
Introduction to categorical logic

Peter Selinger

Dalhousie University

Halifax, Canada

1

Categorical logic

Categorical logic is about the connections between the

following three areas:

• Logic (more precisely, proof theory),

• Computation (more precisely, programming languages),

• Category theory.

Our starting point: computation.

2

Part I: Introductory examples

3

Describing behavior

Semantics: to give a mathematical description of the behavior

of computer programs.

Method 1: (operational) Define a particular kind of machine

(Turing machine, Von Neumann machine, Abstract machine,

Virtual machine. . .). Then describe how to run each program

on this machine.

Method 2: (denotational) Give a mathematical description of

the behavior, independenly of any machine. Specifically, define

some mathematical space of behaviors, then map each program

to a point in that space.

4

What is a “mathematical description”?

Part of the basic fabric of mathematics (i.e., what every

mathematician learns near the beginning of their education) is

how to encode various mathematical objects (finite sets,

integers, rational numbers, real numbers, cartesian coordinates,

geometric objects, algebras, topologies, equivalence relations,

etc.) in set theory. We learn the standard encodings, and we

also learn how to create new encodings.

People often assume that computer science is about

programming some machine, for example the Intel Core i5-3570

processor running the Windows 7 operating system.

But in fact, many parts of computer science can also be

developed by encoding various computing concepts (functions,

data types, computational effects) in set theory.

5

What is a behavior of a computer program?

Set-theoretic (functional) interpretation:

• A type is a set. Examples:

– Bool = {true, false}.

– N = {0, 1, 2, . . .}.

– String = { " ", "a", "b", "ab", . . . }.

• The behavior of a program with inputs A and outputs B is

given by a function

f : A → B.

Note: in this functional notion of behavior, some aspects of the

program are lost, for example: How long does it take to

compute f(a)? Two programs are considered equal if they

compute equal outputs on equal inputs. This is called the

extensional view of behavior.

6

Examples from different programming languages

• In C or Java:

int f(int x) {

return x + 1;

}

• In Haskell:

f :: int -> int

f x = x+1

• In Mathematica:

f[x_] := x + 1

• In lambda calculus:

f = λx.x + 1

All define the same function f : N → N, namely f(x) = x + 1.

7

Compositionality

Programs are built up from smaller programs by means of

combinators.

The principle of compositionality states that the behavior of

the whole is uniquely determined by the behavior of the parts.

Therefore, parts that have equal behavior are interchangeable.

For example, the expressions f(x) = (2x + 4)/2 − 2 and f(x) = x + 1

are interchangeable.

For now, we only need to consider two combinators (more may

be added later): identity and composition.

id : A → A
f : A → B g : B → C

g ◦ f : A → C

8

Computational effects

The idea of a program as a function is only a first

approximation. In reality, programs do more than just mapping

inputs to outputs. For example, they may:

• not terminate;

• be non-deterministic;

• make probabilistic choices;

• write to a file or read from a file;

• be interactive;

• read and modify global variables;

• raise an exception or generate an error;

• . . .

Any such additional behaviors are called “computational

effects”.

9

Non-termination

Potentially non-terminating programs are easy to model. A

program with input A and output B is now described as a

partial function f : A ⇀ B.

Concretely, let ⊥ be a symbol that is not an element of any

type. The behavior of a potentially non-terminating program is

described as a function

f : A → B +⊥

with the information interpretation f(a) = b if f terminates on

input a with output b, and f(a) = ⊥ if f diverges.

Notations: A+B denotes disjoint union of sets A
.
∪ B. We wrote

A +⊥ instead of A + {⊥}.

10

Non-termination, continued

We also need to account for compositionality, i.e.: what

happens to non-termination when programs are combined?

id⊥ : A → A +⊥
f : A → B +⊥ g : B → C +⊥

g ◦⊥ f : A → C +⊥

It is clear how to define the operations id⊥ and ◦⊥:

• id⊥(a) = a (the identity program always terminates)

• (g ◦⊥ f)(a) =

{
g(b) if f(a) = b,

⊥ if f(a) = ⊥.

(a composition terminates iff each of the parts terminates)

11

Non-determinism

A program is non-deterministic if it may potentially return a

different output each time it is run. For example, a program

that computes the root of a polynomial might find a different

root on different runs — or maybe it will always find the same

root, but it is unspecified which one it finds.

Let P+(A) = {X | X ⊆ A, X 6= ∅} denote the non-empty powerset

of A.

We can describe the behavior of a non-deterministic program

with input type A and output type B as a function

f : A → P
+(B)

with the informal interpretation: f(a) = b1, . . . , bn if f may

non-deterministically return any of the outputs b1, . . . , bn on

input a.

12

Non-determinism, continued

idnd : A → P
+(A)

f : A → P+(B) g : B → P+(C)

g ◦nd f : A → P+(C)

How do non-deterministic programs compose?

