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Abstract. Ordered algebras such as Boolean algebras, Heyting
algebras, lattice-ordered groups, and MV-algebras have long played
a decisive role in logic, although perhaps only in recent years has
the significance of the relationship between the two fields begun
to be fully recognized and exploited. The first aim of this survey
article is to briefly trace the distinct historical roots of ordered
algebras and logic, culminating with the theory of algebraizable
logics, based on the pioneering work of Lindenbaum and Tarski and
Blok and Pigozzi, that demonstrates the complementary nature of
the two fields. The second aim is to explain and illustrate the
usefulness of this theory, both from an ordered algebra and logic
perspective, in the context of the relationship between residuated
lattices and substructural logics. In particular, completions on the
ordered algebra side, and Gentzen systems on the logic side, are
used to address properties such as decidability, interpolation and
amalgamation, and completeness.

1. Introduction

Ordered algebras such as Boolean algebras, Heyting algebras, lattice-
ordered groups, and MV-algebras have long played a decisive role in
logic, both as the models of theories of first (or higher) order logic, and
as algebraic semantics for the plethora of non-classical logics emerg-
ing in the twentieth century from linguistics, philosophy, mathematics,
and computer science. Perhaps only in recent years, however, has the
full significance of the relationship between ordered algebras and logic
begun to be recognized and exploited. The first pioneering and reve-
latory step was taken already by Tarski and Lindenbaum back in the
1930’s, who showed that despite their different origins and motivations,
Boolean algebras and propositional classical logic may be viewed in a
certain sense as two sides of the same coin.
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A crucial element in the development of this relationship was Tarski’s
definition of an abstract concept of logical consequence. He was guided
by the intuition that a consequence relation should specify when a
single formula (the conclusion) follows from a set of formulas (the
premises), satisfying only three natural constraints: (i) every formula
follows from itself (reflexivity); (ii) whatever follows from a set of
premises also follows from any larger set of premises (monotonicity);
and (iii) whatever follows from consequences of a set of premises also
follows from the set itself (cut).

Prototypical sources of consequence relations are axiomatic logical
calculi, via the standard definition of formal proof: a formula α is a
consequence of a set of formulas Γ (relative to the calculus C) when
α is provable in C using assumptions in Γ. However, in Tarski’s work
there is also the implicit idea that behind each class of algebras lies
hidden (at least) one consequence relation. In fact, every class K of
algebras has an associated equational consequence relation `

Eq(K)
that

holds between a set of equations E and a single equation ε (in the
appropriate language) if and only if ε is satisfied in every algebra A ∈ K
which satisfies every member of E. In itself, this is not a consequence
relation in Tarski’s sense – it is defined on equations rather than on
formulas – but is readily seen to enjoy similar properties of reflexivity,
monotonicity, and cut. A few stipulations, moreover, ensure that it can
be converted into a Tarskian consequence relation. First, an equation
α ≈ β can be viewed as a pair (α, β) of formulas. Second, a map
τ from formulas to sets of equations should be specified that defines
for every A ∈ K, a ‘‘truth set” T in the following sense: the algebra
A ∈ K satisfies τ(α) just in case every valuation of α on A maps
it to a member of T (intuitively: the meaning of α in A belongs to
the set of “true values” and hence is true). This immediately yields a
consequence relation in Tarski’s sense, defined by

Γ `τ
K
α iff {τ(β) | β ∈ Γ} `

Eq(K)
τ(α).

Things, of course, get interesting when this consequence relation
happens to coincide with the deducibility relation of a well understood
logical calculus; this is the situation precisely for the variety BA of
Boolean algebras and classical propositional logic. What Tarski (devel-
oping an idea by Lindenbaum) showed, is that the consequence relation
`

HCL
extracted from the axiomatic calculus HCL for classical proposi-

tional logic is exactly `τ
BA

for τ(α) = {α ≈ 1}. In other words, Boolean
algebras form an algebraic semantics for classical propositional logic.
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Although Tarski’s approach was successfully extended to non-classical
logics in succeeding years, becoming a standard tool for their investiga-
tion, it took until the 1980’s and the work of Blok and Pigozzi for a for-
mal account of this general correspondence between logics and classes
of algebras to appear. In particular, Blok and Pigozzi pointed out that
the algebraic semantics of a given logic need not be unique; moreover,
the link provided by this relation is weak in several respects. They in-
troduced a stronger notion of equivalent algebraic semantics for a logic,
calling a logic algebraizable if it has a class K of algebras (unique, if K
is a quasivariety) as equivalent algebraic semantics. This account was
subsequently extended in many directions, and indeed now forms the
basis for the active area of research known as abstract algebraic logic.

Narrowing our scope for the purposes of this article, we will focus
here on the relationship between substructural logics and residuated
lattices. On the one hand, substructural logics encompass many im-
portant non-classical logics such as the full Lambek calculus, linear
logic, relevance logics, and fuzzy logics. On the other hand, residuated
lattices, as well as providing algebraic semantics for these logics, also
feature in areas interesting from the order-algebraic perspective such as
the theory of lattice-ordered groups, vector lattices (or Riesz spaces),
and abstract ideal theory. Intriguingly, in tackling problems from these
fields, methods from both algebra and logic seem to be essential. In
particular, algebraic methods have been used to address completeness
problems for Gentzen systems, while these systems have themselves
been used to establish decidability and amalgamation properties for
classes of algebras.

The first aim of this survey article is, through Sections 2 and 3,
to briefly trace the distinct historical roots of ordered algebras and
logic, culminating with the theory of algebraizable logics, based on the
pioneering work of Lindenbaum and Tarski and Blok and Pigozzi, that
demonstrates the complementary nature of the two fields. The second
aim is to explain and illustrate the usefulness of this theory for ordered
algebra and logic in the context of residuated lattices and substructural
logics, described in Sections 4 and 5, respectively. In particular, we will
explain in Section 6, how completions on the ordered algebra side, and
Gentzen systems on the logic side, are used to address properties such
as decidability, interpolation and amalgamation, and completeness.

We will assume that the reader is familiar with the basic facts, defi-
nitions, and terminology from universal algebra and lattice theory. In
particular, the notions partially ordered set or poset for short, lattice,
and algebra are central to this paper, as are the concepts of congruence
relation, homomorphism, and variety . For an introduction to universal
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algebra, the reader may wish to consult [23], [63], or [97], while any of
[7], [37], or [62] would serve as a suitable lattice theory reference. A
comprehensive treatment of residuated lattices and propositional sub-
structural logics is presented in [51].

2. The Logic of Mathematics

No survey on the relationship between algebra and logic can eschew
the more general issue of an assessment of the role of logic in mathe-
matics, and, for that matter, of the role of mathematics in logic. The
very expression “mathematical logic” has repeatedly been recognized
as ambiguous, at least to some extent, between an investigation into
the logical foundations of mathematical theories and an analysis of log-
ical reasoning carried out with the aid of mathematical tools. Roughly
expressed, “mathematical logic” is ambiguous between “the mathemat-
ics of logic” and the “logic of mathematics.”1 In the first part of this
paper, we will trace the antecedents of these two approaches by means
of a short and necessarily perfunctory historical survey.

2.1. Aristotle and the Stoics. The study of logic as an indepen-
dent discipline began with Aristotle (384-322 B.C.E.). In his Organon
(Λoγικά or Óργανoν), as is well known, he analyzed the structure of
arguments having syllogistic form, providing a canon of valid reason-
ing that would be virtually undisputed for centuries to come. Despite
appearances to the contrary – after all, Aristotelian logic is what the
founders of modern mathematical logic wanted to go beyond – it does
not seem inappropriate to include Aristotle’s contributions among the
attempts to carry out a logical analysis of mathematical reasoning.
Let us recall, in fact, that he sharply distinguished between the formal
development of his general theory of syllogism and its application to
scientific discourse on the one hand, carried out in the Prior Analytics
(’Aναλυτικά Πρóτερα) and in the Posterior Analytics (’Aναλυτικά
Ὺστερα) respectively, and the analysis of the logical structure of ev-
eryday reasoning on the other, reserved instead for the Topics and the
Sophistical Refutations (Toπικoί and Σoϕιστικoί ’́Eλεγχoι).

Moreover, it should be observed that, although this may sound blas-
phemous to a modern ear – syllogistic logic being just a decidable
barely expressive fragment of first order logic – Aristotle considered
his theory of syllogism completely adequate for the formalization of

1This observation is not as trite as it might seem. Kreisel, for one, does not ac-
cept the former meaning: “‘Mathematical logic’ [...] refers to mathematical methods
used in logic [...]; in analogy to ‘mathematical physics’ which means the mathemat-
ics of physics (and not the physics of mathematics)” ([87]).
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all mathematical inference. Actually, Aristotle even tried to provide a
proof of this claim in two interesting passages from his Prior Analytics
(I, 25.41b36-42a32 and I, 23.40b18-41a21).

More precisely, what Aristotle attempts is the following. The defi-
nition of syllogism initially given in the Prior Analytics is extremely
general in nature:

A syllogism is discourse in which, certain things being
stated, something other than what is stated follows of
necessity from their being so. I mean by the last phrase
that they produce the consequence, and by this, that no
further term is required from without in order to make
the consequence necessary (I, 1.24b19).

This definition would seem to subsume (although it is of course not
limited to) all kinds of mathematical reasoning. Later in the book,
however, Aristotle provides a different, more technical, definition of syl-
logism where precise constraints are introduced both as to the form of
the propositions involved and regarding the structure of the inferences
themselves. In the above-mentioned passages, Aristotle essentially ar-
gues that every syllogism in the first sense is also a syllogism in the
second sense. His purported proof is quite obscure and full of holes,
relying on a number of controversial assumptions; moreover, Aristotle
is forced to constrain somehow his vague initial concept of syllogism in
order to compare it with the other one, so much so that it is not at
all clear whether all mathematical inferences can still be encompassed
by the definition ([33], [89], [123]). Nonetheless, his inconclusive argu-
ment is clear evidence that Aristotle considered his theory of syllogism
as describing, among other things, the logical structure of mathemati-
cal reasoning.

This conviction was explicitly challenged already in the Antiquity.
The Stoics, who are as a rule collectively mentioned as the second most
important contributors to the development of ancient logic, as well as
being credited with the first noteworthy analysis of propositional con-
nexion, drew a sharp distinction between syllogisms (whether Aristo-
tle’s categorical syllogisms or their own new brands of propositional
syllogisms, hypothetical and disjunctive) and non-formally valid en-
thymemes, called “unmethodically valid arguments” (λóγoι ’αµεθóδως
περαίνoντες). Examples of such arguments, according to the Stoics,
abound in concrete mathematical proofs; therefore Aristotle’s syllo-
gistics does not provide a complete basis for mathematical reasoning
([8]).
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2.2. Leibniz and Wolff. Gottfried Wilhelm Leibniz (1646-1716) is
sometimes cited as a forerunner of modern mathematical logic, and
even as the thinker who established the discipline long before Boole
or Frege. Be this as it may, the importance of Leibniz in the develop-
ment of logic and his appreciation of logical reasoning as a basis for
science are acknowledged and unquestioned. Instead, the contribution
of another XVII c. German philosopher, Christian Wolff (1679-1754),
is less well-known. Under the influence of Leibniz, he disavowed his
own early devaluative views on the role of logic in mathematics and
came to embrace a revised version of Aristotle’s thesis: the theory of
categorical syllogism, as supplemented by the Scholastics, is sufficient
to formalize the inferences contained in all mathematical proofs. In his
Philosophia Rationalis Sive Logica (1728), he boldly tried to prove his
claim following a two-step strategy:

(1) First, he tried to show that some representative examples of
mathematical proofs2 were reducible to a finite sequence of sen-
tences, each of which was either a definition, or an axiom, or a
previously established theorem, or could be obtained from pre-
ceding sentences through the application of a (categorical, hy-
pothetical, or disjunctive) syllogism or of a one-premise propo-
sitional inference.

(2) Second, he completed his reduction process with an argument
to the effect that hypothetical and disjunctive syllogisms and
one-premise inferences can be reformulated as categorical syllo-
gisms.

True to form, Wolff’s attempt was far from successful. If we read
his analysis carefully, we see that he interspersed his reconstructions of
geometrical proofs with“intuitive judgments” (iudicia intuitiva), intro-
duced by such phrases as “It is intuitively evident that...” or “Looking
at the figure, we intuitively know that...”, and drawn from the ob-
servation of the figure or from the constructions he had previously
carried out. Of course, these “intuitive judgments” do not count as
definitions or axioms; hence their presence invalidates the first step of
Wolff’s strategy from the start (by the way, his second step was just

2Interestingly enough, all the examples of proofs analyzed by Wolff belong to ele-
mentary Euclidean geometry, although he was familiar (as witnessed by his teaching
syllabi and notes collected in his Ratio Praelectionum Wolffianarum) with the lat-
est developments of calculus and algebra. Most probably, only Euclidean geometry
met the standards of rigor he deemed necessary for his investigation.
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as gappy). Influenced by the traditional Euclidean model of geomet-
rical proof, which provided for a sharp distinction between the logico-
deductive part – the apódeixis (’απóδειξις), or proof proper – and the
constructive, synthetic part embodied by the constructions carried out
on the figure – the ékthesis (’́εκθεσις) and the kataskeué (κατασκευή):
([70]) – Wolff was only concerned with a logical reconstruction of the
former, while he regarded the latter as somehow foreign to the body of
the proof. In sum: categorical syllogistics may or may not have been
sufficient for a formalization of the narrow strictly deductive fragment
of a standard Euclidean proof, but of course it was not enough for a
formalization of the proof as a whole3.

2.3. Bolzano. Bernard Bolzano (1781-1848) brought reflection on the
logical foundations of mathematics to unprecedented levels of aware-
ness and depth. A mathematician by trade, he sought from the very
beginning of his career (e.g., in his Beyträge zu einer begründeteren
Darstellung der Mathematik, 1810) to establish on a firmer ground
the foundations of the mathematical disciplines. In accordance with
the time-honored tradition of “doctrine of method” leading from the
French XVII c. theorists (Pascal, Descartes, Arnauld) to his more re-
cent antecedents Lambert, Crusius, and Kant, Bolzano believed that
logic is instrumental for mathematics in that it serves as a preliminary
methodological framework for stating the rules that properly found
each mathematical discipline.

The second volume of his monumental work Wissenschaftslehre (1837)
contains a detailed and not yet fully appreciated development of a
powerful logical system, including an analysis of logical consequence,
viewed by some as an anticipation of Tarski. In particular, he con-
siders the two relations of derivability (Ableitbarkeit) and consecution
(Abfolge) among propositions. The former relation is, somewhat sur-
prisingly, a multiple-conclusion one: the propositions q1, ..., qm are said
to be derivable from the propositions p1, ..., pn with respect to the com-
ponent concepts a1, ..., ar iff the following two conditions are satisfied:

(1) There exists a sequence of concepts b1, ..., br such that, denoting
by pi(a1/b1, ..., ar/br) the result of uniformly substituting in pi
every occurrence of aj by an occurrence of bj, all the proposi-
tions

p1(a1/b1, ..., ar/br), ..., pn(a1/b1, ..., ar/br)

3According to some Kantian interpreters, Kant’s claim to the effect that math-
ematics is synthetic a priori does not contradict Wolff’s thesis that mathematics is
based on syllogistic logic: Kant is referring to mathematical proof as a whole, Wolff
to the apódeixis ([75], [49]).
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are true (compatibility clause).
(2) Every such sequence of concepts b1, ..., br also makes all the

conclusions true, i.e., the propositions

q1(a1/b1, ..., ar/br), ..., qm(a1/b1, ..., ar/br)

are true.

This notion is meant to formalize several features Bolzano requires of
“good” mathematical proofs: the compatibility clause reflects Bolzano’s
desire, inherited from Arnauld and Kant, to assign direct proofs a
higher status than ex absurdo proofs, while the fact that the deriv-
ability relation is relativized to a sequence of components – possibly
a proper subsequence of the sequence of all non-logical concepts con-
tained in the propositions at issue – is an attempt to describe an en-
thymematic consequence relation broad enough to encompass forms of
reasoning currently employed in standard mathematical practice (cf.
the Stoics’ “unmethodically conclusive arguments” mentioned above).

