Introduction to categorical logic

Peter Selinger

Dalhousie University Halifax, Canada

Categorical logic

Categorical logic is about the connections between the following three areas:

- Logic (more precisely, proof theory),
- Computation (more precisely, programming languages),
- Category theory.

Our starting point: computation.

Part I: Introductory examples

Describing behavior

Semantics: to give a mathematical description of the *behavior* of computer programs.

Method 1: (operational) Define a particular kind of machine (Turing machine, Von Neumann machine, Abstract machine, Virtual machine...). Then describe how to run each program on this machine.

Method 2: (denotational) Give a mathematical description of the behavior, independenly of any machine. Specifically, define some mathematical space of behaviors, then map each program to a point in that space.

What is a "mathematical description"?

Part of the basic fabric of **mathematics** (i.e., what every mathematician learns near the beginning of their education) is *how to encode various mathematical objects* (finite sets, integers, rational numbers, real numbers, cartesian coordinates, geometric objects, algebras, topologies, equivalence relations, etc.) *in set theory*. We learn the *standard encodings*, and we also learn how to create *new encodings*.

People often assume that **computer science** is about programming some machine, for example the Intel Core i5-3570 processor running the Windows 7 operating system.

But in fact, many parts of computer science can also be developed by *encoding various computing concepts* (functions, data types, computational effects) *in set theory*.

What is a behavior of a computer program?

Set-theoretic (functional) interpretation:

- A *type* is a *set*. Examples:
 - Bool = $\{true, false\}$.
 - $-\mathbb{N}=\{0,1,2,\ldots\}.$
 - String = {"", "a", "b", "ab", ...}.
- The behavior of a *program* with inputs A and outputs B is given by a *function*

$$f: A \rightarrow B$$
.

Note: in this functional notion of behavior, some aspects of the program are lost, for example: How *long* does it take to compute f(a)? Two programs are considered equal if they compute equal outputs on equal inputs. This is called the *extensional* view of behavior.

Examples from different programming languages

• In C or Java:

```
int f(int x) {
   return x + 1;
}
```

- In Haskell:
 - f :: int -> int
 - f x = x+1
- In Mathematica:

 $f[x_1] := x + 1$

• In lambda calculus:

 $f = \lambda x.x + 1$

All define the same function $f : \mathbb{N} \to \mathbb{N}$, namely f(x) = x + 1.

Compositionality

Programs are built up from smaller programs by means of *combinators*.

The principle of *compositionality* states that the behavior of the whole is uniquely determined by the behavior of the parts.

Therefore, parts that have equal behavior are *interchangeable*.

For example, the expressions f(x) = (2x+4)/2 - 2 and f(x) = x+1 are interchangeable.

For now, we only need to consider two combinators (more may be added later): *identity* and *composition*.

id:
$$A \to A$$

 $\frac{f: A \to B \quad g: B \to C}{g \circ f: A \to C}$

Computational effects

The idea of a program as a function is only a first approximation. In reality, programs do more than just mapping inputs to outputs. For example, they may:

- not terminate;
- be non-deterministic;
- make probabilistic choices;
- write to a file or read from a file;
- be interactive;
- read and modify global variables;
- raise an exception or generate an error;
- . . .

Any such additional behaviors are called "computational effects".

Non-termination

Potentially non-terminating programs are easy to model. A program with input A and output B is now described as a *partial function* $f : A \rightarrow B$.

Concretely, let \perp be a symbol that is not an element of any type. The behavior of a potentially non-terminating program is described as a function

 $f:A\to B+\bot$

with the information interpretation f(a) = b if f terminates on input a with output b, and $f(a) = \bot$ if f diverges.

Notations: A + B denotes disjoint union of sets $A \cup B$. We wrote $A + \bot$ instead of $A + \{\bot\}$.

Non-termination, continued

We also need to account for compositionality, i.e.: what happens to non-termination when programs are combined?

 $\mathsf{id}_{\perp}: \mathsf{A} \to \mathsf{A} + \bot \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{B} + \bot \quad \mathsf{g}: \mathsf{B} \to \mathsf{C} + \bot}{\mathsf{g} \circ_{\perp} \mathsf{f}: \mathsf{A} \to \mathsf{C} + \bot}$

It is clear how to define the operations id_{\perp} and o_{\perp} :

• $id_{\perp}(a) = a$ (the identity program always terminates)

•
$$(g \circ_{\perp} f)(a) = \begin{cases} g(b) & \text{if } f(a) = b, \\ \bot & \text{if } f(a) = \bot. \end{cases}$$

(a composition terminates iff each of the parts terminates)

Non-determinism

A program is *non-deterministic* if it may potentially return a different output each time it is run. For example, a program that computes the root of a polynomial might find a different root on different runs — or maybe it will always find the same root, but it is unspecified which one it finds.

