{array}{ll}
\lambda x .(M x)={ }_{\eta} M, & \text { where } x \text { is not free in } M, \\
\left(\pi_{1} M, \pi_{2} M\right)=M, & \text { where } M: A \times B \\
*=M, & \text { where } M: 1
\end{array}
$$

Let $=_{\beta \eta}$ be the smallest congruence relation containing β-reduction and η-equivalences.

The interpretation of simply-typed lambda calculus in Set

The simple type system can be interpreted in set theory, where a type is identified with a set.

- Basic types are interpreted as specific sets: \llbracket bit $\rrbracket=\{0,1\}$, \llbracket nat $\rrbracket=\mathbb{N}$, etc.
- Type operations are interpreted as set operations:

$$
\begin{aligned}
\llbracket 1 \rrbracket & =1, \\
\llbracket \mathcal{A} \times \mathrm{B} \rrbracket & =\llbracket \mathcal{A} \rrbracket \times \llbracket \mathrm{B} \rrbracket \\
\llbracket \mathcal{A} \rightarrow \mathrm{~B} \rrbracket & =\llbracket \mathrm{B} \llbracket \mathbb{A} \rrbracket .
\end{aligned}
$$

- A context $\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}$ is interpreted as a set:

$$
\llbracket \Gamma \rrbracket=\llbracket A_{1} \rrbracket \times \ldots \times \llbracket A_{n} \rrbracket .
$$

- A typing judgement $\Gamma \vdash \mathrm{M}: \mathrm{B}$ is interpreted as a function:

$$
\llbracket\ulcorner\vdash \mathrm{M}: \mathrm{B} \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \mathrm{B} \rrbracket
$$

defined by recursion on M.

The interpretation of simply-typed lambda calculus in cartesian-closed categories [Lambek]

Instead of sets, one can use the objects of any cartesian-closed category.

- Basic types are interpreted as specific objects $\llbracket A \rrbracket, \llbracket B \rrbracket$, etc.
- Type operations are interpreted using the cartesian-closed structure:

$$
\begin{aligned}
\llbracket 1 \rrbracket & =1 \\
\llbracket A \times \mathrm{B} \rrbracket & =\llbracket \mathrm{A} \rrbracket \times \llbracket \mathrm{B} \rrbracket \\
\llbracket \mathrm{~A} \rightarrow \mathrm{~B} \rrbracket & =\llbracket \mathrm{B} \rrbracket \mathrm{~A} \rrbracket .
\end{aligned}
$$

- A context $\Gamma=x_{1}: A_{1}, \ldots, x_{n}: A_{n}$ is interpreted as an object:

$$
\llbracket \Gamma \rrbracket=\llbracket A_{1} \rrbracket \times \ldots \times \llbracket A_{n} \rrbracket .
$$

- A typing judgement $\Gamma \vdash \mathrm{M}: \mathrm{B}$ is interpreted as a morphism:

$$
\llbracket \Gamma \vdash \mathrm{M}: \mathrm{B} \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \mathrm{B} \rrbracket
$$

defined by recursion on M.

The interpretation of simply-typed lambda calculus in cartesian-closed categories, continued