The relation of consecution is even more interesting, since it goes
some way towards investigating a stronger causal concept of conse-
quence. To illustrate the difference between the two notions, consider
the following propositions:

(1) In Rome the temperature is higher in August than in January.
(2) In Rome the mercury columns of thermometers are higher in

August than in January.

(1) and (2) are derivable from each other (w.r.t. the component con-
cepts “Rome”, “August”, “January”), but it is only (1) that causally
implies (2), not vice versa. According to Bolzano, only the best math-
ematical proofs are made up by causal inferences, while in other cases
there is at most a ‘‘transfer of evidence” from the premises down to
the conclusions.

Consecution is not formally defined by Bolzano, but only character-
ized by means of a list of properties. Among such properties there is a
remarkable one: if p and q are mathematical propositions and p causally
implies q, p cannot be “more complex” than q. In one of the most
extraordinary passages of his Wissenschaftslehre (§§ 216-221), Bolzano
investigates in detail the formal structure of proof trees explicitly taken
as mirroring the structure of actual mathematical proofs, and viewed
as bottom-up proof processes of “going from a consequence up to its
reasons”: nodes in the trees correspond to mathematical propositions,
and arcs to instances of the consecution relation. Taking advantage of
the above-mentioned postulate of non-decreasing complexity, he tries
to show that such proof trees must be analytic and therefore finite.
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His proof turns out to be conclusive only under additional assump-
tions; however, it remains one of the earliest and most limpid examples
of formal analysis of the logical structure of mathematical proofs.

2.4. From Frege to Hilbert. Gottlob Frege (1848-1925) articulated
a view of the relation between logic and mathematics that was at once
clear-cut and utterly controversial: mathematics is logic. Frege, in-
deed, defended a strong reductionist thesis nowadays known as logi-
cism: mathematical concepts can be defined in terms of purely logical
concepts, and mathematical principles can be derived from the laws
of logic alone. As part of the job needed to prove this claim, he had
of course to define numbers in logical terms. Frege did not start from
scratch: he built upon the work of Dedekind, Cantor, and Weierstrass,
who had managed around 1870 to reduce real numbers to rational num-
bers (Cantor, e.g., defined real numbers as certain equivalence classes
of Cauchy sequences of rationals), and given similar reductions of ra-
tional numbers to integers and of integers to natural numbers. What
remained then to complete the process was a reduction of natural num-
bers to logic.

To do this, Frege needed an adequate logical framework. Indeed, one
of his greatest accomplishments was the introduction of a logical sys-
tem that closely resembles an axiom system for second order quantifier
logic in the modern sense, appearing first in his early work Begriffss-
chrift (1879) and then, in a more mature formulation, in his two-volume
Grundgesetze der Arithmetik (1893-1903). Within this framework, he
was able to provide a powerful argument for the logicist claim, pro-
ceeding via a (supposedly) logical definition of the concept of natural
number.

It is well-known that Frege’s attempt was not crowned with success.
His logic relied on an unrestricted comprehension principle asserting
the existence of a set (or a concept, as Frege would have put it) for ev-
ery open formula with one free variable. This existential claim, apart
from casting a shadow on the purely logical nature of his system, was
shown to be inconsistent by Russell. The ultimate failure of Frege’s
program, however, should not obscure its merits and partial achieve-
ments. Frege, in fact, succeeded in deriving the Dedekind-Peano ax-
ioms for arithmetic in a consistent subsystem of his logic ([71], [19]).
Moreover, as a by-product of his foundational work, he laid the ground-
work for modern mathematical logic as an investigation into the logical
foundations of mathematical theories.

In Principia Mathematica (1910-1913), coauthored by Bertrand Rus-
sell (1872-1970) and Alfred N. Whitehead (1861-1947), Frege’s seminal
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A1. α→ (β → α)
A2. (α→ (β → γ))→ ((α→ β)→ (α→ γ))
A3. α ∧ β → α
A4. α ∧ β → β
A5. (α→ β)→ ((α→ γ)→ (α→ β ∧ γ))
A6. α→ α ∨ β
A7. β → α ∨ β
A8. (α→ γ)→ ((β → γ)→ (α ∨ β → γ))
A9. (α→ β)→ ((α→ ¬β)→ ¬α)
A10. α→ (¬α→ β)
A11. ¬¬α→ α
A12. (α→ α)→ 1
A13. 1→ (α→ α)
A14. 0→ ¬1
A15. ¬1→ 0

R1.
α α→ β

β
(Modus ponens)

Table 1. Hilbert-style calculus HCL for classical propo-
sitional logic.

work on the codification of logical principles in a formal calculus was
improved, both notationally and conceptually. It is Russell and White-
head’s, not Frege’s, formalization of logic that constituted the backdrop
against which most logical research in the first thirty years of the last
century – including Gödel’s completeness and incompleteness theorems
– was carried out. Building on this monumental piece of work, by the
end of the 1920’s David Hilbert (1862-1943) had essentially formulated
the modern concepts of logical language, axiomatic calculus, and for-
mal proof. Today, as a matter of fact, axiomatic logical calculi are
antonomastically named Hilbert-style calculi in his honor. Later, he
also codified in his two-volume Grundlagen der Mathematik [74], writ-
ten with Paul Bernays, what is now considered to be the standard
presentation of first order classical logic. Its propositional fragment
HCL is reproduced, with a few inessential variants, in Table 1.

A common feature of the logicians we have just mentioned was their
insistence on syntactic aspects of logic. Actually, it should be said that,
prior to Frege, the distinction between syntax and semantics did not
make any sense at all, in logic or any other mathematical theory: there
was no difference, say, between a provable and a valid sentence in syl-
logistic logic, or between a consistent axiom system for geometry and
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a system admitting models. The revolution of the axiomatic method
changed this state of affairs once and for all. Following Hilbert, a set of
axioms for a mathematical theory was no longer a body of self-evident
truths about an intended domain of objects, and proofs were no longer
viewed as means to transfer evidence from axioms to theorems. Rather,
axioms were thought of as arbitrarily designated sentences which im-
plicitly define their own objects, and proofs as means to ensure that
the relations enunciated by theorems hold in every possible domain of
entities in which the axioms also hold. In logic, the availability of a
rigorous concept of logical calculus made it possible to reduce all the
claims concerning truth or validity, which otherwise would have to be
checked in an “outer” domain of objects, to provability claims that it
was possible to verify within the calculus itself.

3. The Mathematics of Logic

Uncovering the logical structure of mathematical proofs and math-
ematical theories is not the same as trying to formalize reasoning –
on any subject matter – by mathematical means. Although the main-
stream tradition in early XX c. mathematical logic, leading from Frege
and Russell to Hilbert and Gödel, can be categorized under the for-
mer heading, outstanding contributions to the shaping of contempo-
rary logic were also made by a second important stream, generally re-
ferred to as “algebra of logic”, which eventually converged with the first
stream into a unique research domain. George Boole (1815-1864) was
a pioneer of this approach, while Stanley Jevons (1835-1882), Charles
Sanders Peirce (1839-1914) and Ernst Schröder (1841-1902) followed
in his footsteps. Two leading figures in the foundational research of
the pre-World War Two period, Leopold Löwenheim (1878-1957) and
Thoralf Skolem (1887-1963) can also be seen as belonging, at least to
some extent, to this tradition.

3.1. The early tradition in the algebra of logic. According to
many interpreters, Boole’s Mathematical Analysis of Logic, published
in 1847, and the expanded version of the treatise appearing in 1854
under the title An Investigation of the Laws of Thought, mark the of-
ficial birth of modern mathematical logic. In these milestone volumes,
Boole admittedly sought no less than to “investigate the fundamental
laws of those operations of the mind by which reasoning is performed,
to give expression to them in the symbolical language of a calculus,
and upon this foundation to establish the science of Logic and con-
struct its method.” Despite this somewhat bombastic statement of
purpose, Boole did not depart from tradition as radically as it might
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seem, because one of his main concerns – as for his contemporary Au-
gustus De Morgan (1806-1871) – was providing an algebraic treatment
of Aristotelian syllogistic logic, which occupies about one third of his
Mathematical Analysis of Logic. Boole started with the assumption
that ordinary logic is concerned with assertions that can be considered
assertions about classes of objects. He then translated the latter into
equations in the language of classes. His approach contained numer-
ous errors, partly due to his insistence that the algebra of logic should
behave like ordinary algebra, but offered significant new perspectives.

Although the name “Boolean algebra” might suggest that the inven-
tor of this concept was Boole, there is by now widespread agreement
among the scholarly community that he was not. Not that it is always
easy to clearly understand what Boole had in mind when working on
his calculus of classes: as Hailperin puts it ([68], p. 61),

If we look carefully at what Boole actually did [... ], we
find him carrying out operations, procedures, and pro-
cesses of an algebraic character, often inadequately jus-
tified by present-day standards and, at times, making no
sense to a modern mathematician. [... ] Boole consid-
ered this acceptable so long as the end result could be
given a meaning.

The reason why Boole’s calculus cannot be considered as a first incar-
nation of a Boolean algebra of sets is the fact that the two operations of
combination of two classes x and y (written xy in Boole’s notation) and
of aggregation of x and y (written x+ y) do correspond to intersection
and union, respectively, but the latter only makes sense when x and
y are disjoint classes. The algebras to be found in Boole’s work bear
therefore some resemblance to partial algebras in the modern sense,
except for the fact that often Boole happily disregarded his disjoint-
ness condition throughout his calculations, seemingly finding such a
procedure unobjectionable provided the final result did not violate the
condition itself.

Boole preceded an array of researchers who tried to develop further
his idea of turning logical reasoning into an algebraic calculus. The
already mentioned Stanley Jevons, Charles Sanders Peirce, and Ernst
Schröder took their cue from Boole’s investigations, yet all of them
suggested their own improvements and modifications to the work of
their predecessor.

Jevons, in particular, was dissatisfied with Boole’s choice of primitive
set-theoretical operations. He did not like the fact that aggregation was
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a partial operation, undefined on pairs of classes with nonempty inter-
section. In his Pure Logic (1864), he suggested a variant of Boole’s
calculus which he proudly advertised as based only on “processes of
self-evident meaning and force.” He viewed + as a total operation
making sense for any pair of classes, and essentially corresponding to
set-theoretic union. He also showed that all the expressions he used
remained interpretable throughout the intermediate steps of his calcu-
lations, thereby overcoming one of the main drawbacks of Boole’s work
([67]).

The main contribution to logic of the versatile Peirce – a philosopher,
mathematician, and authority on several pure and applied sciences –
is usually attributed to the foundation of the algebra of relations, for
which Schröder also made significant developments. However, in the
12,000 pages of his published work – rising to an astounding 90,000 if
we take into account his unpublished manuscripts – much more can be
found. He investigated the laws of propositional logic, discovering that
all the usual propositional connectives were definable in term of the
single connective NAND; he introduced quantifiers, although, unlike
Frege, he did not go so far as to suggest an axiomatic calculus for
quantified logic. He conceived of complex and fascinating graphs by
which he could represent logical syntax in two or even three dimensions.
For all these achievements, however, his impact on logic would not be
even remotely comparable to that exerted by Frege ([61]).

Let us finally mention that, contrary to the dominant paradigm of
Hilbertian formalism described in Subsection 2.4, adherents to the alge-
bra of logic tradition inherited from Boole a markedly anti-formalistic
stance on logic and mathematics: mathematical language was seen as
a system of interpreted symbols, and semantical notions like validity or
satisfiability were accorded priority over their syntactical counterparts.
This view had some unfortunate consequences. Skolem, for example,
came very close to proving the completeness theorem for first order
logic, but refrained from giving it an explicit formulation because he
viewed consistency of a system as equivalent by definition to satisfia-
bility [24].

3.2. Lindenbaum and Tarski. Roughly at the same time as Hilbert
and Bernays wrote what is now considered as the standard presen-
tation of first order classical logic, Emil Leon Post (1897-1954), Jan
 Lukasiewicz (1878-1956), and Clarence Irving Lewis (1883-1964), among
others, introduced the first Hilbert-style calculi for some propositional
(many-valued or modal) non-classical logics. If we also count Heyt-
ing’s calculus for intuitionistic logic, we can see how already in the
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1930’s classical logic had quite a number of competitors, each one of
which tried to capture a different concept of logical consequence. But
what should count, abstractly speaking, as a concept of logical conse-
quence? In answering this question, the Polish logicians Adolf Linden-
baum (1904-1941) and Alfred Tarski (1901-1983) initiated a confluence
of the Fregean and algebra of logic traditions into one unique stream.
Lindenbaum and Tarski showed how it is possible to associate in a
canonical way, at least at the propositional level, logical calculi (and
their attendant consequence relations) with classes of algebras.

To give some idea of their accomplishments, we will subordinate his-
torical accuracy to the needs of a more systematic treatment. As a
first step, we will define the general concept of consequence relation
along the lines of Tarski’s 1936 paper ([130]). A (propositional) lan-
guage over a countably infinite set X, whose members are referred to
as variables, is a nonempty set L (disjoint from X), whose members
are called connectives, such that a nonnegative integer n is assigned to
each member c of L. This integer is called the arity of c. The set Fm
of L-formulas over X is defined as follows:

• Inductive beginning : Every member p of X is a formula.
• Inductive step: If c is a connective of arity n and α1, ..., αn are

formulas, then so is c(α1, ..., αn).

We will confine ourselves to considering cases where L is finite; we
also observe that most connectives used in logic have arities 0 through
2. In this last case – i.e., for binary connectives – the customary infix
notation will be employed.

On the algebraic side, the same concept of language can be adopted
to specify the symbols denoting the primitive operations of an algebra
(or class of algebras). In this case, we sometimes use the phrase “simi-
larity type” or simply “type” in place of “language”. If L = {c1, ..., cn}
is a language over X, then by the inductive definition of formula

Fm = 〈Fm, c1, ..., cn〉

is an algebra of type L, called the formula algebra of L. In the following,
given a formula α(p1, ..., pn) containing at most the indicated variables,
an algebra A of type L and elements a1, ..., an ∈ A, we will denote by
αA(a1, ..., an) (or αA(−→a ) when the length of the string is either clear
from the context or inessential) the result of the application to α of
the unique homomorphism h : Fm→ A such that h(pi) = ai for all
i ≤ n. This notation will be sometimes extended to sets of formulas in
the obvious way. An equation of type L is a pair (α, β) of L-formulas,
written as α ≈ β. Endomorphisms on Fm are called substitutions, and
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whenever there is some substitution σ such that α = σ(β), we say that
α is a substitution instance of β. The dependence of Fm on L will be
tacitly acknowledged in what follows.

We now have all we need to define consequence relations. A conse-
quence relation over the formula algebra Fm is a relation `⊆ ℘(Fm)×
Fm with the following properties:

(1) α ` α (reflexivity);
(2) If Γ ` α and Γ ⊆ ∆, then ∆ ` α (monotonicity);
(3) If Γ ` α and ∆ ` γ for every γ ∈ Γ, then ∆ ` α (cut).

A (propositional) logic is a pair L = (Fm,`
L
), where Fm is the

formula algebra of some given type L and `
L

is a substitution-invariant
consequence relation over Fm; in other words, if Γ `

L
α and σ is a

substitution on Fm, then σ(Γ) `
L
σ(α) (where σ(Γ) = {σ(γ)|γ ∈

Γ}). Informally speaking, we have a logic whenever we can specify a
logical language and a concept of consequence among formulas of that
language according to which: (i) every formula follows from itself; (ii)
whatever follows from a set of premises also follows from any larger set
of premises; (iii) whatever follows from consequences of a set of premises
also follows from the set itself; (iv) whether a conclusion follows or not
from a set of premises only depends on the logical form of the premises
and the conclusion themselves. A formula α is a theorem of the logic
L = (Fm,`

L
) if ∅ `

L
α.

