Composing functors

Horizontal composition (functors):

$$
\mathbf{C} \xrightarrow{\mathrm{F}} \mathbf{D} \xrightarrow{G} \mathbf{E}
$$

If F, G are functors, then so is $G \circ F$. Defined on objects as $(G \circ F)(A)=G(F(A))$ and on morphisms as $(G \circ F)(f)=G(F(f))$.

Identity (functors):

$$
\mathrm{C} \xrightarrow{1 \mathrm{C}} \mathrm{C}
$$

The identity functor ${ }^{1} \mathbf{C}: \mathbf{C} \rightarrow \mathbf{C}$ is defined as ${ }^{1} \mathbf{C}(A)=A$ on objects and $1_{C}(f)=f$ on morphisms.

Composing natural transformations

Vertical composition (natural transformations):

If $\alpha: F \rightarrow G$ and $\beta: G \rightarrow H$ are natural transformations, then so is $\beta \bullet \alpha: F \rightarrow$ H. If it defined by $(\beta \bullet \alpha)_{A}=\beta_{A} \circ \alpha_{A}: F A \rightarrow H A$.

Identity (natural transformations):

The identity natural transf. $1_{F}: F \rightarrow F$ is defined as $\left(1_{F}\right)_{\mathcal{A}}=1_{F A}$. By abuse of notation, we sometimes denote 1_{F} by 1 , or even F .

Composing natural transformations, continued
Whiskering (right):

If $\mathrm{F}, \mathrm{G}: \mathbf{C} \rightarrow \mathbf{D}$ and $\mathrm{H}: \mathbf{D} \rightarrow \mathbf{E}$ are functors, and if $\alpha: F \rightarrow \mathrm{G}$ is a natural transformation, the right whiskering

$$
\mathrm{H} \circ \alpha: \mathrm{H} \circ \mathrm{~F} \rightarrow \mathrm{H} \circ \mathrm{G}
$$

is defined as $(H \circ \alpha)_{A}: H(F A) \rightarrow H(G A)$ by $(H \circ \alpha)_{A}=H\left(\alpha_{A}\right)$. This is indeed a natural transformation, i.e.,

In this case, it follows from the naturality of α and the functoriality of H .

Composing natural transformations, continued

Whiskering (left):

If $\mathrm{F}: \mathbf{C} \rightarrow \mathbf{D}$ and $\mathrm{G}, \mathrm{H}: \mathbf{D} \rightarrow \mathbf{E}$ are functors, and if $\alpha: \mathrm{G} \rightarrow \mathrm{H}$ is a natural transformation, the left whiskering

$$
\alpha \circ F: G \circ F \rightarrow H \circ F
$$

is defined as $(\alpha \circ F)_{\mathcal{A}}: G(F A) \rightarrow H(F A)$ by $(\alpha \circ F)_{\mathcal{A}}=\alpha_{F A}$. This is indeed a natural transformation, i.e.,

In this case, it follows from the naturality of α.

Composing natural transformations, continued
Horizontal composition (natural transformations):

If $\mathrm{F}, \mathrm{G}: \mathbf{C} \rightarrow \mathbf{D}$ and $\mathrm{H}, \mathrm{K}: \mathbf{D} \rightarrow \mathbf{E}$ are functors, and if $\alpha: \mathrm{F} \rightarrow \mathrm{G}$ and $\beta: H \rightarrow K$ are natural transformations, the horizontal composition

$$
\beta \circ \alpha: H \circ F \rightarrow K \circ G
$$

can be defined in two different ways:

- Right whiskering followed by left whiskering: $\beta \circ \alpha=(\beta \circ G) \bullet(H \circ \alpha)$
- Left whiskering followed by right whiskering: $\beta \circ \alpha=(K \circ \alpha) \bullet(\beta \circ F)$.

Composing natural transformations, continued

- Right whiskering followed by left whiskering:

$$
\beta \circ \alpha=(\beta \circ G) \bullet(H \circ \alpha)
$$

- Left whiskering followed by right whiskering: $\beta \circ \alpha=(K \circ \alpha) \bullet(\beta \circ F)$.

The two definitions coincide, because
$[(\beta \circ G) \bullet(H \circ \alpha)]_{A}=\beta_{G A} \circ H\left(\alpha_{A}\right)$, and
$[(K \circ \alpha) \bullet(\beta \circ F)]_{A}=K\left(\alpha_{A}\right) \circ \beta_{F A}$, and

$$
\begin{aligned}
& H(F A) \xrightarrow{H\left(\alpha_{A}\right)} H(G(G A) \\
& \beta_{F A} \mid \\
& K(F A) \xrightarrow{H\left(\alpha_{\mathcal{A}}\right)} \mathrm{K}(\mathrm{GA}) .
\end{aligned}
$$

by naturality of β.

