
Composing functors

Horizontal composition (functors):

C F D G E

If F,G are functors, then so is G ◦ F. Defined on objects as

(G ◦ F)(A) = G(F(A)) and on morphisms as (G ◦ F)(f) = G(F(f)).

Identity (functors):

C
1C C

The identity functor 1C : C → C is defined as 1C(A) = A on

objects and 1C(f) = f on morphisms.

35

Composing natural transformations

Vertical composition (natural transformations):

C

H

G

F

D

α⇑

β⇑

If α : F → G and β : G → H are natural transformations, then so is

β • α : F → H. If it defined by (β • α)A = βA ◦ αA : FA → HA.

Identity (natural transformations):

C

F

F

D1F⇑

The identity natural transf. 1F : F → F is defined as (1F)A = 1FA.

By abuse of notation, we sometimes denote 1F by 1, or even F.

36

Composing natural transformations, continued

Whiskering (right):

C

G

F

Dα⇑ H E

If F,G : C → D and H : D → E are functors, and if α : F → G is a
natural transformation, the right whiskering

H ◦ α : H ◦ F → H ◦ G

is defined as (H ◦ α)A : H(FA) → H(GA) by (H ◦ α)A = H(αA). This
is indeed a natural transformation, i.e.,

H(FA)

H(Ff)

H(αA) H(GA)

H(Gf)

H(FB)
H(αB) H(GB).

In this case, it follows from the naturality of α and the
functoriality of H.

37

Composing natural transformations, continued

Whiskering (left):

C F D

H

G

Eα⇑

If F : C → D and G,H : D → E are functors, and if α : G → H is a

natural transformation, the left whiskering

α ◦ F : G ◦ F → H ◦ F

is defined as (α ◦ F)A : G(FA) → H(FA) by (α ◦ F)A = αFA. This is

indeed a natural transformation, i.e.,

G(FA)

G(Ff)

αFA H(FA)

H(Ff)

G(FB)
αFB H(FB).

In this case, it follows from the naturality of α.

38

Composing natural transformations, continued

Horizontal composition (natural transformations):

C

G

F

D

K

H

α⇑ β⇑ E

If F,G : C → D and H, K : D → E are functors, and if α : F → G

and β : H → K are natural transformations, the horizontal

composition

β ◦ α : H ◦ F → K ◦ G

can be defined in two different ways:

• Right whiskering followed by left whiskering:

β ◦ α = (β ◦ G) • (H ◦ α)

• Left whiskering followed by right whiskering:

β ◦ α = (K ◦ α) • (β ◦ F).

39

Composing natural transformations, continued

• Right whiskering followed by left whiskering:

β ◦ α = (β ◦ G) • (H ◦ α)

• Left whiskering followed by right whiskering:

β ◦ α = (K ◦ α) • (β ◦ F).

The two definitions coincide, because

[(β ◦ G) • (H ◦ α)]A = βGA ◦ H(αA), and

[(K ◦ α) • (β ◦ F)]A = K(αA) ◦ βFA, and

H(FA)
H(αA)

βFA

H(GA)

βGA

K(FA)
K(αA)

K(GA).

by naturality of β.

40

Some laws about whiskering

B E C

H

G

F

α⇑

β⇑

D K E

K ◦ (β • α) = (K ◦ β) • (K ◦ α)

K ◦ 1F = 1K◦F
1K ◦ α = K ◦ α

1K ◦ 1F = 1K◦F
(β • α) ◦ E = (β ◦ E) • (α ◦ E)

1F ◦ E = 1F◦E
α ◦ 1E = α ◦ E

41

The double interchange law

C
α⇑

β⇑

D
γ⇑

δ⇑

E

(δ ◦ β) • (γ ◦ α) = (δ • γ) ◦ (β • α)

42

Example: The list monad

Recall that F(A) = A∗ is the list monad. Here A∗ is the set of

finite lists (also known as words, strings) of elements from A.

F is a monad as follows:

• Functor: for f : A → B, define f∗ : A∗ → B∗ by

f∗[a1, . . . , an] = [f(a1), . . . , f(an)].

• Unit: we define ηA : A → A∗ by

ηA(a) = [a] (singleton).

• Multiplication: we define µA : A∗∗ → A∗ by

µA([l1, l2 . . . , ln]) = l1 · l2 · . . . · ln.

Verify the monad laws.

43

Free algebras

Let Σ be a signature, and let E be a set of equations (both in

the sense of universal algebra).

A signature consists of a set |Σ| = {f, g, . . .} of function symbols,

together with an assignment ar : |Σ| → N of an arity to each

function symbol.