Our next step will consist of rigorously defining Hilbert-style calculi.
An inference rule over Fm is a pair R = (Γ, α), where Γ is a finite
(possibly empty) subset of Fm and α ∈ Fm. If Γ is empty, the rule is
an axiom; otherwise, it is a proper rule. A Hilbert-style calculus (over
Fm) is a set of inference rules over Fm that contains at least one axiom
and at least one proper rule. For axioms, we will henceforth omit outer
brackets and the empty set symbol; also, proper rules ({α1, ..., αn}, α)
will be written in the fractional form

α1 . . . αn
α

If ∆ ∪ {β} ⊆ Fm and HL is a Hilbert-style calculus over Fm, then a
derivation of β from ∆ in HL is a finite sequence β1, ..., βn of formulas
in Fm such that βn = β and for each βi (i ≤ n):

(1) either βi is a member of ∆; or
(2) βi is a substitution instance of an axiom of HL; or else
(3) there are a substitution σ and an inference rule (Γ, α) ∈ HL

such that βi = σ(α) and, for every γ ∈ Γ, σ(γ) ∈ {β1, ..., βi−1}.
From any Hilbert-style calculus HL over Fm we can extract a logic

(Fm,`
HL

) by specifying that Γ `
HL
α whenever there is a derivation of
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α from Γ in HL. Such logics are called deductive systems and have the
property that whenever Γ `

HL
α, there is always some finite ∆ ⊆ Γ such

that ∆ `
HL
α (this much is clear from the very definition of derivation:

after we prune Γ of all that is not necessary to derive α, we are left with
a finite set). This compactness property, on the other hand, need not
be available in general. Logics having the property are called finitary ;
hence, we may rephrase the above by saying that deductive systems
are finitary logics.

An example of the preceding rather abstract discussion is the Hilbert-
style calculus HCL for classical propositional logic illustrated in Table 1
of Subsection 2.4. Its language L contains the connectives ¬,∧,∨,→, 0,
and 1. Classical propositional logic can be now identified with the
deductive system CL = (Fm,`

HCL
).

Developing an idea by Lindenbaum, Tarski showed in 1935 in what
sense Boolean algebras can be considered the algebraic counterpart of
CL ([129]). Actually, Tarski pointed out a rather weak kind of cor-
respondence between Boolean algebras and classical logic: he showed
that the former are an algebraic semantics for the latter, a notion that
we now proceed to explain in full generality.

Let L = (Fm,`
L
) be a logic in the language L, and let τ = {γi(p) ≈

δi(p)}i∈I be a set of equations in a single variable of L. To avoid
overloading notation, it will be convenient to think of τ as a function
which maps formulas in Fm to sets of equations of the same type.
Therefore we let τ(α) stand for the set

{γi(p/α) ≈ δi(p/α)}i∈I .
Now let K be a class of algebras also of the same type. We say that K is
an algebraic semantics for L if, for some such τ , the following condition
holds for all Γ ∪ {α} ∈ Fm:

Γ `
L
α iff for every A ∈ K and every −→a ∈ An,

if τ(γ)A(−→a ) for all γ ∈ Γ, then τ(α)A(−→a ),

a condition which will sometimes be rewritten as

Γ `
L
α iff {τ(γ)|γ ∈ Γ} `

Eq(K)
τ(α).

In particular, if L contains a nullary connective 1, it is sometimes possi-
ble to choose τ to be the singleton {p ≈ 1}. Informally speaking, what
we do in such cases is the following: given an algebra A ∈ K, we inter-
pret its elements as “meanings of propositions” or “truth values” and,
in particular, the element 1A as “true”; homomorphisms h : Fm→ A,
where A ∈ K, are interpreted as “assignments of meanings” to elements
of Fm. Moreover, we want α to follow from the set of premises Γ just
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in case, whenever we assign the meaning “true” to all the premises in
some algebra in K, the conclusion is also assigned the meaning “true”.

Let us now apply this definition to our classical logic example. We
just remind the reader that a Boolean algebra is usually defined as
an algebra A = 〈A,∧,∨,¬, 1, 0〉 such that 〈A,∧,∨, 1, 0〉 is a bounded
distributive lattice and, for every a ∈ A, a ∧ ¬a = 0 and a ∨ ¬a = 1.
To apply the definition of algebraic semantics, Boolean algebras must
be algebras of the same type as the formula algebra of CL, whence it
is expedient to include in the type the derived operation symbol →
(defined via p → q = ¬p ∨ q). Once this is done, setting τ = {p ≈ 1}
it is possible to show that:

Theorem 3.1. The class BA of Boolean algebras is an algebraic se-
mantics for CL.

Proof. (Sketch). The left-to-right implication can be established by
induction on the length of a derivation of α from Γ in HCL: we show
that axioms A1 to A15 are always evaluated at 1A for every A ∈ BA
and that the proper inference rule R1 preserves this property.

The converse implication is trickier. We show the contrapositive: we
suppose that Γ 6`

CL
α and prove that there exist a Boolean algebra A

and a sequence of elements −→a such that γ(−→a ) = 1A for all γ ∈ Γ, yet
α(−→a ) 6= 1A.

Let T be the smallest set of L-formulas that includes Γ and is closed
under the consequence relation of CL (that is, for every β ∈ Fm,
T `

HCL
β implies that β ∈ T ). Define a binary relation ΘT on Fm by

stipulating that

(β, γ) ∈ ΘT iff β → γ, γ → β ∈ T .

The whole business of finishing our completeness proof amounts to
establishing the following two assertions:

(1) ΘT is a congruence on Fm, and the coset
[
1Fm

]
ΘT

is just T ;

(2) the quotient Fm/ΘT is a Boolean algebra.

Proofs of (1) and (2) make heavy use of syntactic lemmas established
for HCL. Once this laborious task has been carried out, in order to
construct our falsifying model, it suffices to take A = Fm/ΘT (we are
justified in so doing by (2) above) and evaluate each variable p in Γ∪{α}
as its own congruence class modulo ΘT : then γA(

−−−→
[p]ΘT

) = 1A for all

γ ∈ Γ (since Γ ⊆ T ) yet αA(
−−−→
[p]ΘT

) 6= 1A (since α /∈ T ). �

3.3. Blok and Pigozzi: algebraizable logics. Algebraic logic rapidly
developed after World War Two, once again to the credit of Polish lo-
gicians. Although Tarski had permanently settled in the States before
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that time, establishing in Berkeley what would later become the lead-
ing research group in algebraic logic worldwide, his compatriots Jerzy
 Loś, Roman Suszko, Helena Rasiowa, and Roman Sikorski kept the
flag of Polish algebraic logic flying, developing in detail throughout the
1950’s and 1960’s the theory of logical matrices initiated twenty years
earlier by  Lukasiewicz and Tarski himself. A major breakthrough in
the discipline came about in 1989, when Wim Blok and Don Pigozzi
(one of Tarski’s students) published their monograph on algebraizable
logics [12], considered a milestone in the area of abstract algebraic logic.
This subsection summarizes some of the main results of their text.

The concept of algebraic semantics described above is too weak in at
least two respects. First, in the relationship between a given logic and
a candidate algebraic semantics there is room for much promiscuity. In
fact:

• There are logics with no algebraic semantics. For example, let
HI be the Hilbert-style calculus whose sole axiom is α→ α and
whose sole inference rule is modus ponens. Then the deductive
system (Fm,`

HI
) has no algebraic semantics [13].

• The same logic can have more than one algebraic semantics.
As we have recalled, every Boolean algebra is a complemented
distributive lattice. A Boolean algebra B is, in particular, a
bounded distributive lattice such that for every a, b ∈ B, a→ b
(defined in this particular case as ¬a ∨ b) is (w.r.t. the induced
order of the underlying lattice) the top element in the set

{x ∈ B | a ∧ x ≤ b}.

A Heyting algebra can be defined as an algebra H = 〈B,∧,∨,→, 1, 0〉
satisfying exactly the above conditions. Moreover, the class of
Heyting algebras can be equationally defined and so forms a
variety HA. Any Boolean algebra therefore forms a Heyting
algebra by letting ¬x = x → 0; more precisely, an equational
basis for Boolean algebras relative to Heyting algebras is given
by the single equation x ≈ (x → 0) → 0, expressing the fact
that negation is an involution. Now, by Glivenko’s Theorem
([59]), CL admits not only BA as an algebraic semantics, but
also HA, by choosing τ = {¬¬p ≈ 1} ([13]).
• There can be different logics with the same algebraic semantics.

Since Heyting algebras are an algebraic semantics for intuition-
istic logic IL, the previous example shows that both CL and IL
have HA as an algebraic semantics.
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Second, the relation between a logic L and its algebraic semantics K
is asymmetric. In fact, the property of belonging to the set of “true
values” of an algebra A ∈ K must be definable by means of the set
of equations τ , whence the class K has the expressive resources to
indicate when a given formula is valid in L. On the other hand, the
logic L need not have the expressive resources to indicate when a given
equation holds in K. For example, there is no way in CL to express, by
means of a condition involving a set of formulas, when it is the case that
an equation α ≈ β holds in its algebraic semantics HA. This means
that there is a sense of “faithful representation” according to which
the relation `

Eq(HA)
faithfully represents the consequence relation of

CL, but not conversely. This makes a sharp contrast to the situation
we have with the other algebraic semantics of CL we examined, namely
BA: we gather from the proof of Theorem 3.1 that an equation α ≈ β
holds in BA just in case `

CL
α → β and `

CL
β → α. The notion

of algebraizability ([12]) aims at making precise this stronger relation
between a logic and a class of algebras which holds between CL and
BA, but not between CL and its “unofficial” semantics HA.

Before stating the formal definition of this concept, let us establish
some further notational conventions: given an equation α ≈ β and a
set of formulas in two variables ρ = {αj(p, q)}j∈J , we will abbreviate by
ρ(α, β) the set {αj(p/α, q/β)}j∈J , and ρ will be regarded as a function
mapping equations to sets of formulas. If Γ,∆ are sets of formulas, by
Γ `

L
∆ we will mean Γ `

L
α for every α ∈ ∆; similarly, if E,E ′ are sets

of equations, by E `
Eq(K)

E ′ we will mean E `
Eq(K)

ε for every ε ∈ E ′.
A logic L = (Fm,`

L
) is said to be algebraizable with equivalent

algebraic semantics K (where K is a class of algebras of the same type
as Fm) iff there exist a map τ from formulas to sets of equations, and
a map ρ from equations to sets of formulas such that the following
conditions hold for any α, β ∈ Fm:

AL1: Γ `
L
α iff τ(Γ) `

Eq(K)
τ(α);

AL2: E `
Eq(K)

α ≈ β iff ρ(E) `
L
ρ(α, β);

AL3: α a`
L
ρ(τ(α));

AL4: α ≈ β a`
Eq(K)

τ(ρ(α, β)).

The sets τ(p) and ρ(p, q) are respectively called a system of defining
equations and a system of equivalence formulas for L and K. A logic
L is algebraizable (tout court) iff, for some K, it is algebraizable with
equivalent algebraic semantics K.

Put differently, a logic L is algebraizable with equivalent algebraic
semantics K when:
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• the relation `
L

is faithfully interpretable via the map τ into the
relation `

Eq(K)
(AL1);

• the relation `
Eq(K)

is faithfully interpretable via the map ρ into

the relation `
L

(AL2);
• the two maps ρ and τ are mutually inverse, meaning that if we

apply them in succession we end up with a formula, respectively
an equation, which is equivalent to the one we started with
according to `

L
, respectively `

Eq(K)
(AL3 and AL4).

This definition can be drastically simplified, in that one can show
that a logic L is algebraizable with equivalent algebraic semantics K iff
it satisfies either AL1 and AL4, or else AL2 and AL3.

As an example, we can strengthen Theorem 3.1 by showing that

Theorem 3.2. CL is algebraizable with equivalent algebraic semantics
BA.

Proof. Let

τ(p) = {p ≈ 1};
ρ(p, q) = {p→ q, q → p}.

By the previous observation, we need only check that τ and ρ satisfy
conditions AL1 and AL4 above. However, AL1 is just Theorem 3.1.
As for AL4,

α ≈ β a`
Eq(BA)

τ(ρ(α, β)) iff α ≈ β a`
Eq(BA)

τ(α→ β, β → α)
iff α ≈ β a`

Eq(BA)
{α→ β ≈ 1, β → α ≈ 1}.

However, given any A ∈ BA and any −→a ∈ An, αA(−→a ) = βA(−→a ) just
in case α → βA(−→a ) = 1A and β → αA(−→a ) = 1A, which proves our
conclusion. �

Every equivalent algebraic semantics for L is, in particular, an alge-
braic semantics for L in virtue of AL1. However, as we have seen, the
converse need not hold. The concept of equivalent algebraic semantics
is therefore a genuine strengthening of Tarski’s definition.

If L is algebraizable with equivalent algebraic semantics K, then K
might not be the unique equivalent algebraic semantics for L. How-
ever, in case L is finitary, any two equivalent algebraic semantics for
L generate the same quasivariety. Clearly, this quasivariety is in turn
an equivalent algebraic semantics for the same logic, whence we are
justified in talking about the equivalent quasivariety semantics for L.
On the other hand, it is not uncommon to find different algebraizable
logics with the same equivalent algebraic semantics (see, e.g., [111]);
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however, if L and L′ are algebraizable with equivalent quasivariety se-
mantics K and with the same set of defining equations τ(p), then L
and L′ must coincide.

In [12], one finds several elegant equivalent characterizations of al-
gebraizability. Some of them use concepts and tools from the theory
of logical matrices, which was, as we have recalled, one of the early
developments in abstract algebraic logic (see [140]). We just mention
a syntactic characterization which, unlike the others, does not presup-
pose any technical prerequisites:

Theorem 3.3. A logic L = (Fm,`
L
) is algebraizable iff there exist a

set ρ(p, q) of formulas in two variables and a set of equations τ(p) in a
single variable such that, for any α, β, γ ∈ Fm, the following conditions
hold:

(1) `
L
ρ(α, α);

(2) ρ(α, β) `
L
ρ(β, α);

(3) ρ(α, β), ρ(β, γ) `
L
ρ(α, γ);

(4) For every n-ary connective cn and for every −→α ,
−→
β ∈ (Fm)n,

ρ(α1, β1), ..., ρ(αn, βn) `
L
ρ(cn(−→α ), cn(

−→
β ));

(5) α a`
L
ρ(τ(α)).

In this case ρ(p, q) and τ(p) are, respectively, a set of defining equa-
tions and a set of equivalence formulas for L.

4. The algebras of logic

The focus of this section is residuated lattices, algebraic counterparts
of the propositional substructural logics discussed in the next section.
The defining properties that describe the class RL of residuated lat-
tices are few and easy to grasp, and concrete examples are readily
constructed that illustrate their key features. However, the theory is
also sufficiently robust that the classRL encompasses a large portion of
the ordered algebras arising in logic. Notably, the rich algebraic theory
of residuated lattices has produced powerful tools for the comparative
study of substructural logics. Moreover, the bridge provided by alge-
braic logic yields significant benefits to algebra. In fact, one can argue
convincingly that an in-depth study of residuated lattices is impossible
at this time without the use of logical (in particular, proof-theoretic)
techniques.

Our primary aim in this section is to present basic facts from the the-
ory of residuated lattices, including the description of their congruence
relations, and provide a brief historical account of the development of
the concept of residuated structure in algebra.
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4.1. Preliminaries. A subset F of a poset P is said to be an order-
filter of P if whenever y ∈ P , x ∈ F , and x ≤ y, then y ∈ F . Note
that the empty set ∅ is an order-filter. For an element a ∈ P , we write
↑ a = {x ∈ P | a ≤ x} for the principal order-filter generated by a;
more generally, for A ⊆ P , ↑A = {x ∈ P | a ≤ x, for some a ∈ A}
denotes the order-filter generated by A. Order-ideals are defined dually.

