Composing functors

Horizontal composition (functors):

 $\mathbf{C} \xrightarrow{F} \mathbf{D} \xrightarrow{G} \mathbf{E}$

If F, G are functors, then so is $G \circ F$. Defined on objects as $(G \circ F)(A) = G(F(A))$ and on morphisms as $(G \circ F)(f) = G(F(f))$.

Identity (functors):

 $\mathbf{C} \xrightarrow{\mathbf{1}_{\mathbf{C}}} \mathbf{C}$

The identity functor $1_{\mathbb{C}} : \mathbb{C} \to \mathbb{C}$ is defined as $1_{\mathbb{C}}(A) = A$ on objects and $1_{\mathbb{C}}(f) = f$ on morphisms.

Composing natural transformations

Vertical composition (natural transformations):

If $\alpha : F \to G$ and $\beta : G \to H$ are natural transformations, then so is $\beta \bullet \alpha : F \to H$. If it defined by $(\beta \bullet \alpha)_A = \beta_A \circ \alpha_A : FA \to HA$.

Identity (natural transformations):

The identity natural transf. $1_F : F \to F$ is defined as $(1_F)_A = 1_{FA}$. By abuse of notation, we sometimes denote 1_F by 1, or even F.

Whiskering (right):

If $F, G : \mathbb{C} \to \mathbb{D}$ and $H : \mathbb{D} \to \mathbb{E}$ are functors, and if $\alpha : F \to G$ is a natural transformation, the *right whiskering*

 $H \circ \alpha : H \circ F \to H \circ G$

is defined as $(H \circ \alpha)_A : H(FA) \to H(GA)$ by $(H \circ \alpha)_A = H(\alpha_A)$. This is indeed a natural transformation, i.e.,

$$H(FA) \xrightarrow{H(\alpha_{A})} H(GA)$$

$$H(Ff) \downarrow \qquad \qquad \downarrow H(Gf)$$

$$H(FB) \xrightarrow{H(\alpha_{B})} H(GB).$$

In this case, it follows from the naturality of α and the functoriality of H.

Whiskering (left):

If $F : \mathbb{C} \to \mathbb{D}$ and $G, H : \mathbb{D} \to \mathbb{E}$ are functors, and if $\alpha : G \to H$ is a natural transformation, the *left whiskering*

 $\alpha \circ F : G \circ F \to H \circ F$

is defined as $(\alpha \circ F)_A : G(FA) \to H(FA)$ by $(\alpha \circ F)_A = \alpha_{FA}$. This is indeed a natural transformation, i.e.,

$$\begin{array}{c} G(FA) \xrightarrow{\alpha_{FA}} H(FA) \\ G(Ff) & \downarrow H(Ff) \\ G(FB) \xrightarrow{\alpha_{FB}} H(FB). \end{array}$$

In this case, it follows from the naturality of α .

Horizontal composition (natural transformations):

If $F, G : \mathbb{C} \to \mathbb{D}$ and $H, K : \mathbb{D} \to \mathbb{E}$ are functors, and if $\alpha : F \to G$ and $\beta : H \to K$ are natural transformations, the *horizontal* composition

 $\beta \circ \alpha : H \circ F \to K \circ G$

can be defined in two different ways:

- Right whiskering followed by left whiskering: $\beta \circ \alpha = (\beta \circ G) \bullet (H \circ \alpha)$
- Left whiskering followed by right whiskering: $\beta \circ \alpha = (K \circ \alpha) \bullet (\beta \circ F).$

- Right whiskering followed by left whiskering: $\beta \circ \alpha = (\beta \circ G) \bullet (H \circ \alpha)$
- Left whiskering followed by right whiskering: $\beta \circ \alpha = (K \circ \alpha) \bullet (\beta \circ F).$

The two definitions coincide, because $[(\beta \circ G) \bullet (H \circ \alpha)]_A = \beta_{GA} \circ H(\alpha_A), \text{ and}$ $[(K \circ \alpha) \bullet (\beta \circ F)]_A = K(\alpha_A) \circ \beta_{FA}, \text{ and}$

$$\begin{array}{c} H(FA) \xrightarrow{H(\alpha_A)} H(GA) \\ \beta_{FA} & \downarrow \beta_{GA} \\ K(FA) \xrightarrow{K(\alpha_A)} K(GA). \end{array}$$

by naturality of β .

Some laws about whiskering

The double interchange law

$$(\delta \circ \beta) \bullet (\gamma \circ \alpha) = (\delta \bullet \gamma) \circ (\beta \bullet \alpha)$$

Example: The list monad

Recall that $F(A) = A^*$ is the *list monad*. Here A^* is the set of finite *lists* (also known as *words*, *strings*) of elements from A.

F is a monad as follows:

• Functor: for $f:A \to B$, define $f^*:A^* \to B^*$ by

 $f^*[a_1,\ldots,a_n] = [f(a_1),\ldots,f(a_n)].$

• Unit: we define $\eta_A:A\to A^*$ by

 $\eta_A(a) = [a]$ (singleton).

• Multiplication: we define $\mu_A:A^{**}\to A^*$ by

 $\mu_{\mathcal{A}}([l_1, l_2 \dots, l_n]) = l_1 \cdot l_2 \cdot \dots \cdot l_n.$

Verify the monad laws.

Free algebras

Let Σ be a signature, and let E be a set of equations (both in the sense of universal algebra).

A signature consists of a set $|\Sigma| = \{f, g, ...\}$ of *function symbols*, together with an assignment ar : $|\Sigma| \to \mathbb{N}$ of an *arity* to each function symbol.

Fix a signature. For example, let h be a function symbol of arity 2, and let g be a function symbol of arity 1.