Some laws about whiskering

$$
\begin{gathered}
K \circ(\beta \bullet \alpha)=(K \circ \beta) \bullet(K \circ \alpha) \\
K \circ 1_{F}=1_{K \circ F} \\
1_{K} \circ \alpha=K \circ \alpha \\
1_{K} \circ 1_{F}=1_{K \circ F} \\
(\beta \circ \alpha) \circ E=(\beta \circ E) \bullet(\alpha \circ E) \\
1_{F} \circ E=1_{F \circ E} \\
\alpha \circ 1_{E}=\alpha \circ E
\end{gathered}
$$

The double interchange law

$$
(\delta \circ \beta) \bullet(\gamma \circ \alpha)=(\delta \bullet \gamma) \circ(\beta \bullet \alpha)
$$

Example: The list monad

Recall that $F(A)=A^{*}$ is the list monad. Here A^{*} is the set of finite lists (also known as words, strings) of elements from A.
F is a monad as follows:

- Functor: for $\mathrm{f}: A \rightarrow B$, define $f^{*}: A^{*} \rightarrow B^{*}$ by

$$
f^{*}\left[a_{1}, \ldots, a_{n}\right]=\left[f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right] .
$$

- Unit: we define $\eta_{A}: A \rightarrow A^{*}$ by

$$
\eta_{A}(a)=[a] \quad(\text { singleton }) .
$$

- Multiplication: we define $\mu_{A}: A^{* *} \rightarrow A^{*}$ by

$$
\mu_{A}\left(\left[l_{1}, l_{2} \ldots, l_{n}\right]\right)=l_{1} \cdot l_{2} \cdot \ldots \cdot l_{n} .
$$

Verify the monad Iaws.

Free algebras

Let Σ be a signature, and let E be a set of equations (both in the sense of universal algebra).

A signature consists of a set $|\Sigma|=\{f, g, \ldots\}$ of function symbols, together with an assignment ar: $|\Sigma| \rightarrow \mathbb{N}$ of an arity to each function symbol.

Fix a signature. For example, let h be a function symbol of arity 2 , and let g be a function symbol of arity 1 .

Let V be a set of variables. Then we can form the set of terms, e.g.:

$$
\begin{aligned}
& x, \quad y, \quad g(x), \quad g(y), \quad h(x, x), \quad h(x, y), \\
& h(g(x), y), \quad h(g(g(x)), x), \quad g(h(x, g(h(y, x)))), \ldots
\end{aligned}
$$

Let $\operatorname{Terms}_{\Sigma}(\mathrm{V})$ be this set of terms.

Free algebras, continued

On the set $\operatorname{Terms}_{\Sigma}(\mathrm{V})$, consider the smallest equivalence relation $\sim \mathrm{E}$ such that:

$$
\frac{(t=s) \in E}{t^{\prime} \sim E s^{\prime}} \quad \frac{t_{1} \sim_{E} s_{1}, \quad \ldots, \quad t_{n} \sim E s_{n}}{f\left(t_{1}, \ldots, t_{n}\right) \sim E f\left(s_{1}, \ldots, s_{n}\right)}
$$

Then $\operatorname{Terms}_{\Sigma}(\mathrm{V}) / \sim_{\mathrm{E}}$ is a (Σ, E)-algebra. We denote it by Terms ${ }_{\Sigma, \mathrm{E}}(\mathrm{V})$.

In fact, it is the free (Σ, E)-algebra generated by V. Concretely, this means: for any (Σ, E)-algebra A, and any function $f: V \rightarrow A$, there exists a unique homomorphism of (Σ, E)-algebras $\mathrm{g}: \operatorname{Terms}_{\Sigma, \mathrm{E}}(\mathrm{V}) \rightarrow A$ such that

The term monad

Fix Σ and E . Consider the functor $\mathrm{T}:$ Set \rightarrow Set given by

$$
T(V)=\operatorname{Terms}_{\Sigma, E}(V) .
$$

This is a monad:

- Functor: for $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$, define $\mathrm{T}(\mathrm{f}): \operatorname{Terms}_{\Sigma, \mathrm{E}}(\mathrm{V}) \rightarrow \operatorname{Terms}_{\Sigma, \mathrm{E}}(W)$ by "renaming" all the variables in a term.
- Unit: $\eta_{V}: V \rightarrow$ Terms $_{\Sigma, E}(V)$ maps a variable x to the term x.
- Multiplication: $\mu_{\mathrm{V}}: \mathrm{T}(\mathrm{T}(\mathrm{V})) \rightarrow \mathrm{T}(\mathrm{V})$ takes a term whose "variables" are other terms. It is defined by "flattening" this structure into a single term.