Let $\mathscr{P}^+(A) = \{X \mid X \subseteq A, X \neq \emptyset\}$ denote the *non-empty powerset* of A.

We can describe the behavior of a non-deterministic program with input type A and output type B as a function

$$f: A \to \mathscr{P}^+(B)$$

with the informal interpretation: $f(a) = b_1, \ldots, b_n$ if f may non-deterministically return any of the outputs b_1, \ldots, b_n on input a.

Non-determinism, continued

$$\mathsf{id}_{\mathsf{nd}}: \mathsf{A} \to \mathscr{P}^+(\mathsf{A}) \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathscr{P}^+(\mathsf{B}) \quad \mathsf{g}: \mathsf{B} \to \mathscr{P}^+(\mathsf{C})}{\mathsf{g} \circ_{\mathsf{nd}} \mathsf{f}: \mathsf{A} \to \mathscr{P}^+(\mathsf{C})}$$

How do non-deterministic programs compose?

- $id_{nd}(a) = \{a\}$ (the identity is deterministic)
- $(g \circ_{nd} f)(a) = \bigcup \{g(b) \mid b \in f(a)\}.$

(apply g to every possible output of f)

Probabilistic computation

A program is *probabilistic* if is has access to a random number generator. For example, a probabilistic program might output true with probability $\frac{1}{3}$ and false with probability $\frac{2}{3}$.

Let Pr(A) denote the set of *probability distributions* on A.

We can describe the behavior of a probabilistic program with input type A and output type B as a function

 $f: A \rightarrow Pr(B)$

with the informal interpretation: f(a)(b) = p if f(a) returns b with probability p.

(Note: for simplicity, assume all probability distributions are countably supported.)

Probabilistic computation, continued

$$id_{pr}: A \to Pr(A) \qquad \qquad \frac{f: A \to Pr(B) \quad g: B \to Pr(C)}{g \circ_{pr} f: A \to Pr(C)}$$

How do probabilistic programs compose?

•
$$id_{pr}(a)(b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}$$
 (the identity is deterministic)

• $(g \circ_{pr} f)(a)(c) = \sum_{b} f(a)(b) \cdot g(b)(c)$ (sum over all paths)

Output to a terminal

A computer program might write some characters while it runs; for example, to a terminal (console) or to a file.

Let Σ be the set of *characters* (for example, the ASCII alphabet; we will use $\Sigma = \{a, b, c\}$).

Let Σ^* denote the set of *strings*, i.e., finite sequences of elements of Σ . We will write ϵ for the empty string, and $s \cdot t$ for concatenation of strings. Example: "ab" \cdot "bc" = "abbc".

We describe the behavior of a program with input type A, output type B, and writing some characters to a terminal, as a function

$$f: A \to B \times \Sigma^*$$
,

with the informal interpretation: f(a) = (b, s) if f(a) writes s and returns b.

Output to a terminal, continued

$$\mathsf{id}_{\mathsf{out}}: A \to A \times \Sigma^* \qquad \qquad \frac{\mathsf{f}: A \to B \times \Sigma^* \quad \mathsf{g}: B \to C \times \Sigma^*}{\mathsf{g} \circ_{\mathsf{out}} \mathsf{f}: A \to C \times \Sigma^*}$$

How do such programs compose?

- $id_{out}(a) = (a, \epsilon)$ (the identity function writes nothing)
- $(g \circ_{out} f)(a) = (c, s \cdot t)$ where f(a) = (b, s) and g(b) = (c, t)

(f writes first, g writes second)

State

A program is *stateful* if it has access to some global *state* (for example, some global variables) that it may read and update. For example, a program may increment a counter, and use this to return a different integer each time it is called.

Let **S** be the set of states.

We can describe the behavior of a stateful program with input type A and output type B as a function

 $f: A \times S \to B \times S$

with the informal interpretation: $f(a, s_1) = (b, s_2)$ if the program f with input a, run in state s_1 , produces output b and updates the state to s_2 .

State, continued

 $\text{id}_{st}:A{\times}S \to A{\times}S$

 $\frac{f: A \times S \to B \times S \quad g: B \times S \to C \times S}{g \circ_{st} f: A \times S \to C \times S}$

How do stateful programs compose?