We denote the least element of a poset P, if it exists, by ⊥P. Sim-
ilarly, >P denotes the greatest element. Obviously, least elements and
greatest elements, when they exist, are unique. Let X ⊆ P be any
subset (possibly empty). We use

∨
PX and

∧
PX, respectively, to

denote the join (or least upper bound) and meet (or greatest lower
bound) of X in P whenever they exist. We use the terms isotone and
order-preserving synonymously to describe a map ϕ: P → Q between
posets P and Q with the property that for all x, y ∈ P , if x ≤ y then
ϕ(x) ≤ ϕ(y). If for all x, y ∈ P , x ≤ y implies ϕ(x) ≥ ϕ(y), then
ϕ will be called anti-isotone or order-reversing. The poset subscripts
appearing in some of the notation of this paragraph will henceforth be
omitted whenever there is no danger of confusion.

4.2. Residuated maps and residuated lattices. Let P and Q be
posets. A map ϕ : P → Q is called residuated provided there exists a
map ϕ∗ : Q → P such that ϕ(x) ≤ y ⇐⇒ x ≤ ϕ∗(y), for all x ∈ P
and y ∈ Q. We refer to ϕ∗ as the residual of ϕ.

We have the following simple but useful result (see, e.g., [56]):

Lemma 4.1.

(1) If ϕ∗ : Q → P is residuated with residual ϕ∗, then ϕ preserves
all existing joins in P and ϕ∗ preserves any existing meets in
Q.

(2) Conversely, if P is a complete lattice and ϕ : P→ Q preserves
all joins, then it is residuated.

A binary operation · on a partially ordered set P = 〈P,≤〉 is said to
be residuated if there exist binary operations \ and / on P such that
for all x, y, z ∈ P ,

x · y ≤ z iff x ≤ z/y iff y ≤ x\z.
Note that · is residuated if and only if, for all a ∈ P , the maps x 7→ ax
(x ∈ P ) and x 7→ xa (x ∈ P ) are residuated in the sense of the
preceding definition. Their residuals are the maps y 7→ a\y (y ∈ P ) and
y 7→ y/a (y ∈ P ), respectively. The operations \ and / are referred to
as the right residual and the left residual of ·, respectively. Observe also
that · is residuated if and only if it is order-preserving in each argument
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and, for all x, y ∈ P, the sets {z | x · z ≤ y} and {z | z · x ≤ y} both
contain greatest elements, x\y and y/x, respectively. In particular,
note that · and ≤ uniquely determine \ and /.

It is suggestive to think of the residuals as generalized division op-
erations. The expression y/x is read as “y over x” while x\y is read
as “x under y.” In either case, y is considered the numerator and
x the denominator. We tend to favor / in our calculations, but any
statement about residuated structures has a “mirror image” obtained
by replacing x · y by y · x and interchanging x/y with y\x. It follows
directly from the preceding definition that a statement is equivalent to
its mirror image, and we often state results in only one form. As usual,
we write xy for x · y and adopt the convention that, in the absence of
parenthesis, · is performed first, followed by \ and /, and finally ∨ and
∧. We also define x1 = x and xn+1 = xn · x.

As a consequence of Lemma 4.1, multiplication preserves all existing
joins in each argument, and \ and / preserve all existing meets in
the “numerator.” Moreover, it is easy to check that they convert all
existing joins in the “denominator” to meets. More specifically, we
have the following result:

Proposition 4.2. Let · be a residuated map on a poset P with residuals
\ and /.

(1) The operation · preserves all existing joins in each argument;
i.e., if

∨
X and

∨
Y exist for X, Y ⊆ P , then

∨
x∈X,y∈Y xy

exists and (∨
X
)(∨

Y
)

=
∨

x∈X, y∈Y

xy.

(2) The residuals preserve all existing meets in the numerator, and
convert existing joins to meets in the denominator, i.e., if

∨
X

and
∧
Y exist for X, Y ⊆ P , then for any z ∈ P ,

∧
x∈X z/x

and
∧
y∈Y y/z exist and

z
/(∨

X
)

=
∧
x∈X

z/x and
(∧

Y
)/

z =
∧
y∈Y

y/z.

A residuated lattice, or a residuated lattice-ordered monoid, is an
algebra

L = 〈L,∧,∨, ·, \, /, 1〉

such that 〈L,∧,∨〉 is a lattice; 〈L, ·, 1〉 is a monoid; and · is residuated,
in the underlying partial order, with residuals \ and /.
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An FL-algebra L = 〈L,∧,∨, ·, \, /, 1, 0〉 is an algebra such that: (i)
〈L,∧,∨, ·, \, /, 1〉 is a residuated lattice, and (ii) 0 is a distinguished
element (nullary operation) of L.

We use the symbols RL and FL to denote the class of all residuated
lattices and FL-algebras respectively. The following lemma collects
basic properties of residuated lattices, most of which by now can be
ascribed to the “folklore” of the subject.

Proposition 4.3. The following equations (and their mirror images)
hold in any residuated lattice (in particular, in any FL-algebra).

(1) x(y/z) ≤ xy/z
(2) x/y ≤ xz/yz
(3) (x/y)(y/z) ≤ x/z
(4) x/yz ≈ (x/z)/y
(5) x\(y/z) ≈ (x\y)/z
(6) (1/x)(1/y) ≤ 1/yx
(7) (x/x)x ≈ x
(8) (x/x)2 ≈ x/x

If a residuated lattice L has a bottom element ⊥, then ⊥\⊥ is its
top element >. Moreover, for all x ∈ P , we have

x⊥ = ⊥ = ⊥x and ⊥\x = > = x\>.

Sometimes it is useful to have ⊥ and > in the signature. In particular,
a bounded FL-algebra is an algebra L = 〈L,∧,∨, ·, \, /, 1, 0,⊥,>〉 such
that: (i) 〈L,∧,∨, ·, \, /, 1, 0〉 is an FL-algebra, and (ii) ⊥ and > are,
respectively, the bottom and top elements of L.

The next result, whose proof is left to the reader, provides a straight-
forward way to verify that RL and FL are equational classes.

Lemma 4.4. An algebra L = 〈L,∧,∨, ·, \, /, 1〉 is a residuated lattice
if and only if 〈L, ·, 1, 〉 is a monoid, 〈L,∧,∨〉 is a lattice, and for all
a, b ∈ L,

(1) the maps x 7→ ax and x 7→ xa preserve finite joins;
(2) the maps x 7→ a\x and x 7→ x/a are isotone;
(3) a(a\b) ≤ b ≤ a\ab; and
(4) (b/a)a ≤ b ≤ ba/a.

Hence, we have the following equational characterization of RL and
FL:

Proposition 4.5. The classes RL and FL are finitely based equational
classes. Their defining equations consist of the defining equations for



ORDERED ALGEBRAS AND LOGIC 25

lattices and monoids together with the six equations given below:

(1) x(y ∨ z) ≈ xy ∨ xz (y ∨ z)x ≈ yx ∨ zx
(2) x\y ≤ x\(y ∨ z) y/x ≤ (y ∨ z)/x
(3) x(x\y) ≤ y ≤ x\xy
(4) (y/x)x ≤ y ≤ yx/x

Two varieties of particular interest are the variety CRL of commu-
tative residuated lattices and the variety CFL of commutative FL-
algebras. These varieties satisfy the equation xy ≈ yx, and hence the
equation x\y ≈ y/x. In what follows, we use the symbol → to denote
both the operations \ and /. While we always think of these varieties
as subvarieties of RL and FL, respectively, we slightly abuse notation
by listing only one occurrence of the operation → in describing their
members.

Example 4.1. It is convenient sometimes to add an extra nullary
operation 0 to the type of RL, and think of RL as the subvariety
of FL axiomatized, relative to FL, by the equation 1 ≈ 0.

Example 4.2. The variety of Boolean algebras can be identified with
the subvariety of CFL, which we may again harmlessly call BA, satis-
fying the additional equations xy ≈ x ∧ y, (x → y) → y ≈ x ∨ y, and
x∧0 ≈ 0. More specifically, every Boolean algebra B = 〈B,∧,∨,¬, 1, 0〉
satisfies the equations above with respect to ∧,∨, 0, and Boolean im-
plication x → y = ¬x ∨ y. Conversely, if a (commutative) residuated
lattice L satisfies these equations and we define ¬x = x → 0, then
〈L,∧,∨,¬, 1, 0〉 is a Boolean algebra. In stricter mathematical terms,
the variety of Boolean algebras is term-equivalent to the subvariety of
CFL satisfying the equations xy ≈ x ∧ y, (x → y) → y ≈ x ∨ y, and
x ∧ 0 ≈ 0.

Likewise, the variety of Heyting algebras is term-equivalent to the
subvariety of CFL, which we again call HA, satisfying the additional
equations xy ≈ x ∧ y and x ∧ 0 ≈ 0.

Example 4.3. Ring theory constitutes a historically remarkable source
for residuated structures. (Refer to Subsection 4.6 for further details.)
Let R be a ring with unit and let I(R) denote the lattice of two-sided
ideals of R. Then I(R) = 〈I(R),∩,∨, ·, \, /, R, {0}〉 is a (not necessarily
commutative) FL-algebra, where, for I, J ∈ I(R),

IJ = {
n∑
k=1

akbk | ak ∈ I; bk ∈ J ;n ≥ 1};

I\J = {x ∈ R | Ix ⊆ J}; and
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J/I = {x ∈ R | xI ⊆ J}.
For a related interesting example, consider an integral domain R and

its field of quotients K. Let L(K) denote the lattice of R-submodules
of K. Then L(K) = 〈L(K),∩,∨, ·, \, /, R, {0}〉 is an FL-algebra, where,
for I, J ∈ L(K),

IJ = {
∑n

k=1 akbk|ak ∈ I; bk ∈ J ;n ≥ 1}.

Example 4.4. Lattice-ordered groups play a fundamental role in the
study of algebras of logic. (Refer to Subsection 4.6 for a short account
of their role in mathematics.) A lattice-ordered group, `-group for short,
is an algebra G = 〈G,∧,∨, ·,−1 , 1〉 such that (i) 〈G,∧,∨〉 is a lattice;
(ii) 〈G, ·,−1 , 1〉 is a group; and (iii) addition is order-preserving in each
argument (equivalently, it satisfies the equation x(y ∨ z)w ≈ (xyw) ∨
(xzw)). The variety of `-groups is term-equivalent to the subvariety
LG of RL defined by the additional equation (1/x)x ≈ 1.

More specifically, if G = 〈G,∧,∨, ·,−1 , 1〉 is an `-group and we de-
fine x/y = xy−1 and y\x = y−1x, then G = 〈G,∧,∨, ·, \, /, 1〉 is a
residuated lattice satisfying the equation (1/x)x ≈ 1. Conversely, if a
residuated lattice L = 〈L,∧,∨, ·, \, /, 1〉 satisfies the last equation and
we define x−1 = 1/x, then L = 〈L,∧,∨, ·,−1 , 1〉 becomes an `-group.
Moreover, this correspondence is bijective.

Example 4.5. MV-algebras (refer to the discussion in Subsection 5.2)
are the algebraic counterparts of the infinite-valued  Lukasiewicz propo-
sitional logic. An MV-algebra is traditionally defined as an algebra
M = 〈M,⊕,¬, 0〉 of type 〈2, 1, 0〉 that satisfies the following equations:

(MV1) x⊕ (y ⊕ z) ≈ (x⊕ y)⊕ z
(MV2) x⊕ y ≈ y ⊕ x
(MV3) x⊕ 0 ≈ x
(MV4) ¬¬x ≈ x
(MV5) x⊕ ¬0 ≈ ¬0
(MV6) ¬(¬x⊕ y)⊕ y ≈ ¬(¬y ⊕ x)⊕ x

The variety of MV-algebras is term-equivalent to the subvariety,
MV , of CFL satisfying the extra equations x ∨ y ≈ (x → y) → y
and x ∧ 0 ≈ 0.

In more detail, if M = 〈M,⊕,¬, 0〉 is an MV-algebra and we define,
for x, y ∈M , xy = ¬(¬x⊕¬y), x∧y = x(¬x⊕y), x∨y = x⊕(¬xy), x→
y = ¬(x¬y), and 1 = ¬0, then M = 〈M,∧,∨, ·,→, 1, 0〉 is in MV .
Conversely, if M ∈ MV and we define, for all x, y ∈ M , ¬x = x → 0
and x ⊕ y = ¬(¬x¬y), then M = 〈M,⊕,¬, 0〉 is an MV-algebra. We
refer to [30] (Section 4.2) or [139] (Subsection 3.4.5) for the details of
the proof.



ORDERED ALGEBRAS AND LOGIC 27

Example 4.6. Many varieties of ordered algebras arising in logic –
including Boolean algebras, Abelian `-groups, and MV-algebras, but
not Heyting algebras and `-groups – are semilinear, that is, generated
by their totally ordered members. An equational basis for the variety
of semilinear residuated lattices SemRL relative to RL consists of the
equation (λz and ρw are defined in the next subsection)

λz(x/(x ∨ y)) ∨ ρw(y/(x ∨ y)) ≈ 1.

The proof of this result makes heavy use of the material of Subsec-
tion 4.5 (see [18] and [80]). A simplified equational basis given in [69]
for the variety of commutative semilinear residuated lattices CSemRL
relative to CRL consists of the equations

[(x→ y) ∨ (y → x)] ∧ 1 ≈ 1 and 1 ∧ (x ∨ y) ≈ (1 ∧ x) ∨ (1 ∨ y).

Semilinear varieties play a fundamental role in fuzzy logics. In partic-
ular, the varieties UL of commutative semilinear bounded FL-algebras
and MT L of commutative semilinear bounded FL-algebras satisfying
1 ≈ > and 0 ≈ ⊥ form algebraic semantics for uninorm logic ([99]) and
monoidal t-norm logic ([47]) respectively (see Subsection 5.2).

4.3. The class RL is an ideal variety. The main result of this sub-
section is Theorem 4.12 below, first established in [18]. It shows that
the congruences of members of RL are determined by their convex
normal subalgebras (to be defined below). In particular, RL, and
hence FL, is a 1-regular variety, that is, each congruence relation of
an algebra in RL is determined by its equivalence class of 1. A more
economical proof of 1-regularity for RL can be given by observing
that this property is a Mal’cev property, meaning that one can estab-
lish if a variety has the property by checking whether it satisfies cer-
tain quasi-equations involving finitely many terms (two, in this special
case). However, a concrete description of these equivalence classes is
essential for developing the structure theory of residuated lattices and
its applications to substructural logics.

If L is a residuated lattice, the set L
−

= {a ∈ L | a ≤ 1} is called
the negative cone of L. Note that the negative cone is a submonoid of
〈L, ·, 1〉. As such, we will denote it by L

−
.

Let L ∈ RL. For each a ∈ L, define ρa(x) = (ax/a) ∧ 1 and
λa(x) = (a\xa)∧ 1. We refer to ρa and λa respectively as right and left
conjugation by a. An iterated conjugation map is a finite composition
of right and left conjugation maps.

A subset X ⊆ L is called (order -)convex if for any x, y ∈ X and
a ∈ L, x ≤ a ≤ y implies a ∈ X; X is called normal if it is closed with
respect to all iterated conjugations.
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Let L be a residuated lattice. For a, b ∈ L define [a, b]r = (ab/ba)∧1
and [a, b]l = (ba\ab)∧ 1. We call [a, b]r and [a, b]l respectively the right
and left commutators of a with b.

We will say that a subset X is closed with respect to commutators
if for any a ∈ L and x ∈ X, both the commutators [a, x]r and [x, a]l
lie in X. Normality and “closure with respect to commutators” are
identical properties for certain “nice” subsets as we show in the next
two lemmas.

Lemma 4.6. Let H be a convex subalgebra of L. Then H is normal if
and only if it is closed with respect to commutators.