• idnd(a) = {a} (the identity is deterministic)

• (g ◦nd f)(a) =
⋃
{g(b) | b ∈ f(a)}.

(apply g to every possible output of f)

13

Probabilistic computation

A program is probabilistic if is has access to a random number

generator. For example, a probabilistic program might output

true with probability 1
3 and false with probabililty 2

3.

Let Pr(A) denote the set of probability distributions on A.

We can describe the behavior of a probabilistic program with

input type A and output type B as a function

f : A → Pr(B)

with the informal interpretation: f(a)(b) = p if f(a) returns b

with probability p.

(Note: for simplicity, assume all probability distributions are

countably supported.)

14

Probabilistic computation, continued

idpr : A → Pr(A)
f : A → Pr(B) g : B → Pr(C)

g ◦pr f : A → Pr(C)

How do probabilistic programs compose?

• idpr(a)(b) =

{
1 if a = b

0 otherwise
(the identity is deterministic)

• (g ◦pr f)(a)(c) =
∑

b f(a)(b) · g(b)(c) (sum over all paths)

15

Output to a terminal

A computer program might write some characters while it runs;

for example, to a terminal (console) or to a file.

Let Σ be the set of characters (for example, the ASCII

alphabet; we will use Σ = {a, b, c}).

Let Σ∗ denote the set of strings, i.e., finite sequences of

elements of Σ. We will write ǫ for the empty string, and s · t for

concatenation of strings. Example: "ab" · "bc" = "abbc".

We describe the behavior of a program with input type A,

output type B, and writing some characters to a terminal, as a

function

f : A → B× Σ∗,

with the informal interpretation: f(a) = (b, s) if f(a) writes s and

returns b.

16

Output to a terminal, continued

idout : A → A× Σ∗ f : A → B× Σ∗ g : B → C× Σ∗

g ◦out f : A → C× Σ∗

How do such programs compose?

• idout(a) = (a, ǫ) (the identity function writes nothing)

• (g ◦out f)(a) = (c, s · t) where f(a) = (b, s) and g(b) = (c, t)

(f writes first, g writes second)

17

State

A program is stateful if it has access to some global state (for

example, some global variables) that it may read and update.

For example, a program may increment a counter, and use this

to return a different integer each time it is called.

Let S be the set of states.

We can describe the behavior of a stateful program with input

type A and output type B as a function

f : A× S → B× S

with the informal interpretation: f(a, s1) = (b, s2) if the program f

with input a, run in state s1, produces output b and updates

the state to s2.

18

State, continued

idst : A×S → A×S
f : A× S → B× S g : B× S → C× S

g ◦st f : A× S → C× S

How do stateful programs compose?

• idst(a, s) = (a, s) (the identity does not update the state)

• (g ◦st f)(a, s1) = (c, s3)

where f(a, s1) = (b, s2) and g(b, s2) = (c, s3).

(first f updates the state, then g is run in this new state)

19

Computational effects and monads

What do all these examples have in common? Eugenio Moggi

observed that computational effects all have the structure of a

monad.

In each case, we have some operation T on sets:

• T(A) = A +⊥ (non-termination)

• T(A) = P+(A) (non-determinism)

• T(A) = Pr(A) (probabilistic)

• T(A) = A× Σ∗ (terminal output)

• . . .

20

Computational effects and monads, continued

In each case, we define a function with computational effects,

with input type A and output type B, to be a set-theoretic

function

f : A → T(B).

Finally, in each case, we define an effectful identity and an

effectful composition:

idT : A → T(A)
f : A → T(B) g : B → T(C)

g ◦T f : A → T(C)

For this to make any sense, the operations T , idT , and ◦T must

satisfy certain properties, for example

idT ◦T f = f, g ◦T idT = g, h ◦T (g ◦T f) = (h ◦T g) ◦T f.

Such a structure (T, idT , ◦T) is called a monad.

21

The state monad

One of our examples does not seem to fit the pattern of a

monad. Namely, in the case of stateful computation, we used:

f : A× S → B× S.

However, this can easily be rewritten to fit the same pattern as

the other examples:

f : A → (B× S)S.

Here, XY = {g | g : Y → X} denotes the set of all functions from Y

to X.

We therefore have the state monad

T(A) = (A× S)S.

22

Part II: Introduction to category theory

23

Categories

A category C consists of:

• A collection |C| of objects A, B, C, . . .

• For each pair A, B of objects, a set of morphisms

C(A, B)

We also write f : A → B to indicate f ∈ C(A, B).

• with operations

f : A → B g : B → C

g ◦ f : A → C idA : A → A

Note: this notation just means:

◦ : C(B, C)×C(A, B) → C(A,C),

idA ∈ C(A,A).