- $id_{st}(a, s) = (a, s)$ (the identity does not update the state)
- $(g \circ_{st} f)(a, s_1) = (c, s_3)$ where $f(a, s_1) = (b, s_2)$ and $g(b, s_2) = (c, s_3)$.

(first f updates the state, then g is run in this new state)

Computational effects and monads

What do all these examples have in common? Eugenio Moggi observed that computational effects all have the structure of a *monad*.

In each case, we have some operation T on sets:

- $T(A) = A + \bot$ (non-termination)
- $T(A) = \mathscr{P}^+(A)$ (non-determinism)
- T(A) = Pr(A) (probabilistic)
- $T(A) = A \times \Sigma^*$ (terminal output)
- . . .

Computational effects and monads, continued

In each case, we define a *function with computational effects*, with input type A and output type B, to be a set-theoretic function

$$f: A \rightarrow T(B)$$
.

Finally, in each case, we define an effectful identity and an effectful composition:

$$\mathsf{id}_{\mathsf{T}}: \mathsf{A} \to \mathsf{T}(\mathsf{A}) \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{T}(\mathsf{B}) \quad \mathsf{g}: \mathsf{B} \to \mathsf{T}(\mathsf{C})}{\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}: \mathsf{A} \to \mathsf{T}(\mathsf{C})}$$

For this to make any sense, the operations T, id_T , and o_T must satisfy certain properties, for example

 $id_T \circ_T f = f$, $g \circ_T id_T = g$, $h \circ_T (g \circ_T f) = (h \circ_T g) \circ_T f$. Such a structure (T, id_T, \circ_T) is called a *monad*.

The state monad

One of our examples does not seem to fit the pattern of a monad. Namely, in the case of stateful computation, we used:

 $f: A \times S \rightarrow B \times S$.

However, this can easily be rewritten to fit the same pattern as the other examples:

 $f: A \to (B \times S)^S$.

Here, $X^{Y} = \{g \mid g : Y \to X\}$ denotes the set of all functions from Y to X.

We therefore have the state monad

 $\mathsf{T}(\mathsf{A}) = (\mathsf{A} \times \mathsf{S})^{\mathsf{S}}.$

22

Part II: Introduction to category theory

Categories

A category C consists of:

- A collection |C| of *objects* A, B, C, ...
- For each pair A, B of objects, a set of morphisms

 $\mathbf{C}(A,B)$

We also write $f : A \rightarrow B$ to indicate $f \in C(A, B)$.

• with operations

$$\frac{f: A \to B \qquad g: B \to C}{g \circ f: A \to C} \qquad \frac{id_A: A \to A}{id_A: A \to A}$$

Note: this notation just means:

 \circ : **C**(B, C) × **C**(A, B) → **C**(A, C), id_A ∈ **C**(A, A).

Categories, continued

. . .

• subject to the *equations*:

 $id_B \circ f = f$, $f \circ id_A = f$, $(h \circ g) \circ f = h \circ (g \circ f)$.

Examples of categories

- the category **Set** of *sets* (and functions),
- the category **Rel** of *sets* (and relations),
- the category **Grp** of *groups* (and homomorphisms),
- the category Ab of abelian groups (and homomorphisms),
- the category **Rng** of *rings* (and ring homomorphisms),
- the category Vec of vector spaces (and linear functions),
- the category **Top** of *topological spaces* (and continuous functions),
- *logic:* objects = propositions, morphisms = proofs
- *computing:* objects = data types, morphisms = programs

Concepts such as *inverse*, *monomorphism* (injection), *idempotent*, *product*, etc, make sense in any category.

Functors

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is given by the following data:

- A function $F : |\mathbf{C}| \to |\mathbf{D}|$ from the objects of \mathbf{C} to the objects of \mathbf{D} ;
- For every pair of objects $A, B \in |\mathbf{C}|$, a function $F : \mathbf{C}(A, B) \rightarrow \mathbf{D}(FA, FB);$
- subject to the equations

$$F(id_A) = id_{FA}, F(g \circ f) = Fg \circ Ff$$

Note: we use F to denote both the object part and the morphism part of the functor. We also often write FA, Ff, etc., instead of the more traditional F(A), F(f).