Fix a signature. For example, let h be a function symbol of

arity 2, and let g be a function symbol of arity 1.

Let V be a set of variables. Then we can form the set of terms,

e.g.:

x, y, g(x), g(y), h(x, x), h(x, y),

h(g(x), y), h(g(g(x)), x), g(h(x, g(h(y, x)))), . . .

Let TermsΣ(V) be this set of terms.

44

Free algebras, continued

On the set TermsΣ(V), consider the smallest equivalence

relation ∼E such that:

(t = s) ∈ E

t ′ ∼E s ′
t1 ∼E s1, . . . , tn ∼E sn

f(t1, . . . , tn) ∼E f(s1, . . . , sn)

Then TermsΣ(V)/ ∼E is a (Σ, E)-algebra. We denote it by

TermsΣ,E(V).

In fact, it is the free (Σ, E)-algebra generated by V. Concretely,

this means: for any (Σ, E)-algebra A, and any function f : V → A,

there exists a unique homomorphism of (Σ, E)-algebras

g : TermsΣ,E(V) → A such that

V
f

TermsΣ,E(V) g A.

45

The term monad

Fix Σ and E. Consider the functor T : Set → Set given by

T(V) = TermsΣ,E(V).

This is a monad:

• Functor: for f : V → W, define

T(f) : TermsΣ,E(V) → TermsΣ,E(W) by “renaming” all the

variables in a term.

• Unit: ηV : V → TermsΣ,E(V) maps a variable x to the term x.

• Multiplication: µV : T(T(V)) → T(V) takes a term whose

“variables” are other terms. It is defined by “flattening”

this structure into a single term.

Check the monad laws!

46

The list monad as a term monad

In fact, the list monad A 7→ A∗ is the term monad for operations

“·” (arity 2), e (arity 0), with equations

(x · y) · z = x · (y · z), e · x = x, x · e = x.

In other words, A∗ is the free monoid on A. Also:

• T(A) = A +⊥ is the term monad over the signature Σ = {⊥}

(arity 0, no equations);

• T(A) = Pfin(A) is like the list monad, with the additional

equations

x · x = x, x · y = y · x;

• T(A) = Pfin,+ is the same, but without the constant e;

• T(A) = A× Σ∗ is the term monad over the signature

{wc | c ∈ Σ}, each with arity 1.

47

An alternative definition of monad [E. Manes]

Let C be a category, and let T : |C| → |C| be a function on

objects (here not a priori assumed to be a functor).

Suppose that T is equipped with the following two operations:

ηA : A → TA

f : A → TB

lift(f) : TA → TB

Satisfying:

(a) lift(ηA) = 1TA (b) (liftf)◦ηA = f (c) lift((liftg)◦f) = (liftg)◦(liftf)

Note: then T can be made into a functor like this:

f : A → B

ηB ◦ f : A → TB

lift(ηB ◦ f) : TA → TB

Exercise: prove that this is an equivalent definition of monad.

48

Kleisli category of a monad: CT

Let (T, η, µ) be a monad on a category C. Its Kleisli category CT

is defined as follows:

• Objects: CT has the same objects as C.

• Morphisms: CT (A,B) = C(A, TB).

• Identities and composition:

idT : A → TA
f : A → TB g : B → TC

g ◦T f : A → TC

Then CT is a well-defined category. Moreover, there is a

canonical functor F : C → CT mapping A to A and f to ηB ◦ f, and

a canonical functor G : CT → C mapping A to TA and g to lift(g).

49

Algebras of a monad: CT

Let (T, η, µ) be a monad on a category C.

Definition. An algebra for T is a pair (A, a), where A is an

object of C, and a : TA → A is a morphism, satisfing

T2A Ta

µA

TA

a

TA a A,

A
ηA

1A

TA

a

A.

Given two algebras (A, a) and (B, b), a homomorphism is given

by a map f : A → B satisfying

TA

a

Tf TB

b

A f B.

Consider what this means in case of the term monad for (Σ, E).

50

Eilenberg-Moore category of a monad: CT

Let (T, η, µ) be a monad on a category C. Its Eilenberg-Moore

category CT is defined as follows:

• Objects: algebras (A, a) for the monad T .

• Morphisms: algebra homomorphisms.

• Identities and composition: as in C.

Then CT is a well-defined category. Moreover, there is a

canonical functor F : C → CT mapping A to (TA, µA) and f to Tf.

There is also a canonical functor G : CT → C mapping (A, a) to

A.

51