Proof. Suppose that H is normal. Then 1 ≥ [a, h]r = (ah/ha) ∧ 1 =
((ah/a)/h) ∧ 1 ≥ (((ah/a) ∧ 1)/h) ∧ 1 = (ρa(h)/h) ∧ 1 ∈ H so that
[a, h]r ∈ H by convexity. The proof that [h, a]l ∈ H is analogous.

Conversely, suppose that H is closed with respect to commutators.
We have [a, h]rh ∧ 1 ∈ H and [a, h]rh ∧ 1 = ((ah/ha) ∧ 1)h ∧ 1 ≤ (ah/
ha)h∧ 1 = ((ah/a)/h)h∧ 1 ≤ (ah/a)∧ 1 = ρa(h) ≤ 1 so ρa(h) ∈ H by
convexity. The proof that λa(h) ∈ H is analogous. �

The same result holds for convex submonoids of the negative cone of
L:

Lemma 4.7. If S is a convex submonoid of L
−

, then S is normal if
and only if S is closed with respect to commutators.

Proof. Let s ∈ S and a ∈ L and suppose that S is normal. Then 1 ≥
[a, s]r = (as/sa) ∧ 1 = ((as/a)/s) ∧ 1 ≥ (as/a) ∧ 1 = ρa(s) ∈ S where
the last inequality above follows since s ≤ 1. Similarly, [s, a]l ∈ S.
Conversely, if S is closed with respect to commutators, then [a, s]rs ∈
S. But [a, s]rs = (((as/a)/s) ∧ 1)s ≤ ((as/a)/s)s ∧ s ≤ (as/a) ∧ s ≤
(as/a) ∧ 1 = ρa(s) ≤ 1 and by convexity we have ρa(s) ∈ S. Similarly,
λa(s) ∈ S. �

We often find it useful to convert one of the division operations into
its dual. The following two equations, which are referred to as switching
equations and can be verified by straightforward calculation, provide a
means to do so in any residuated lattice:

z/y ≤ py\z , where p = [z/y, y]r , and

x\z ≤ z/xq , where q = [x, x\z]l.

Note that the above equations still hold if the “∧1” factor is omitted
from the commutators.

Lemma 4.8. Let L be a residuated lattice and Θ ∈ Con(L). Then the
following are equivalent:
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(1) a Θ b
(2) [(a/b) ∧ 1] Θ 1 and [(b/a) ∧ 1] Θ 1
(3) [(a\b) ∧ 1] Θ 1 and [(b\a) ∧ 1] Θ 1

Proof. Suppose that a Θ b. Then (a/a) Θ (b/a) so that

1 = [(a/a) ∧ 1] Θ [(b/a) ∧ 1]

and the other relations in (2) and (3) follow similarly. Conversely,
suppose that both [(a/b) ∧ 1] Θ 1 and [(b/a) ∧ 1] Θ 1. Setting r =
[(a/b) ∧ 1]b and s = [(b/a) ∧ 1]a, we have r Θ b and s Θ a. Moreover,
r ≤ (a/b)b ≤ a and s ≤ (b/a)a ≤ b so that r = (a ∧ r) Θ (a ∧ b) and
s = (b∧ s) Θ (b∧ a) whence b Θ r Θ (a∧ b) Θ s Θ a ; we have shown
(2) → (1). (3) → (1) is proved in an analogous manner. �

Lemma 4.9. Let Θ be a congruence relation on a residuated lattice L.
Then [1]Θ = {a ∈ A | a Θ 1} is a convex normal subalgebra of L.

Proof. Since 1 is idempotent with respect to all the binary operations of
L, it immediately follows that [1]Θ forms a subalgebra of L. Convexity
can be checked directly, or is a consequence of the well-known fact that
the equivalence classes of any lattice congruence are convex. Finally,
let a ∈ [1]Θ and c ∈ L. Then

λc(a) = (c\ac) ∧ 1 Θ (c\1c) ∧ 1 = (c\c) ∧ 1 = 1

so that λc(a) ∈ [1]Θ. Similarly, ρc(a) ∈ [1]Θ. �

Lemma 4.10. Suppose that H is a convex normal subalgebra of L. For
any a, b ∈ L,

(a/b) ∧ 1 ∈ H ⇔ (b\a) ∧ 1 ∈ H.

Proof. Suppose that (a/b) ∧ 1 ∈ H. Since H is normal, we have

h = b\(((a/b) ∧ 1)b) ∧ 1 ∈ H.

But h ≤ [b\(a/b)b] ∧ 1 ≤ (b\a) ∧ 1 ≤ 1 ∈ H so (b\a) ∧ 1 ∈ H. The
reverse implication is proved similarly. �

Next we characterize the congruence corresponding to a given convex
normal subalgebra.

Lemma 4.11. Let H be a convex normal subalgebra of a residuated
lattice L. Then

ΘH = {(a, b) | ∃h ∈ H, ha ≤ b and hb ≤ a}
= {(a, b) | (a/b) ∧ 1 ∈ H and (b/a) ∧ 1 ∈ H}
= {(a, b) | (a\b) ∧ 1 ∈ H and (b\a) ∧ 1 ∈ H}

is a congruence on L.
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Proof. First we show that the three sets defined above are indeed equal.
That the second and third sets are identical follows from Lemma 4.10.
If (a, b) is a member of the second set, then letting h = (a/b)∧(b/a)∧1,
we have h ∈ H, ha ≤ (b/a)a ≤ b and hb ≤ (a/b)b ≤ b, so that (a, b)
is a member of the first set. Conversely, if (a, b) is a member of the
first set, then for some h ∈ H we have ha ≤ b or h ≤ b/a, and hence
h ∧ 1 ≤ (b/a) ∧ 1 ≤ 1. By convexity, we get (b/a) ∧ 1 ∈ H. Similarly,
(a/b) ∧ 1 ∈ H.

It is a simple matter to verify that ΘH is an equivalence relation.
To prove that it is a congruence relation, we must establish its com-
patibility with respect to multiplication, meet, join, right division, and
left division. We just verify compatibility for multiplication and right
division:

Θ is compatible with multiplication
Suppose that a Θ b and c ∈ L. Then

(a/b) ∧ 1 ≤ (ac/bc) ∧ 1 ≤ 1

so (ac/bc) ∧ 1 ∈ H. Similarly, (bc/ac) ∧ 1 ∈ H so (ac) Θ (bc).
Next, using the normality of H,

ρc((a/b) ∧ 1) = (c[(a/b) ∧ 1]/c) ∧ 1 ∈ H.
But ρc((a/b)∧1) ≤ [c(a/b)/c]∧1 ≤ [ca/b/c]∧1 = (ca/cb)∧1 ≤
1 ∈ H so (ca/cb) ∧ 1 ∈ H. Similarly, (cb/ca) ∧ 1 ∈ H so
(ca) Θ (cb).
Θ is compatible with right division
Suppose that a Θ b and c ∈ L. Then

(a/b) ∧ 1 ≤ [(a/c)/(b/c)] ∧ 1 ≤ 1

so [(a/c)/(b/c)] ∧ 1 ∈ H. Similarly, [(b/c)/(a/c)] ∧ 1 ∈ H so
(a/c) Θ (b/c). Next,

(b/a) ∧ 1 ≤ [(c/b)\(c/a)] ∧ 1 ≤ 1 ∈ H
so [(c/b)\(c/a)] ∧ 1 ∈ H. Hence it follows by Lemma 4.10 that
[(c/b)/(c/a)] ∧ 1 ∈ H. Similarly, [(c/a)/(c/b)] ∧ 1 ∈ H so
(c/a) Θ (c/b). �

Theorem 4.12. The lattice CN(L) of convex normal subalgebras of
a residuated lattice L is isomorphic to its congruence lattice Con(L).
The isomorphism is given by the mutually inverse maps H 7→ ΘH and
Θ 7→ [1]Θ.

Proof. We have shown both that ΘH is a congruence and that [1]Θ is a
member of CN(L), and it is clear that the maps H 7→ ΘH and Θ 7→ [1]Θ
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are isotone. It remains only to show that these two maps are mutually
inverse, since it will then follow that they are lattice homomorphisms.

Given Θ ∈ Con(L), set H = [1]Θ; we must show that Θ = ΘH. But
this is easy; using Lemma 4.8,

a Θ b ⇔ [((a/b) ∧ 1) Θ 1 and ((b/a) ∧ 1) Θ 1]⇔
[((a/b) ∧ 1) ∈ H and ((b/a) ∧ 1) ∈ H]⇔ a ΘH b.

Conversely, for any H ∈ CN(L) we must show that H = [1]ΘH
. But

h ∈ H → [(h/1) ∧ 1 ∈ H and (1/h) ∧ 1 ∈ H]

so h ∈ [1]ΘH
. If a ∈ [1]ΘH

, then (a, 1) ∈ ΘH and we use the first
description of ΘH in Lemma 4.11 to conclude that there exists some
h ∈ H such that ha ≤ 1 and h = h1 ≤ a. Now it follows from the
convexity of H that h ≤ a ≤ h\1 implies a ∈ H. �

We remark that in the event that L is commutative, then every
convex subalgebra of L is normal. Thus the preceding theorem implies
the following result of [69]:

Corollary 4.13. The lattice C(L) of convex subalgebras of a commuta-
tive residuated lattice L is isomorphic to its congruence lattice Con(L).
The isomorphism is given by the mutually inverse maps H 7→ ΘH and
Θ 7→ [1]Θ.

4.4. Convex normal submonoids and deductive filters. In the
previous subsection we saw that the congruences of a residuated lat-
tice L correspond to its convex normal subalgebras. Here we show
that these subalgebras in turn correspond to both the convex normal
submonoids of L

−
and the deductive filters of L (defined below). The

original references for the first correspondence are [17], [18]. Deductive
filters (under the name “filters”) and their correspondence with con-
gruences of residuated lattices were introduced in [15]. See also [80],
[139], and [51].

The next lemma shows that a convex normal subalgebra is com-
pletely determined by its negative cone:

Lemma 4.14. Let S be a convex normal submonoid of L
−

. Then
HS := {a | s ≤ a ≤ s\1, for some s ∈ S} is the universe of a convex
normal subalgebra HS of L, and S = H

−
S . Conversely, if H is any

convex normal subalgebra of L then, setting SH = H
−

, SH is a convex
normal submonoid of L

−
and H can be recovered from SH as described

above. Moreover, the mutually inverse maps H 7→ SH and S 7→ HS

establish a lattice isomorphism between CN(L) and CNM(L
−

).
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Proof. Given a convex, normal subalgebra H of L, the assertions about
SH are easy to verify. Thus we turn our attention to the other direction.
Let S be a convex normal submonoid of L

−
and defineHS as above. It is

easy to show that HS is convex and normal. Moreover, it is immediate
that H

−
S = S. It remains to prove closure under the binary operations.

We just verify closure under left and right division. To this end, let
a, b ∈ HS. Then there are s, t ∈ S so that s ≤ a ≤ s\1 and t ≤ b ≤ t\1.

Closure under left division
We have a\b ≤ s\(t\1) = (ts)\1, but to find a lower bound for
a\b is a little trickier. First notice that t ≤ b and sa ≤ 1 imply
that tsa ≤ b. From this we derive ats(ats\tsa) ≤ tsa ≤ b and
ts(ats\tsa) ≤ a\b. Setting p = (ats)\(tsa) and q = ts(p ∧ 1),
we know that p ∧ 1 = [ts, a]l ∈ S and so q ∈ S. But now
q ≤ tsp ≤ a\b and we have found the desired lower bound.
Finally, setting r = qts, it follows that r ≤ a\b ≤ r\1.
Closure under right division
Observe that s ≤ a and tb ≤ 1 imply the inequalities stb ≤ a
and st ≤ a/b, but to find an upper bound requires extra work:
a/b ≤ (s\1)/t ≤ pt\(s\1) = spt\1, where p = [(s\1)/t, t]r as
given by the switching equation. But p ∈ S by the comments
following Lemma 4.6 and we have found an appropriate upper
bound. Finally, we can set r = (st)(spt) and it follows that
r ≤ a/b ≤ r\1.

We have shown that the maps between the two lattices are well-defined
and mutually inverse. Since they are clearly isotone, the theorem is
proved. �

A subset F of a residuated lattice is a deductive filter provided:

(DF1) ↑{1} ⊆ F ,
(DF2) if x, x\y ∈ F , then y ∈ F ,
(DF3) if x, y/x ∈ F , then y ∈ F ,
(DF4) if x, y ∈ F , then x ∧ y ∈ F ,
(DF5) if x ∈ F and y ∈ L, then y\(xy) ∈ F and (yx)/y ∈ F .

An alternative description of a deductive filter is provided by the
following result of [139].

Lemma 4.15. A subset F of a residuated lattice L is a deductive filter
if and only if it is a non-empty order-filter of L closed under multipli-
cation and conjugation.

Let CN(L), CNM(L
−

), and DF(L) denote respectively the lattices
under set-inclusion of convex normal subalgebras of L, convex normal
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submonoids of L
−

, and deductive filters of L. We have the following
result (see [139] or [51]):

Proposition 4.16. In a residuated lattice L, the lattice CNM(L
−

) of
convex normal submonoids of L− is isomorphic to the lattice DF(L) of
deductive filters of L. The isomorphism is given by the mutually inverse
maps M 7→ ↑M and F 7→ F−, for M ∈ CNM(L

−
) and F ∈ DF(L).

4.5. Convex normal subalgebra generation. The original refer-
ences for the results of this subsection are [17] and [18]. (See also [80].)
They provide intrinsic descriptions of convex normal submonoids, con-
vex normal subalgebras, and deductive filters. The local deduction
theorem for the logic corresponding to the variety of commutative resid-
uated lattices, Theorem 6.3 (1), and the parametrized local deduction
theorem in [52] are the logical counterparts of and follow easily from
Corollary 4.23 (1) and Proposition 4.19, respectively.

Lemma 4.17. For all a1, a2, . . . , an, b ∈ L, if a =
∏
aj, then∏

ρb(aj) ≤ ρb(a) and
∏

λb(aj) ≤ λb(a).

Proof. We prove only the case n = 2; the proof can be completed by
the obvious induction.

ρb(a1)ρb(a2) = [(ba1/b) ∧ 1][(ba2/b) ∧ 1] ≤ [(ba1/b)(ba2/b)] ∧ 1

≤ [((ba1/b)ba2)/b] ∧ 1 ≤ (ba1a2/b) ∧ 1 = ρb(a1a2).

In the last two inequalities, we use Lemma 4.3 (5) and (4) respectively.
The proof for λb is analogous. �

The next result provides an element-wise description of a convex
normal submonoid of the negative cone generated by a subset.

Proposition 4.18. Let L be a residuated lattice and S ⊆ L−. An
element x ≤ 1 belongs to the convex normal submonoid of L− generated
by S iff there exist iterated conjugates γ1(s1), . . . , γn(sn) of elements of
S such that γ1(s1) . . . γn(sn) ≤ x.

Proof. Let cnm(S) denote the set described in the statement of the
proposition. It is clear that 1 ∈ M(S), that cnm(S) is convex and
closed under multiplication, and that any convex normal submonoid
of L− containing S must contain cnm(S). Moreover, since S ⊆ L

−
,

S ⊆ cnm(S). It only remains to show that cnm(S) is normal. But
this follows from Lemma 4.17 and the convexity of cnm(S): if x ∈
cnm(S), then for some iterated conjugates γ1(s1), . . . , γn(sn) of ele-
ments of S, γ1(s1) . . . γn(sn) ≤ x ≤ 1. By Lemma 4.17, for all a ∈
L, ρa(γ1(s1)) . . . ρa(γn(sn)) ≤ ρa(x) ≤ 1, and similarly for λa(x). �
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For any subsets S ⊆ L− and T ⊆ L, we write cnm(S) for the convex
normal submonoid of L− generated by S, cn(T ) for the convex normal
subalgebra of L generated by T , and df(T ) for the deductive filter of
L generated by T .