24

Categories, continued

. . .

• subject to the equations:

idB ◦ f = f, f ◦ idA = f, (h ◦ g) ◦ f = h ◦ (g ◦ f).

25

Examples of categories

• the category Set of sets (and functions),

• the category Rel of sets (and relations),

• the category Grp of groups (and homomorphisms),

• the category Ab of abelian groups (and homomorphisms),

• the category Rng of rings (and ring homomorphisms),

• the category Vec of vector spaces (and linear functions),

• the category Top of topological spaces (and continuous

functions),

• logic: objects = propositions, morphisms = proofs

• computing: objects = data types, morphisms = programs

Concepts such as inverse, monomorphism (injection),

idempotent, product, etc, make sense in any category.

26

Functors

Let C and D be categories. A functor F : C → D is given by the

following data:

• A function F : |C| → |D| from the objects of C to the objects

of D;

• For every pair of objects A,B ∈ |C|, a function

F : C(A, B) → D(FA, FB);

• subject to the equations

F(idA) = idFA, F(g ◦ f) = Fg ◦ Ff

Note: we use F to denote both the object part and the

morphism part of the functor. We also often write FA, Ff, etc.,

instead of the more traditional F(A), F(f).

27

Examples of functors

On Set:

• F(A) = A + X (where X is a fixed set)

• F(A) = P(A) (powerset)

• F(A) = P+(A) (non-empty powerset)

• F(A) = Pr(A) (probability)

• F(A) = A× X (where X is a fixed set)

• F(A) = A× A

• F(A) = AX (where X is a fixed set)

• F(A) = X (where X is a fixed set: constant functor)

• F(A) = A∗ (list functor)

Exercise: supply the missing data making each of these
examples into a functor. A priori this is not unique!

28

Examples of functors from mathematics

• F : Grp → Set given by F(G) = |G|, the “underlying set” of the

group, and F(φ) = φ. This is called a “forgetful” functor.

• There are also forgetful functors Rng → Grp, Ring → Ab,

Ab → Grp, Top → Set, and so on.

• F : Set → Grp, where F(X) is the free group generated by X.

• F : Set → Vec, where F(X) is the vector space with basis X.

• F : Top∗ → Grp, where F(X) = π1(X) is the fundamental group

of X.

Exercise: supply the missing data, and check that each of

these is a functor.

29

Natural transformations

Let C,D be categories and let F, G : C → D be two functors. A

natural transformation η : F → G is given by the following data:

• for every object A ∈ |C|, a morphism ηA : FA → GA;

• subject, for every f : A → B in C, to the equation

FA

ηA

Ff FB

ηB

GA Gf GB.

Note: the diagram is just a notation for an equation

ηB ◦ Ff = Gf ◦ ηA.

30

Examples of natural transformations

On Set, let F be the list functor F(A) = A∗, and let G be the

powerset functor G(A) = P(A).

The function ηA : A∗ → P(A) defined by

ηA(x1, . . . , xn) = {x1, . . . , xn}

is a natural transformation.

The function ηA : A∗ → A∗ defined by

ηA(x1, . . . , xn) = (xn, . . . , x1)

is a natural transformation.

The function ηA : Pfin(A) → A∗ defined by

ηA{x1, . . . , xn} = (x1, . . . , xn)

(in some arbitrary but fixed order) is not a natural

transformation.

31

Monads

Let C be a category. A monad (T, η, µ) on C is given by the

following data:

• A functor T : C → C;

• Two natural transformations η : 1 → T and µ : T2 → T ;

• subject to the equations

T
ηT

idTη

T2

µ

T2
µ

T,

T3
µT

Tµ

T2

µ

T2
µ

T.

32

The Kleisli category of a monad

Recall our compositionality requirement from Part I:

idT : A → TA
f : A → TB g : B → TC

g ◦T f : A → TC

Given a monad (T, η, µ) on a category C, we actually have

enough data to define these operations. Specifically, we can

define

• idT = A
ηA
−−→ TA;

• g ◦T f = A
f
−→ TB

Tg
−−→ T(TC)

µC
−−→ TC.

Exercise: verify the three laws

idT ◦T f = f, g ◦T idT = g, h ◦T (g ◦T f) = (h ◦T g) ◦T f.

Exercise: show that these three laws are equivalent to the

equations in the definition of a monad.

33

Kleisli category, continued

Let (T, η, µ) be a monad on a category C. Recall that an

“effectful” map from A to B is given by

f : A → TB,

with identities and composition as on the previous slide. It is

then natural to make a new category, with the same objects as

C, but using the “effectful” maps as the morphisms. This is

called the Kleisli category of T , and denoted CT .

• Objects: CT has the same objects as C.

• Morphisms: CT (A,B) = C(A, TB).

• Identities and composition: as on the previous slide.

34