Check the monad laws!

The list monad as a term monad

In fact, the list monad $A \mapsto A^{*}$ is the term monad for operations "." (arity 2), e (arity 0), with equations

$$
(x \cdot y) \cdot z=x \cdot(y \cdot z), \quad e \cdot x=x, \quad x \cdot e=x
$$

In other words, A^{*} is the free monoid on A. Also:

- $T(A)=A+\perp$ is the term monad over the signature $\Sigma=\{\perp\}$ (arity 0, no equations);
- $T(A)=\mathscr{P}^{\text {fin }}(A)$ is like the list monad, with the additional equations

$$
x \cdot x=x, \quad x \cdot y=y \cdot x
$$

- $\mathrm{T}(A)=\mathscr{P}^{\mathrm{fin},+}$ is the same, but without the constant e;
- $T(A)=A \times \Sigma^{*}$ is the term monad over the signature $\left\{w_{c} \mid c \in \Sigma\right\}$, each with arity 1 .

An alternative definition of monad [E. Manes]

Let \mathbf{C} be a category, and let $\mathrm{T}:|\mathbf{C}| \rightarrow|\mathbf{C}|$ be a function on objects (here not a priori assumed to be a functor).

Suppose that T is equipped with the following two operations:

$$
\overline{\eta_{A}: A \rightarrow T A} \quad \frac{f: A \rightarrow T B}{\operatorname{lift}(f): T A \rightarrow T B}
$$

Satisfying:
(a) $\operatorname{lift}\left(\eta_{A}\right)=1_{\text {TA }} \quad$ (b) $($ liftf $) \circ \eta_{A}=f \quad$ (c) lift $($ liftg) $\circ f)=($ liftg $) \circ$ (liftf)

Note: then T can be made into a functor like this:

$$
\frac{f: A \rightarrow B}{\frac{\eta_{B} \circ f: A \rightarrow T B}{\operatorname{lift}\left(\eta_{B} \circ f\right): T A \rightarrow T B}}
$$

Exercise: prove that this is an equivalent definition of monad.

Kleisli category of a monad: C_{T}

Let (T, η, μ) be a monad on a category C. Its Kleisli category $\mathbf{C}_{\mathbf{T}}$ is defined as follows:

- Objects: \mathbf{C}_{T} has the same objects as \mathbf{C}.
- Morphisms: $\mathbf{C}_{T}(A, B)=\mathbf{C}(A, T B)$.
- Identities and composition:

$$
\mathrm{id}_{\mathrm{T}}: A \rightarrow \mathrm{TA} \quad \frac{\mathrm{f}: \mathrm{A} \rightarrow \mathrm{~TB} \mathrm{~g}: \mathrm{B} \rightarrow \mathrm{TC}}{\mathrm{~g} \circ_{\mathrm{T}} \mathrm{f}: \mathrm{A} \rightarrow \mathrm{TC}}
$$

Then \mathbf{C}_{T} is a well-defined category. Moreover, there is a canonical functor $F: C \rightarrow \mathbf{C}_{\boldsymbol{T}}$ mapping A to A and f to $\eta_{B} \circ f$, and a canonical functor $G: \mathbf{C}_{T} \rightarrow \mathbf{C}$ mapping A to $T A$ and g to lift (g).

Algebras of a monad: C^{\top}

Let (T, η, μ) be a monad on a category C.
Definition. An algebra for T is a pair (A, a), where A is an object of C, and $a: T A \rightarrow A$ is a morphism, satisfing

Given two algebras (A, a) and (B, b), a homomorphism is given by a map $f: A \rightarrow B$ satisfying

Consider what this means in case of the term monad for (Σ, E).

Eilenberg-Moore category of a monad: C^{\top}

Let (T, η, μ) be a monad on a category C. Its Eilenberg-Moore category \mathbf{C}^{\top} is defined as follows:

- Objects: algebras (A, a) for the monad T.
- Morphisms: algebra homomorphisms.
- Identities and composition: as in C.

Then \mathbf{C}^{\top} is a well-defined category. Moreover, there is a canonical functor $F: C \rightarrow \mathbf{C}^{\top}$ mapping A to ($T A, \mu_{\mathcal{A}}$) and f to Tf. There is also a canonical functor $G: C^{\top} \rightarrow C$ mapping (A, a) to A.