We have as a direct consequence of Lemma 4.14 and Proposition 4.18:

Proposition 4.19. Let L be a residuated lattice and S ⊆ L−. Then x ∈
df(S) iff there exist iterated conjugates γ1(s1), . . . , γn(sn) of elements
of S such that γ1(s1) . . . γn(sn) ≤ x.

Likewise, Propositions 4.16 and 4.18 easily yield:

Proposition 4.20. Let L be a residuated lattice and S ⊆ L−. Then
x ∈ cn(S) iff there exist iterated conjugates γ1(s1), . . . , γn(sn) of ele-
ments of S such that γ1(s1) . . . γn(sn) ≤ x ≤ (γ1(s1) . . . γn(sn))\1.

The natural question arises as to whether there are analogous de-
scriptions of cn(S) and df(S) for arbitrary subsets S of L. Let us write
cnm(a) for cnm({a}) (for a ∈ L−), df(a) for df({a}), and cn(a) for
cn({a}).

Lemma 4.21. For any a ∈ L, cn(a) = cn(a′) and df(a) = df(a′),
where a′ = a ∧ (1/a) ∧ 1.

Proof. Clearly a′ ∈ cn(a). On the other hand,

a′ ≤ a ≤ (1/a)\1 ≤ a′\1,
so a ∈ cn(a′), and likewise for df(a). �

Thus we have the following corollary:

Corollary 4.22. Let S ⊆ L and set S∗ = {s ∧ (1/s) ∧ 1 | s ∈ S}.
Then:

(1) x ∈ cn(S) iff there exist iterated conjugates γ1(s1), . . . , γn(sn)
of elements of S∗ such that

γ1(s1) . . . γn(sn) ≤ x ≤ x ≤ (γ1(s1) . . . γn(sn))\1.
(2) x ∈ df(S) iff there exist iterated conjugates γ1(s1), . . . , γn(sn)

of elements of S∗ such that

γ1(s1) . . . γn(sn) ≤ x.

We close this subsection by noting that the above intrinsic descrip-
tions become substantially simpler whenever L is a commutative resid-
uated lattice. In this case, the convex normal submonoids of L− are
its convex submonoids, the convex normal subalgebras of L are the
convex subalgebras, and the deductive filters of L are the non-empty
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order-filters closed under multiplication. Thus, we immediately get the
following result from [69]:

Corollary 4.23. Let L be a commutative residuated lattice, and let
S ∪ {a} ⊆ L−. Then:

(1) x ∈ cnm(a) iff there exists a natural number n such that an ≤
x ≤ 1.

(2) x ∈ cnm(S) iff there exist s1, . . . , sk ∈ S and natural numbers
n1, . . . , nk such that s1

n1 . . . sk
nk ≤ x ≤ 1.

(3) x ∈ cn(a) iff there exists a natural number n such that an ≤
x ≤ a\1.

(4) x ∈ cn(S) iff there exist s1, . . . , sk ∈ S and natural numbers
n1, . . . , nk such that s1

n1 . . . sk
nk ≤ x ≤ (s1

n1 . . . sk
nk)\1.

(5) x ∈ df(a) iff there exists a natural number n such that an ≤ x.
(6) x ∈ df(S) iff there exist s1, . . . , sk ∈ S and natural numbers

n1, . . . , nk such that s1
n1 . . . sk

nk ≤ x.

4.6. Historical remarks. In this section we attempt to summarily
reconstruct the development of the concept of residuated structure in
algebra. Instead of organizing this historical survey in strict chrono-
logical order, we prefer – for the sake of greater readability – to follow
five separate thematic threads, each of which has in our opinion de-
cisively contributed to shaping the contemporary notion of residuated
structure.

A word of caution is in order here: although residuated maps are al-
most ubiquitous in mathematics, we circumscribe our survey to exam-
ples of residuation which bear a tighter connection to the main theme
of this paper. Therefore, we will mostly confine ourselves to exam-
ining the historical development of residuated lattices, disregarding,
e.g., the plentiful and certainly important examples of residuated pairs
(ϕ, ϕ∗) : P→ Q, where P and Q are different posets. The content of
the next subsection is the only exception to this policy, motivated by
the great historical relevance of Galois theory as the first significant
appearance of residuation in mathematics.

Galois theory. After the Italian Renaissance mathematicians Scipi-
one del Ferro, Tartaglia, Cardano, and Ferrari had shown that cubic
and quartic equations were solvable by radicals by means of a general
formula, algebraists spent subsequent centuries striving to achieve a
similar result for polynomial equations with rational coefficients of de-
gree 5 or higher. These efforts came to an abrupt end in 1824, when
Niels Abel (patching an earlier incorrect proof by another Italian, Paolo
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Ruffini) showed that such equations have no general solution by radi-
cals. Since, however, it was well-known that some particular equations
of degree greater or equal than 5 could indeed be solved, the question
remained open as to whether a general criterion was available to deter-
mine which polynomial equations were solvable by radicals and which
ones were not.

In 1832, the French mathematician Évariste Galois (just before meet-
ing his death in a tragical duel) found the right approach to settle the
issue once and for all. He associated to each polynomial equation ε
a permutation group (now called Galois group in honor of its inven-
tor) consisting of those permutations of the set of all roots of ε having
the property that every algebraic equation satisfied by the roots them-
selves is still satisfied after the roots have been permuted. As a simple
example, let ε be the equation

x2 − 4x+ 1 ≈ 0,

whose roots are r1 = 2 +
√

3, r2 = 2 −
√

3. It can be shown that
any algebraic equation with rational coefficients in the variables x and
y which is satisfied by x = r1 and y = r2 (for example, xy ≈ 1 or
x + y ≈ 4) is also satisfied by y = r1 and x = r2. It follows that both
permutations of the two-element set {r1, r2} – the identity permutation
and the permutation which exchanges r1 with r2 – belong to the Galois
group of ε, which is therefore isomorphic to the cyclic group of order
2. More generally, Galois established that a polynomial equation is
solvable by radicals if and only if its Galois group G is solvable –
namely, if there exist subgroups G0, ...,Gn of G such that

{1} = G0 ⊂ G1 ⊂ ...Gn−1 ⊂ Gn = G,

and, moreover, for all i ≤ n, Gi−1 is normal in Gi and Gi/Gi−1 is
Abelian.

In the above example, permutations which respect algebraic equa-
tions satisfied by r1 and r2 can be seen as automorphisms of the quotient
field Q(r1, r2)/Q, where Q(r1, r2) is nothing but the field one obtains
from the field of rationals by adjoining the two roots of the given equa-
tion. This approach can be taken up in general, and it is indeed this
abstract perspective that underlies present-day Galois theory (see, e.g.,
[81]), where Galois groups are seen as field automorphisms of a field
extension L/F of a given base field F. Let us now stipulate that:

• S(L,F) is the set of all subfields of L that contain F;
• for M ∈ S(L,F), GalM(L) is the group of all field automor-

phisms ϕ of L such that ϕ|M = id;
• Sg(GalF(L)) is the set of all subgroups of such a group.
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Then the maps

f(M) = GalM(L)

f∗(H) = {a ∈ L | ϕ(a) = a for all ϕ ∈ H}

induce a residuated pair (f, f∗) between P = 〈S(L,F),⊆〉 and the order
dual Q∂ of Q = 〈Sg(GalF(L)),⊆〉 (i.e., the poset obtained from Q by
reversing its order)4. Consequently, Galois theory provides us with a
first mathematically significant instance of residuation.

Ideal theory of rings. There is a another respect in which polyno-
mial equations constitute a historically remarkable source for residu-
ated structures. Around the middle of the XIX century, it was observed
by Ernst Kummer that unique factorization into primes, true of ordi-
nary integers in virtue of the fundamental theorem of arithmetic, fails
instead for algebraic integers – namely, for roots of monic polynomials
with integer coefficients. Let Z

[√
−n
]

denote the quadratic integer

ring of all complex numbers of the form a + b
√
−n, with a, b ∈ Z

and n ∈ N. It turns out that unique factorization fails in Z
[√
−n
]

for several instances of n, although it holds in some special cases –
e.g., for Gauss integers (n = 1). Kummer tried to recover a weakened
form of this fundamental property with his theory of ideal numbers,
but the adoption of a modern abstract viewpoint on the issue, that
would eventually lead to the birth of contemporary ring theory and
to the ideal theory of rings, must be credited to Richard Dedekind’s
1871 X Supplement to the second edition of Dirichlet’s Zahlentheorie.
There, Dedekind introduced the concepts of ring and ring ideal in what
essentially is their modern usage (the term ring, however, was coined
by Hilbert only much later) and proved that every ideal of the ring
of algebraic integers is uniquely representable (up to permutation of
factors) as a product of prime ideals. Unique factorization, therefore,
is recovered at the level of ideals (see, e.g., [44]).

The ideal theory of commutative rings was intensively investigated
early in the XX century by Lasker and Macaulay, who generalized
the results by Dedekind to polynomial rings, and in the 1920’s by
Noether and Krull. In particular, Emmy Noether proved the celebrated
theorem according to which, in any commutative ring whose lattice of
ideals satisfies the ascending chain condition, ideals decompose into
intersections of finitely many primary ideals.

4This example of residuated pair is actually so important that, in general, a
residuated pair (f, f∗) between posets P and Q∂ is often referred to as a Galois
correspondence between P and Q.
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This theorem is typical of Noether’s general approach. The system
I(R) of ideals of a commutative ring R is viewed as an instance of
a lattice5 endowed with an additional operation of multiplication (see
Example 4.3). The same viewpoint was taken and further developed by
Morgan Ward and his student R.P. Dilworth in a series of papers during
the late 1930’s (see, e.g., [38], [39], [40], [136], [137], [138]), whose focus
is on another binary operation on ideals: the residual J → I of I with
respect to J . Recall from Example 4.3 above that

J → I = {x ∈ R | xJ ⊆ I}.
As Ward and Dilworth observed, J → I has the property that, for

any ideal K of the ring R, JK ⊆ I iff K ⊆ J → I. Ward and Dilworth
introduced and investigated in detail, under the name of residuated
lattices, some lattice-ordered structures with a multiplication which is
abstracted from ideal multiplication, and with a residuation which is
in turn abstracted from ideal residuation. They were thus in a position
to extend to a purely lattice-theoretic setting some of the results ob-
tained by Noether and Krull for lattices of ideals of commutative rings,
including the above-mentioned Noether decomposition theorem.

Ward and Dilworth’s papers did not have that much immediate im-
pact, but began a line of research that would crop up again every so
often in the following decades. Thus, the notion of residuated lattice
re-emerged in the different contexts of the semantics for fuzzy logics
(e.g., [65]) and substructural logics (e.g., [108]), and in the setting of
studies with a more pronounced universal-algebraic flavor (e.g., [80]),
with the latter two streams eventually converging into a single one (see,
e.g., [51]).

Interestingly enough, neither Hájek’s nor Ono’s, nor our official def-
inition of residuated lattice, given in Subsection 4.2 and essentially
due to Blount and Tsinakis ([18]), exactly overlaps with the original
definition given by Ward and Dilworth. Differences concern both the
similarity type and, less superficially, the properties characterizing the
respective algebras. The Hájek-Ono residuated lattices are invariably
bounded as lattices and integral as partially ordered monoids, meaning
that the top element of the lattice is the neutral element of multipli-
cation. Moreover, multiplication is commutative. Residuated lattices
as defined here are not necessarily bounded and, even if they are, they
need not be integral; multiplication is not required to be commutative.
What about the original Ward-Dilworth residuated lattices? Put in a

5Lattice theory underwent a remarkable development as a spin-off from Noether’s
abstract perspective, partly motivated by her desire to release ring theory from the
concrete setting of polynomial rings.
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very rough way, they lie somewhere in between the preceding concepts:
in fact, Ward and Dilworth do not assume the existence of a top or
bottom in the underlying lattice, but if there is a top, then it must
be the neutral element of multiplication, which is supposed to be a
commutative operation. It is only fair to observe that Dilworth also
introduces in [39] a noncommutative variant of his notion of residuated
lattice, abstracted from the residuated lattice of two-sided ideals of a
noncommutative ring, but to the best of our knowledge this general-
ization was not taken up again until the noncommutative concept of
residuated lattice was introduced and had already become established.

Boolean and Heyting algebras. One of the first classes of residu-
ated lattices that received considerable attention in its own right was of
course the class of Boolean algebras. As we have seen in Subsection 3.1,
it is not historically correct to consider Boole as their inventor. A closer
approximation to the modern understanding of Boolean algebras can
instead be found in the writings of Ernst Schröder, especially his Op-
erationskreis des Logikkalkuls (1854). There, he introduces something
vaguely resembling an equational axiomatization of Boolean algebras,
replacing Boole’s partial aggregation operation by plain lattice join,
and comes very close to realizing that Boolean algebras make clear-cut
instances of residuated algebras: he observes, in fact, that the equation
x∧ b = a is solvable iff a∧¬b = 0 and possesses, when this condition is
met, a smallest solution x = a and a largest solution x = a∨¬b. What
he apparently missed, however, is the fact that a ∨ ¬b is also a largest
solution for the inequation x ∧ b ≤ a, or, in other words, that such an
operation residuates meet in Boolean algebras [46].

For a proper treatment of Boolean algebras as algebras one must
wait until the turn of the century, when Edward V. Huntington pro-
vided the first equational basis for the variety, followed in the subse-
quent thirty years by more and more economical axiomatizations with
different choices of primitive operations, due, e.g., to Bernstein and
Sheffer. Most of the fundamental results of the structure theory for
Boolean algebras were however established in the 1930’s by Marshall
Stone ([124]), in primis :

• the term-equivalence between Boolean rings (i.e., idempotent
rings with identity) and Boolean algebras;
• the representation of Boolean algebras as algebras of sets, which

can be seen as a corollary of a more comprehensive duality be-
tween Boolean algebras and a class of topological spaces (Boolean
spaces, i.e., totally disconnected compact Hausdorff spaces.)
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Both results are extremely powerful, the former because a class of
algebras that had been introduced for the purpose of systematizing
logical reasoning turns out to be nothing but a subclass of a class
of structures whose centrality in “standard” mathematics can hardly
be denied – and a very natural subclass, at that. Given a Boolean
algebra B = 〈B,∧,∨,¬, 1, 0〉, Stone associates to it an algebra RB =
〈B, ·,+,−, 0, 1〉, where for every a, b ∈ B

a · b = a ∧ b
a+ b = (a ∧ ¬b) ∨ (b ∧ ¬a)

−a = a.

Conversely, given a Boolean ring R = 〈R, ·,+,−, 0, 1〉, he constructs
an algebra BR = 〈R,∧,∨,¬, 1, 0〉, where for every a, b ∈ R

a ∧ b = a · b
a ∨ b = a+ b+ a · b
¬a = a+ 1.

He then shows that: (i) RB is a Boolean ring; (ii) BR is a Boolean
algebra; (iii) RBR

= R; (iv) BRB
= B.

The latter result quoted above fleshes out a natural intuition about
Boolean algebras as essentially algebras of sets. Given a Boolean alge-
bra B = 〈B,∧,∨,¬, 1, 0〉, a filter F of the lattice reduct of B is called
an ultrafilter of B iff, for every b ∈ B, exactly one element in the set
{b,¬b} belongs to F . Ultrafilters coincide with maximal filters of B,
i.e., filters that are not properly included in any proper filter of B.
Letting

U(B) = {F ⊆ B | F is an ultrafilter of B},

Stone showed that the algebra of sets

〈℘(U(B)),∩,∪,−, U(B), ∅〉

is a Boolean algebra and that B can be embedded into it via the map

f(a) = {F ∈ U(B) | a ∈ F}.