Examples of functors

On Set:

- F(A) = A + X (where X is a fixed set)
- $F(A) = \mathscr{P}(A)$ (powerset)
- $F(A) = \mathscr{P}^+(A)$ (non-empty powerset)
- F(A) = Pr(A) (probability)
- $F(A) = A \times X$ (where X is a fixed set)
- $F(A) = A \times A$
- $F(A) = A^X$ (where X is a fixed set)
- F(A) = X (where X is a fixed set: constant functor)
- $F(A) = A^*$ (list functor)

Exercise: supply the missing data making each of these examples into a functor. A priori this is not unique!

Examples of functors from mathematics

- F: Grp \rightarrow Set given by F(G) = |G|, the "underlying set" of the group, and $F(\varphi) = \varphi$. This is called a "forgetful" functor.
- There are also forgetful functors Rng → Grp, Ring → Ab,
 Ab → Grp, Top → Set, and so on.
- $F : \mathbf{Set} \to \mathbf{Grp}$, where F(X) is the *free group* generated by X.
- $F : \mathbf{Set} \to \mathbf{Vec}$, where F(X) is the vector space with basis X.
- $F: \mathbf{Top}_* \to \mathbf{Grp}$, where $F(X) = \pi_1(X)$ is the fundamental group of X.

Exercise: supply the missing data, and check that each of these is a functor.

Natural transformations

Let C, D be categories and let $F, G : C \to D$ be two functors. A *natural transformation* $\eta : F \to G$ is given by the following data:

- for every object $A \in |\mathbf{C}|$, a morphism $\eta_A : FA \to GA$;
- subject, for every $f : A \rightarrow B$ in **C**, to the equation

Note: the diagram is just a notation for an equation

 $\eta_B \circ Ff = Gf \circ \eta_A.$

Examples of natural transformations

On **Set**, let F be the list functor $F(A) = A^*$, and let G be the powerset functor $G(A) = \mathscr{P}(A)$.

The function $\eta_A : A^* \to \mathscr{P}(A)$ defined by

$$\eta_A(x_1,\ldots,x_n)=\{x_1,\ldots,x_n\}$$

is a natural transformation.

The function $\eta_A : A^* \to A^*$ defined by

$$\eta_A(x_1,\ldots,x_n)=(x_n,\ldots,x_1)$$

is a natural transformation.

The function $\eta_A : \mathscr{P}^{fin}(A) \to A^*$ defined by

$$\eta_A\{x_1,\ldots,x_n\}=(x_1,\ldots,x_n)$$

(in some arbitrary but fixed order) is not a natural transformation.

Monads

Let **C** be a category. A monad (T, η, μ) on **C** is given by the following data:

- A functor $T : C \rightarrow C$;
- Two natural transformations $\eta: 1 \rightarrow T$ and $\mu: T^2 \rightarrow T$;
- subject to the equations

The Kleisli category of a monad

Recall our compositionality requirement from Part I:

$$\mathsf{id}_{\mathsf{T}}: \mathsf{A} \to \mathsf{T}\mathsf{A} \qquad \qquad \frac{\mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{B} \quad \mathsf{g}: \mathsf{B} \to \mathsf{T}\mathsf{C}}{\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}: \mathsf{A} \to \mathsf{T}\mathsf{C}}$$

Given a monad (T, η, μ) on a category **C**, we actually have enough data to define these operations. Specifically, we can define

•
$$id_T = A \xrightarrow{\eta_A} TA;$$

•
$$g \circ_T f = A \xrightarrow{f} TB \xrightarrow{Tg} T(TC) \xrightarrow{\mu_C} TC$$
.

Exercise: verify the three laws

 $\mathsf{id}_{\mathsf{T}} \circ_{\mathsf{T}} \mathsf{f} = \mathsf{f}, \quad \mathsf{g} \circ_{\mathsf{T}} \mathsf{id}_{\mathsf{T}} = \mathsf{g}, \quad \mathsf{h} \circ_{\mathsf{T}} (\mathsf{g} \circ_{\mathsf{T}} \mathsf{f}) = (\mathsf{h} \circ_{\mathsf{T}} \mathsf{g}) \circ_{\mathsf{T}} \mathsf{f}.$

Exercise: show that these three laws are *equivalent* to the equations in the definition of a monad.

Kleisli category, continued

Let (T, η, μ) be a monad on a category **C**. Recall that an "effectful" map from A to B is given by

 $f: A \rightarrow TB$,

with identities and composition as on the previous slide. It is then natural to make a new category, with the same objects as C, but using the "effectful" maps as the morphisms. This is called the *Kleisli category* of T, and denoted C_T .

- Objects: C_T has the same objects as C.
- Morphisms: $C_T(A, B) = C(A, TB)$.
- Identities and composition: as on the previous slide.