Let V be a set of *variables*. Then we can form the set of *terms*, e.g.:

x, y, g(x), g(y), h(x,x), h(x,y), h(g(x),y), h(g(g(x)),x), g(h(x,g(h(y,x)))),...

Let $\text{Terms}_{\Sigma}(V)$ be this set of terms.

Free algebras, continued

On the set $\text{Terms}_{\Sigma}(V)$, consider the smallest equivalence relation \sim_F such that:

$$\frac{(t=s)\in E}{t'\sim_E s'} \quad \frac{t_1\sim_E s_1, \ldots, t_n\sim_E s_n}{f(t_1,\ldots,t_n)\sim_E f(s_1,\ldots,s_n)}$$

Then $\text{Terms}_{\Sigma}(V)/\sim_E$ is a (Σ, E) -algebra. We denote it by $\text{Terms}_{\Sigma,E}(V)$.

In fact, it is the *free* (Σ, E) -algebra generated by V. Concretely, this means: for any (Σ, E) -algebra A, and any function $f: V \to A$, there exists a unique homomorphism of (Σ, E) -algebras $g: \operatorname{Terms}_{\Sigma, E}(V) \to A$ such that

$$V f$$

Terms _{Σ,E} (V) --- \bar{g} -->A.

The term monad

Fix Σ and E. Consider the functor $T : \mathbf{Set} \to \mathbf{Set}$ given by

 $T(V) = Terms_{\Sigma,E}(V).$

This is a monad:

- Functor: for $f: V \to W$, define $T(f): Terms_{\Sigma,E}(V) \to Terms_{\Sigma,E}(W)$ by "renaming" all the variables in a term.
- Unit: $\eta_V : V \to \text{Terms}_{\Sigma,E}(V)$ maps a variable x to the term x.
- Multiplication: $\mu_V : T(T(V)) \rightarrow T(V)$ takes a term whose "variables" are other terms. It is defined by "flattening" this structure into a single term.

Check the monad laws!

The list monad as a term monad

In fact, the list monad $A \mapsto A^*$ is the term monad for operations "·" (arity 2), e (arity 0), with equations

 $(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}), \quad \mathbf{e} \cdot \mathbf{x} = \mathbf{x}, \quad \mathbf{x} \cdot \mathbf{e} = \mathbf{x}.$

In other words, A^* is the *free monoid* on A. Also:

- $T(A) = A + \bot$ is the term monad over the signature $\Sigma = \{\bot\}$ (arity 0, no equations);
- T(A) = P^{fin}(A) is like the list monad, with the additional equations

$$x \cdot x = x, \quad x \cdot y = y \cdot x;$$

- $T(A) = \mathscr{P}^{fin,+}$ is the same, but without the constant e;
- $T(A) = A \times \Sigma^*$ is the term monad over the signature $\{w_c \mid c \in \Sigma\}$, each with arity 1.

An alternative definition of monad [E. Manes]

Let **C** be a category, and let $T : |\mathbf{C}| \to |\mathbf{C}|$ be a function on objects (here *not* a priori assumed to be a functor).

Suppose that T is equipped with the following two operations:

 $\frac{f:A \to TB}{\eta_A:A \to TA} \quad \frac{f:A \to TB}{\mathsf{lift}(f):TA \to TB}$

Satisfying:

(a) lift(η_A) = 1_{TA} (b) (liftf) $\circ \eta_A$ = f (c) lift((liftg) $\circ f$) = (liftg) \circ (liftf) Note: then T can be made into a functor like this: $\frac{f: A \to B}{\frac{\eta_B \circ f: A \to TB}{\text{lift}(\eta_B \circ f): TA \to TB}}$

Exercise: prove that this is an equivalent definition of monad.

Kleisli category of a monad: C_T

Let (T, η, μ) be a monad on a category **C**. Its *Kleisli category* **C**_T is defined as follows:

- Objects: C_T has the same objects as C.
- Morphisms: $C_T(A, B) = C(A, TB)$.
- Identities and composition:

 $\mathsf{id}_{\mathsf{T}}: \mathsf{A} \to \mathsf{T}\mathsf{A} \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{B} \quad \mathsf{g}: \mathsf{B} \to \mathsf{T}\mathsf{C}}{\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{C}}$

Then C_T is a well-defined category. Moreover, there is a canonical functor $F : \mathbb{C} \to \mathbb{C}_T$ mapping A to A and f to $\eta_B \circ f$, and a canonical functor $G : \mathbb{C}_T \to \mathbb{C}$ mapping A to TA and g to lift(g).

Algebras of a monad: C^T

Let (T, η, μ) be a monad on a category **C**.

Definition. An *algebra* for T is a pair (A, a), where A is an object of C, and $a : TA \rightarrow A$ is a morphism, satisfing

Given two algebras (A, a) and (B, b), a *homomorphism* is given by a map $f : A \to B$ satisfying

Consider what this means in case of the term monad for (Σ, E) .

Eilenberg-Moore category of a monad: C^T

Let (T, η, μ) be a monad on a category **C**. Its *Eilenberg-Moore* category **C**^T is defined as follows:

- Objects: algebras (A, a) for the monad T.
- Morphisms: algebra homomorphisms.
- Identities and composition: as in **C**.

Then \mathbf{C}^{T} is a well-defined category. Moreover, there is a canonical functor $F : \mathbf{C} \to \mathbf{C}^{\mathsf{T}}$ mapping A to $(\mathsf{T}A, \mu_A)$ and f to $\mathsf{T}f$. There is also a canonical functor $G : \mathbf{C}^{\mathsf{T}} \to \mathbf{C}$ mapping (A, \mathfrak{a}) to A.