Around the same time, due to the independent work of various re-
searchers (in particular, Glivenko [124] and Heyting [72]), the algebraic
counterpart of Brouwer’s intuitionistic logic was found in Heyting al-
gebras. As we have seen in Example 4.2, both Heyting algebras and
Boolean algebras are term-equivalent to varieties of FL-algebras.
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`-groups. The name of Richard Dedekind is recurring quite often in
these historical notes; in fact, he can legitimately be said to have in-
vented, anticipated, or first investigated at the abstract level, many of
the most fundamental notions in contemporary abstract algebra. We
have already mentioned his contributions to ring theory in his X Sup-
plement to the second edition of Dirichlet’s Zahlentheorie (1871). In his
Göttingen classnotes on algebra, written between 1858 and 1868 but
only published more than a century later (see [118]), Dedekind investi-
gates the abstract concept of group without confining himself to their
concrete representations as groups of permutations. In a later paper
(Über Zerlegung von Zahlen durch ihre größten gemeinsamen Teiler,
1897), he essentially introduces and investigates the notion of lattice,
as well as combining the two concepts into what is now known as a
lattice-ordered group (or `-group) (cf. [46]). Dedekind’s approach to
lattices was algebraic rather than order-theoretic: he views lattices as
sets equipped with two binary operations each satisfying associativity,
commutativity, and idempotency, and linked together by the absorp-
tion law, rather than as posets where every finite set has a meet and
a join. Moreover, since he was drawn to lattice theory mainly by his
number-theoretic interests, the privileged examples of meet and join
he has in mind are not the set-theoretic operations of intersection and
union but the arithmetical operations of greatest common divisor and
least common multiple ([82]).

As we have mentioned, Dedekind explicitly focused on `-groups. The
definition of `-group given in Example 4.4 is, at least in the commuta-
tive case, implicit in Dedekind’s paper. In a nutshell, he considers an
Abelian group endowed with an additional semilattice operation, pos-
tulating that the group binary operation distributes over such a join.
In other words, the resulting algebra A = 〈A, ·,∨,−1 , 1〉 must satisfy
the equation

x(y ∨ z) ≈ xy ∨ xz.

Then he observes that the defined term operation a∧ b = ab(a∨ b)−1

turns the term reduct 〈A,∧,∨〉 into a distributive lattice and the whole
structure into a commutative `-group. The same proof carries over to
the noncommutative case if we only rephrase more carefully the above
definition of meet as a ∧ b = a(a ∨ b)−1b, but Dedekind does not go as
far as to observe this fact.

In the late 1920’s and early 1930’s, functional analysts like Riesz,
Freudenthal, and Kantorovich developed conspicuous bits of `-group
theory in the context of their investigations into vector lattices. These
different streams converged at last in Birkhoff’s first edition (1940) of
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his Lattice Theory [11], containing a chapter on `-groups where the
concept is defined in full clarity and precision and Birkhoff’s original
contributions to the subject, as well as the main results that had been
proved in other diverse research areas, are collected and systematized.

To the best of our knowledge, the first author who expressly noticed
that in any `-group multiplication is residuated by the two division op-
erations was Jeremiah Certaine in his PhD thesis [26]. It was only much
later, however ([17], [18]), that this observation was expanded to an ex-
plicit proof of the fact that the variety of `-groups is term-equivalent
to a variety of residuated lattices, as explained in Example 4.4.

Birkhoff’s problem. Boolean algebras and `-groups contributed to-
wards the historical development of the theory of residuated structures
also in several ways other than those reported on so far. In the already
mentioned 1940 edition of his Lattice Theory [11, Problem 108], Garrett
Birkhoff challenged his readers by suggesting the following project:

Develop a common abstraction which includes Boolean
algebras (rings) and lattice ordered groups as special
cases.

Over the subsequent decades, several mathematicians tried their
hands at Birkhoff’s intriguing problem. A minimal requirement that
has to be met by a class of structures to be considered an answer
to Birkhoff’s problem is including both Boolean algebras (or Boolean
rings) and `-groups as instances and it is clear that such a desideratum
can be satisfied by concepts that are very different from one another.
True to form, the list of suggestions advanced in response to Birkhoff’s
challenge includes such disparate items as classes of partial algebras
([141], [119], [120], [32]) or classes of structures with multi-valued op-
erations ([102]).

Following the lead of the Indian mathematician K.L.N. Swamy ([125],
[126], [127]), a number of authors observed that both Boolean algebras
and `-groups are residuated structures and formulated their common
generalizations accordingly. Indeed, Swamy’s dually residuated lattice-
ordered semigroups, Rama Rao’s direct products of Boolean rings and
`-groups ([116]), and Casari’s lattice-ordered pregroups ([25]) all form
varieties that are term-equivalent to some subvariety of RL or FL.

5. Structural Proof Theory

Attempting to identify a precise border between ordered algebra and
logic would be unwise. Nevertheless, we may safely say that while alge-
bra focuses primarily on structures and their properties, logic (narrowly
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conceived) concerns itself more with syntax and deduction. Yet despite
these differences in perspective, traditional Hilbert-style presentations
of propositional logics as axiom systems typically enjoy a close rela-
tionship with classes of algebras, formalized, as we have seen, via the
Lindenbaum-Tarski-inspired Blok-Pigozzi method of algebraization. In
particular, theorems of classical or intuitionistic logic may be trans-
lated into equations holding in all Boolean or Heyting algebras and
vice versa. To the algebraist, this may suggest that propositional logic
is little more than “algebra in disguise.” There is something to this
point of view, though a logician may quickly respond, first, that some
logics are not algebraizable and, second, that the case for an algebraic
approach to first order logic is not so compelling. More pertinently for
our present concerns, syntactic presentations offer an alternative per-
spective that pure semantics cannot provide. In particular, syntactic
objects such as formulas, equations, and proofs, may be investigated
themselves as first-class citizens using methods such as induction on
formula complexity or height of a proof. This idea was first taken seri-
ously by Hilbert who established the field of proof theory with the aim
of proving the consistency of arithmetic and other parts of mathematics
using only so-called “finitistic” methods (see, e.g., [73]).

The original goal of Hilbert’s program was famously dashed in 1931
by Kurt Gödel’s incompleteness theorems, but partially resurrected
by Gerhard Gentzen in the mid-to-late 1930’s ([54], [55]). Gentzen was
able to show that the consistency of arithmetic is provable over the base
theory of primitive recursive arithmetic extended with quantifier-free
transfinite induction up to the ordinal ε0. This was the first result of
the area subsequently known as ordinal analysis. Our interest here lies,
however, with the tools that Gentzen used to prove this result. A lim-
itation of the early period of proof theory was the reliance on a rather
rigid interpretation of the axiomatic method, that is, axiomatizations
typically consisting of many axiom schemata and just a few rules, no-
tably, modus ponens. The axiomatic approach is flexible but does not
seem to reflect the way that mathematicians, or humans in general,
construct and reason about proofs, and suffers from a lack of con-
trol over proofs as mathematical objects. These issues were addressed
by Gentzen in [54] via the introduction of two new proof formalisms:
natural deduction and the sequent calculus. In particular, he defined
sequent calculi, LK and LJ, for first order classical logic and first or-
der intuitionistic logic, respectively, giving birth to an area known now
as structural proof theory. Since our interest lies here with ordered
algebras, we will focus only on the propositional parts of Gentzen’s
systems, which, as we will see, correspond directly to Boolean algebras
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and Heyting algebras. Substructural logics, which themselves corre-
spond to classes of the residuated lattices introduced in the previous
section, are then obtained, very roughly speaking, by removing certain
rules from these systems.

5.1. Gentzen’s LJ and LK. Hilbert-style axiom systems, and to a
certain extent Gentzen’s own natural deduction systems, are hindered
by the fact that they deal directly with formulas. So-called Gentzen
systems gain flexibility by considering more complicated structures. In
particular, Gentzen introduced the notion of a sequent, ordered pairs
of finite sequences of formulas, written:

α1, . . . , αn ⇒ β1, . . . , βm.

Intuitively, we might think of the disjunction of the formulas β1, . . . , βm
“following from” the conjunction of the formulas α1, . . . , αn, although
since sequents are purely syntactic objects, any meaning ascribed to
them follows only from the role that they play in the given proof system.

Sequent rules are typically written schematically using Γ and ∆ to
stand for arbitrary sequences of formulas, comma for concatenation,
and an empty space for the empty sequence, and consist of instances
with a finite set of premises and a single conclusion, rules with no
premises being called initial sequents. A sequent calculus L is simply
a set of sequent rules, and a derivation in such a system of a sequent
S from a set of sequents X is a finite tree of sequents with root S
such that each sequent is either a leaf and a member of X, or S is the
conclusion and its children (if any) are the premises of an instance of a
rule of the system. When such a tree exists, we say that “S is derivable
from X in L” and write X `

L
S.

Figure 1 displays an inessential variant of Gentzen’s sequent calculus
(propositional) LK in the same language as HCL that consists of simple
initial sequents of the form α ⇒ α, a cut rule corresponding, like
modus ponens, to the transitivity of deduction, and two distinguished
collections of rules. The first collection contains rules that introduce
occurrences of connectives on the left and right of the sequent arrow.
Such logical rules may be thought of as defining (operationally) the
meaning of the connectives, and roughly correspond to the elimination
and introduction rules of Gentzen’s natural deduction system. The
second collection of structural rules, which also come in left/right pairs,
simply manipulate the structure of sequents: exchange rules, weakening
rules, and contraction rules allow formulas to be permuted, added, and
combined, respectively.
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Initial sequents Cut rule

α⇒ α (id)
Γ2 ⇒ α,∆2 Γ1, α,Γ3 ⇒ ∆1

Γ1,Γ2,Γ3 ⇒ ∆1,∆2
(cut)

Left structural rules Right structural rules

Γ1, α, β,Γ2 ⇒ ∆
Γ1, β, α,Γ2 ⇒ ∆

(el)
Γ⇒ ∆1, α, β,∆2

Γ⇒ ∆1, β, α,∆2
(er)

Γ1,Γ2 ⇒ ∆
Γ1, α,Γ2 ⇒ ∆

(wl)
Γ⇒ ∆1,∆2

Γ⇒ ∆1, α,∆2
(wr)

Γ1, α, α,Γ2 ⇒ ∆
Γ1, α,Γ2 ⇒ ∆

(cl)
Γ⇒ ∆1, α, α,∆2

Γ⇒ ∆1, α,∆2
(cr)

Left logical rules Right logical rules

Γ1,Γ2 ⇒ ∆
Γ1, 1,Γ2 ⇒ ∆

(1⇒) ⇒ 1 (⇒ 1)

0⇒ (0⇒)
Γ⇒ ∆1,∆2

Γ⇒ ∆1, 0,∆2
(⇒ 0)

Γ⇒ α,∆
¬α,Γ⇒ ∆

(¬⇒)
Γ, α⇒ ∆

Γ⇒ ∆,¬α (⇒¬)

Γ1, α,Γ2 ⇒ ∆
Γ1, α ∧ β,Γ2 ⇒ ∆

(∧⇒)1
Γ⇒ ∆1, α,∆2

Γ⇒ ∆1, α ∨ β,∆2
(⇒∨)1

Γ1, β,Γ2 ⇒ ∆
Γ1, α ∧ β,Γ2 ⇒ ∆

(∧⇒)2
Γ⇒ ∆1, β,∆2

Γ⇒ ∆1, α ∨ β,∆2
(⇒∨)2

Γ1, α,Γ2 ⇒ ∆ Γ1, β,Γ2 ⇒ ∆
Γ1, α ∨ β,Γ2 ⇒ ∆

(∨⇒)
Γ⇒ ∆1, α,∆2 Γ⇒ ∆1, β,∆2

Γ⇒ ∆1, α ∧ β,∆2
(⇒∧)

Γ2 ⇒ α,∆2 Γ1, β,Γ3 ⇒ ∆1

Γ1,Γ2, α→ β,Γ3 ⇒ ∆1,∆2
(→⇒)

α,Γ⇒ β,∆
Γ⇒ α→ β,∆

(⇒→)

Figure 1. The Sequent Calculus LK

Example 5.1. Let us take a look at a derivation in LK of Peirce’s law,
noting that α and β can be any formulas:

α⇒ α (id)
α⇒ β, α

(wr)

⇒ α→ β, α
(⇒→)

α⇒ α (id)

(α→ β)→ α⇒ α, α
(→⇒)

(α→ β)→ α⇒ α
(cr)

⇒ ((α→ β)→ α)→ α
(⇒→)
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One of the most remarkable features of Gentzen’s framework is that
it also accommodates a calculus LJ for intuitionistic logic, obtained
from LK simply by restricting sequents Γ⇒ ∆ so that ∆ is allowed to
contain at most one formula. In particular, LJ has no right exchange or
right contraction rules, and right weakening is confined to premises with
empty succedents (in a sense, LJ is the first example of a substructural
sequent calculus). Hence, for instance, the derivation of Peirce’s law in
Example 5.1 is (rightly) blocked.

Let us show now that LK really is a sequent calculus corresponding
to the Hilbert-style presentation HCL of classical propositional logic,
and therefore also Boolean algebras (the same proof works also for
LJ with respect to axiomatizations of intuitionistic logic and Heyting
algebras). We let �(α1, . . . , αn) stand for α1� . . .�αn for � ∈ {∧,∨}
where ∧() is 1 and ∨() is 0, and define:

τ(α) = {⇒ α};
ρ(Γ⇒ ∆) = ∧Γ→ ∨∆.

Theorem 5.1. X `
LK
S if and only if {ρ(S ′) | S ′ ∈ X} `

HCL
ρ(S).

Proof. The left-to-right direction is established by an induction on the
height of a derivation in LK (straightforward, but requiring many te-
dious derivations in HCL). For the right-to-left direction, it is easily
checked that for any axiom α of HCL, τ(α) is derivable in LK. More-
over, if τ(α) and τ(α→ β) are derivable in LK, then so is τ(β), using
(cut) twice with the derivable sequent α, α → β ⇒ β. Note also
that for any sequent S: S `

LK
τ(ρ(S)) and τ(ρ(S)) `

LK
S. Hence if

{ρ(S ′) | S ′ ∈ X} `
HCL

ρ(S), then {τ(ρ(S ′)) | S ′ ∈ X} `
LK
τ(ρ(S)) and,

as required, X `
LK
S. �

However, it is worth asking at this point what advantages, if any, LJ
and LK hold over Hilbert-style systems. Proof search in the latter is
hindered by the need to guess formulas α and α→ β as premises when
applying modus ponens. The same situation seems to occur for these
sequent calculi: we have to guess which formula α to use when applying
(cut). Certainly finding derivations would be much simpler if we could
do without this rule. Then we could just apply rules where formulas
in the premises are subformulas of formulas in the conclusion. In fact,
this is the case, as established by Gentzen for (first order) LJ and LK
in his famous Hauptsatz. Indeed, Gentzen showed not only that (cut)
is not needed for deriving sequents from empty sets of assumptions,
but also that there exists a cut elimination algorithm that transforms
such derivations into cut-free derivations.
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Let us consider briefly the ideas behind Gentzen’s proof. Intuitively,
the idea is to push applications of the cut rule upwards in derivations
until they reach initial sequents and disappear. For example, suppose
that we have a derivation in LJ ending

...
Γ2 ⇒ α

...
Γ1, α,Γ3 ⇒ ∆

Γ1,Γ2,Γ3 ⇒ ∆
(cut)

The cut-formula α occurs on the right in one premise, and on the left in
the other. A natural strategy for eliminating this application of (cut)
is to look at the derivations of these premises. If one of the premises
is an instance of (id), then it must be α ⇒ α and the other premise
must be exactly the conclusion, derived with one fewer applications
of (cut). Otherwise, we have two possibilities. The first is that one
of the premises ends with an application of a rule where α is not the
decomposed formula, e.g.,

...
Γ′′2 ⇒ β1

...
Γ′2, β2,Γ′′′2 ⇒ α

Γ′2,Γ
′′
2, β1 → β2,Γ′′′2 ⇒ α

(→⇒)
...