$$
\begin{aligned}
& \llbracket \Gamma, x: A \vdash x: A \rrbracket \quad=\llbracket \Gamma \rrbracket \times \llbracket A \rrbracket \xrightarrow{\pi_{2}} \llbracket A \rrbracket \\
& \llbracket \Gamma \vdash *: 1 \rrbracket=\llbracket \Gamma \xrightarrow{*} 1 \\
& \llbracket \Gamma \vdash \lambda x . M: A \rightarrow B \rrbracket=\llbracket \Gamma \rrbracket \xrightarrow{\llbracket \Gamma, x: A \vdash M: B \rrbracket^{*}} \llbracket B \rrbracket \llbracket A \rrbracket \\
& \llbracket \Gamma \vdash M N: B \rrbracket \quad=\llbracket \Gamma \rrbracket \xrightarrow{\langle\lceil\vdash \vdash M: A \rightarrow B \rrbracket, \llbracket \Gamma \vdash N: A \rrbracket\rangle} \llbracket B \rrbracket \llbracket \mathbb{I A} \times \llbracket A \rrbracket \xrightarrow{\epsilon} \llbracket B \rrbracket . \\
& \llbracket \Gamma \vdash(M, N): A \times B \rrbracket=\llbracket \Gamma \rrbracket \xrightarrow{\langle\llbracket \vdash \vdash M: A \rrbracket, \llbracket \Gamma \vdash N: B \rrbracket\rangle} \llbracket A \rrbracket \times \llbracket B \rrbracket \\
& \llbracket \Gamma \vdash \pi_{1}(M): A \rrbracket \quad=\llbracket \Gamma \rrbracket \xrightarrow{\llbracket \vdash \vdash \mathrm{M}: \mathrm{A} \times \mathrm{B} \rrbracket} \llbracket A \rrbracket \times \llbracket \mathrm{B} \rrbracket \xrightarrow{\pi_{1}} \llbracket A \rrbracket \\
& \llbracket \Gamma \vdash \pi_{2}(M): B \rrbracket \quad=\llbracket \Gamma \rrbracket \xrightarrow{\llbracket \vdash \vdash M: A \times B \rrbracket} \llbracket A \rrbracket \times \llbracket B \rrbracket \xrightarrow{\pi_{2}} \llbracket \mathrm{~B} \rrbracket
\end{aligned}
$$

Theorem 1. The interpretation of the simply-typed lambda calculus in cartesian-closed categories is sound. In other words, if $\Gamma \vdash M=N: A$, then $\llbracket \Gamma \vdash M: A \rrbracket=\llbracket \Gamma \vdash N: A \rrbracket$. (Easy, by induction).

Theorem 2. The interpretation of the simply-typed lambda calculus in cartesian-closed categories is complete. In other words, if $\llbracket \Gamma \vdash M: A \rrbracket=\llbracket \Gamma \vdash N: A \rrbracket$ for all interpretations in all cartesian-closed categories, then $\Gamma \vdash M=N: A$.

Theorem 3. The simply-typed lambda calculus is an internal language for cartesian-closed categories.
(Roughly: there is a one-to-one correspondence between models of the lambda calculus and cartesian-closed categories).

The term model

Fix a set of basic types. The term model of the simply-typed lambda calculus is a category Λ, constructed as follows:

- The objects are types.
- A morphism $\mathrm{f}: A \rightarrow B$ is a $\beta \eta$-equivalence class of typing judgements of the form $x: A \vdash M: B$.

Theorem 4. The term model Λ is a cartesian-closed category. Moreover, for any cartesian-closed category \mathbf{C}, there is a bijective correspondence between:

- Maps assigning objects of C to basic types;
- Interpretations of the lambda calculus in \mathbf{C}; and
- Cartesian closed functors $F: \wedge \rightarrow \mathbf{C}$.

The Curry-Howard-Lambek isomorphism

By the results of the previous slides Λ is the free
cartesian-closed category, and cartesian-closed categories and the lambda calculus (and therefore intuitionistic propositional logic) are essentially the same.

Intuitionistic propositional logic \longleftrightarrow Cartesian-closed categories

Extensions of the Curry-Howard isomorphism

The Curry-Howard isomorphism gives a basic connection between programming languages and logic. This connection can be usefully extended in both directions:

- given a programming language feature, one can ask for its logical meaning.
- Given a logical feature, one can ask for its computational meaning.

Examples:

Logic	Programming
A or B	Sum type $A+B$
\forall quantifier	Polymorphism: $\lambda x \cdot x: \forall A \cdot A \rightarrow A$
\exists quantifier	Data abstraction: $\exists \mathrm{D} \cdot(A \times D \rightarrow B) \times D$
Classical logic A or $\neg A$	Continuations
Type theory	Dependently typed programming
Topos logic	Set comprehension