Γ1, α,Γ3 ⇒ ∆
Γ1,Γ′2,Γ

′′
2, β1 → β2,Γ′′′2 ,Γ3 ⇒ ∆

(cut)

In this case, we can “push the cut upwards” in the derivation to get:

...
Γ′′2 ⇒ β1

...
Γ′2, β2,Γ′′′2 ⇒ α

...
Γ1, α,Γ3 ⇒ ∆

Γ1,Γ′2, β2,Γ′′′2 ,Γ3 ⇒ ∆
(cut)

Γ1,Γ′2,Γ
′′
2, β1 → β2,Γ′′′2 ,Γ3 ⇒ ∆

(→⇒)

That is, we have a derivation where the left premise in the new appli-
cation of (cut) has a shorter derivation than the application in the
original derivation.

The second possibility is that the last application of a rule in both
premises involves α as the decomposed formula, e.g.

...
α1,Γ2 ⇒ α2

Γ2 ⇒ α1 → α2
(⇒→)

...
Γ′′1 ⇒ α1

...
Γ′1, α2,Γ3 ⇒ ∆

Γ′1,Γ
′′
1, α1 → α2,Γ3 ⇒ ∆

(→⇒)

Γ′1,Γ
′′
1,Γ2,Γ3 ⇒ ∆

(cut)

Here we rearrange our derivation in a different way: we replace the
application of (cut) with applications of (cut) with cut-formulas α1
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and α2:

...
Γ′′1 ⇒ α1

...
α1,Γ2 ⇒ α2

...
Γ′1, α2,Γ3 ⇒ ∆

Γ′1, α1,Γ2,Γ3 ⇒ ∆
(cut)

Γ′1,Γ
′′
1,Γ2,Γ3 ⇒ ∆

(cut)

We now have two applications of (cut) but with cut-formulas of a
smaller complexity than the original application.

This procedure, formalized using a double induction on cut-formula
complexity and the combined height of derivations of the premises,
eliminates applications of (cut) for many sequent calculi. However, it
encounters a problem with rules that contract formulas in one or more
of the premises. Consider the following situation:

...
Γ2 ⇒ α

...
Γ1, α, α,Γ3 ⇒ ∆
Γ1, α,Γ3 ⇒ ∆

(cl)

Γ1,Γ2,Γ3 ⇒ ∆
(cut)

In this case we need to perform several cuts simultaneously, e.g., making
use of Gentzen’s “mix” rule for LK,

Γ⇒ α,∆ Γ′ ⇒ ∆′

Γ,Γ′α ⇒ ∆′,∆α

where Γ′ has at least one occurrence of α, and Γ′α and ∆α are obtained
by removing all occurrences of α from Γ′ and ∆, respectively.

Theorem 5.2 (Gentzen 1935). Cut-elimination holds for LK and LJ

This result has many important applications. As an immediate con-
sequence, for example, both LJ and LK are consistent: there cannot
be any cut-free derivation of an arbitrary variable p for instance. Sim-
ilarly, since any cut-free derivation of ⇒ α ∨ β in LJ must necessarily
involve a derivation of⇒ α or⇒ β, intuitionistic logic has the so-called
disjunction property. Cut-elimination also facilitates easy proofs of de-
cidability for the derivability of sequents for LK and LJ, and hence for
checking validity in propositional classical or intuitionistic logic. Call
two sequents equivalent if one can be derived from the other using the
exchange and contraction rules. Then easily there are a finite number
of non-equivalent sequents that can occur in a cut-free derivation of a
sequent in LJ or LK, and hence, checking that equivalent sequents do
not occur, the search for such a cut-free derivation must terminate. It
follows that propositional classical logic and, more interestingly, propo-
sitional intuitionistic logic, are decidable. Algebraically of course this
means that the equational theories of Boolean algebras and Heyting
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algebras are decidable, raising the question as to whether other classes
of algebras can be proved decidable using similar methods. It is worth
noting also that these calculi can also be used to prove complexity
results for the respective logics and classes of algebras.

We remark finally that many variants of LJ and LK have appeared
in the literature. In particular, the Finnish logician Oiva Ketonen [83]
suggested a new version of LK where (∧ ⇒)1, (∧ ⇒)2, (⇒ ∨)1, and
(⇒∨)2 are replaced by:

Γ1, α, β,Γ2 ⇒ ∆
Γ1, α ∧ β,Γ2 ⇒ ∆

(∧⇒)′
Γ⇒ ∆1, α, β,∆2

Γ⇒ ∆1, α ∨ β,∆2
(⇒∨)′

Also, Haskell B. Curry [35] later considered variants obtained by re-
placing (∨⇒) and (⇒∧) with:

Γ1, α⇒ ∆1 Γ2, β ⇒ ∆2

Γ1,Γ2, α ∨ β ⇒ ∆1,∆2
(∨⇒)′

Γ1 ⇒ α,∆1 Γ2 ⇒ β,∆2

Γ1,Γ2 ⇒ α ∧ β,∆1,∆2
(⇒∧)′

It is an easy exercise to see that these rules are interderivable with the
previous rules given for ∧ and ∨, making crucial use of the structural
rules of weakening, exchange, and contraction. In the absence of such
rules, the connectives ∧ and ∨ split into two. That is, the original rules
define what are often called the additive or lattice connectives ∧ and ∨,
whereas Ketonen and Curry’s rules define the so-called multiplicative
or group connectives, renamed · and +. Moreover, in the absence of
weakening rules, as we will see below, the constants 1 and 0 also split,
as in the absence of exchange rules, does the implication connective→.

5.2. Substructural logics. The expression “substructural logic” was
suggested by Kosta Došen and Peter Schroeder-Heister at a conference
in Tübingen in 1990 to describe a family of logics emerging (post-
Gentzen) with a wide range of motivations from linguistics, algebra,
set theory, philosophy, and computer science. Roughly speaking, the
term “substructural” refers to the fact that these logics, which all live
in a certain sense “below the surface” of classical logic, fail to admit
one or more classically sound structural rules. Most convincingly, logics
defined by sequent calculi obtained by removing weakening, contrac-
tion, or exchange rules from LJ or LK may be deemed substructural,
although even in these cases, further logical rules may be added to cap-
ture connectives that (as remarked above) split when structural rules
are removed. Other classically sound structural rules, such as “weaker”
versions of weakening or contraction, may also be added, giving a family
of logics characterized by cut-free sequent calculi. Nevertheless, there
remain important classes of logics (e.g., relevant and fuzzy logics) typ-
ically accepted as substructural that do not fit comfortably into this
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framework, requiring more flexible formalisms such as hypersequents,
display calculi, etc. More perplexing still, there are closely related
logics (and classes of algebras) lacking structural rules for which no
reasonable cut-free calculus is known. Are these also substructural?

A practical answer to this question, suggested by the authors of [51],
is to define substructural logics by appeal to their algebraic seman-
tics. That is, since most substructural logics correspond in some way
to classes of residuated lattices (or slight variants thereof), this fam-
ily could be identified with logics having these classes of algebras as
equivalent algebraic semantics. Such a definition offers uniformity and
clarity, although it may be objected that there exist both classes of
algebras which have no corresponding logic and substructural logics
which lack a corresponding class of residuated lattices. Here we de-
liberately refuse to say exactly what a substructural logic is, believing
rather that an understanding of the richness of this family is best gained
by a (necessarily brief, see [41], [117], [110], and [51] for a wealth of
further material) historical survey of the most important candidates.

The Lambek calculus and residuated lattices. Chronologically,
the first substructural logic occurred in the field of linguistics. In a 1958
paper [88], Joachim Lambek made use of a substructural sequent calcu-
lus (which became known, naturally enough, as the Lambek calculus)
to represent transformations on syntactic types of a formal grammar.
Lambek’s approach built on earlier work on categorial grammar in the
1930’s by the Polish logician Kazimierz Ajdukiewicz, who aimed to
develop an analysis of natural language by assigning syntactic types
to linguistic expressions that describe their syntactic roles (e.g., verb,
noun phrase, verb phrase, sentence). A naive approach to this task
would consist of listing a number of lexical atoms (e.g., Joan, smiles,
charmingly) and a number of mutually unrelated types (e.g., NP =
noun phrase; V = verb; Adv = adverb; VP = verb phrase; S = sen-
tence), and then tagging each lexical atom with the appropriate type:

Joan: NP; smiles: V; charmingly: Adv.

However, Ajdukiewicz understood that the stock of basic grammati-
cal categories can be substantially reduced by the use of type-forming
operators \ and /, where an expression v has type α\β (respectively,
β/α) if whenever the expression v′ has type α, the expression v′v (re-
spectively, vv′) has type β. Indeed, the whole apparatus of categorial
grammar can then be constructed out of just two basic types, n (noun)
and s (sentence).
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Axioms Cut rule

α⇒ α (id)
Γ1 ⇒ α Γ2, α,Γ3 ⇒ ∆

Γ1,Γ2,Γ3 ⇒ ∆
(cut)

Left logical rules Right logical rules

Γ1,Γ2 ⇒ ∆
Γ1, 1,Γ2 ⇒ ∆

(1⇒) ⇒ 1 (⇒ 1)

0⇒ (0⇒) Γ⇒
Γ⇒ 0

(⇒ 0)

Γ2 ⇒ α Γ1, β,Γ3 ⇒ ∆
Γ1, β/α,Γ2,Γ3 ⇒ ∆

(/⇒)
Γ, α⇒ β

Γ⇒ β/α
(⇒ /)

Γ2 ⇒ α Γ1, β,Γ3 ⇒ ∆
Γ1,Γ2, α\β,Γ3 ⇒ ∆

(\ ⇒)
α,Γ⇒ β

Γ⇒ α\β
(⇒ \)

Γ1, α, β,Γ2 ⇒ ∆
Γ1, α · β,Γ2 ⇒ ∆

(· ⇒)
Γ1 ⇒ α Γ2 ⇒ β

Γ1,Γ2 ⇒ α · β (⇒ ·)

Γ1, α,Γ2 ⇒ ∆
Γ1, α ∧ β,Γ2 ⇒ ∆

(∧⇒)1
Γ⇒ α

Γ⇒ α ∨ β (⇒∨)1

Γ1, β,Γ2 ⇒ ∆
Γ1, α ∧ β,Γ2 ⇒ ∆

(∧⇒)2
Γ⇒ β

Γ⇒ α ∨ β (⇒∨)2

Γ1, α,Γ2 ⇒ ∆ Γ1, β,Γ2 ⇒ ∆
Γ1, α ∨ β,Γ2 ⇒ ∆

(∨⇒)
Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β (⇒∧)

Figure 2. The Full Lambek Calculus FL

For example, in English, John works is a sentence, but works John
is not. The intransitive verb works has type n\s: when applied to
the right of an expression of type n, it yields an expression of type
s. On the other hand, the adjective poor has type n/n: when applied
to the left of an expression of type n, it yields another expression of
type n (a complex noun phrase). We may write these transformations,
respectively, as n, n\s⇒ s and n/n, n⇒ n. More generally, if α, β are
types, the following transformations are permissible in Ajdukiewicz’s
categorial grammar:

α, α\β ⇒ β and β/α, α⇒ β.
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Lambek extended the deductive power of categorial grammar by set-
ting up a sequent calculus for permissible transformations on types,
introducing a new type-forming operation · such that v has type α · β
whenever v = v′v′′ with v′ of type α and v′′ of type β, and admitting,
in addition to modus ponens, patterns of hypothetical reasoning corre-
sponding to right introduction rules for the implications. Adding rules
for the lattice connectives ∧ and ∨, and the constants 1 and 0, gives
the Full Lambek Calculus FL, displayed in Figure 2.

FL has come to play a distinguished role in the field of substructural
logics. Just as classical logic is a candidate for the top element of the
lattice of such logics, so FL is a candidate for the bottom element.
That is, most other substructural logics may be obtained as extensions
of FL (although, non-associative substructural logics have also been
investigated, not least by Lambek himself.) In particular, Hiroakira
Ono and colleagues have popularized the usage of FLX where X ⊆
{e, c, w} to denote the extension of FL with the appropriate grouping
of exchange (e), contraction (c), and weakening rules (w), and InFLX
to denote the corresponding multiple-conclusion sequent calculus. In
particular, FLewc and InFLewc correspond to LJ and LK with split
connectives.

Not surprisingly, FL corresponds to the class of FL-algebras. More-
over, a sequent calculus RL for the class of residuated lattices is ob-
tained by removing the rules for 0, as the following result makes precise.
Let �(α1, . . . , αn) stand for α1� . . .�αn for � ∈ {·,+} where ·() is 1
and +() is 0, and define:

τ(α ≈ β) = {α⇒ β, β ⇒ α};

ρ(Γ⇒ ∆) = {·Γ ≤ +∆}.

Theorem 5.3. X `
RL
S if and only if {ρ(S ′) | S ′ ∈ X}`

Eq(RL)
ρ(S).

Proof. The left-to-right direction is proved by induction on the height
of a derivation in RL. For the right-to-left direction, consider

Σ ∪ {(α, β)} ⊆ Fm2

and define

Σ⇒ = {α′ ⇒ β′|(α′, β′) ∈ Σ} and Σ≤ = {α′ ≤ β′|(α′, β′) ∈ Σ}.
We will prove that Σ≤`

Eq(RL)
α ≤ β implies Σ⇒ `

RL
α ⇒ β; the result

then follows swiftly from the fact that for any sequent S, S `
RL
τ(ρ(S))

and τ(ρ(S)) `
RL
S.

Define the following binary relation on Fm:

αΘΣβ iff Σ⇒ `
RL
α⇒ β and Σ⇒ `

RL
β ⇒ α.
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ΘΣ is a congruence on Fm. Clearly it is reflexive and symmetric, and
for transitivity, if αΘΣβ and βΘΣγ, then Σ⇒ `

RL
{α ⇒ β, β ⇒ γ},

so by (cut), Σ⇒ `
RL

α ⇒ γ; similarly, Σ⇒ `
RL

γ ⇒ α, so αΘΣγ as
required. Suppose, moreover, that α1ΘΣα2 and β1ΘΣβ2. Then Σ⇒ `

RL

{α1 ⇒ α2, α2 ⇒ α1, β1 ⇒ β2, β2 ⇒ β1} and we can construct, e.g.,
derivations for Σ⇒ `

RL
{α1\β1 ⇒ α2\β2, α1 ∧ β1 ⇒ α2 ∧ β2} ending:

α2 ⇒ α1 β1 ⇒ β2

α2, α1\β1 ⇒ β2
(\ ⇒)

α1\β1 ⇒ α2\β2
(⇒ \)

α1 ⇒ α2

α1 ∧ β1 ⇒ α2
(∧⇒)1

β1 ⇒ β2

α1 ∧ β1 ⇒ β2
(∧⇒)2

α1 ∧ β1 ⇒ α2 ∧ β2
(⇒∧)

Hence (using symmetry), ΘΣ is compatible with \ and ∧, and similarly,
with the other operations.

It follows easily that the quotient algebra Fm/ΘΣ with equivalence
classes [α] for α ∈ Fm as elements is a residuated lattice. So if
Σ≤`

Eq(RL)
α ≤ β, we can define the canonical evaluation e(x) = [x]

and prove by induction that e(γ) = [γ] for all γ ∈ FmRL. Since
Σ⇒ `

RL
α′ ⇒ β′ for all (α′, β′) ∈ Σ, we have e(α′) = [α′] ≤ [β′] = e(β′)

for all (α′, β′) ∈ Σ. Hence [α] = e(α) ≤ e(β) = [β] and, as required,
Σ⇒ `

RL
α⇒ β. �

This equivalence extends easily to FLX-algebras and the calculi FLX
for X ⊆ {e, c, w}, and also to classes of bounded FL-algebras with
respect to calculi FLB

X , obtained by adding to FLX the rules:

Γ1,⊥,Γ2 ⇒ ∆
(⊥ ⇒)

Γ⇒ > (⇒ >)

Relevance logics. An important source of substructural logics lack-
ing weakening rules is the philosophy of logic and the long-standing
debate over entailment. As is well-known, contemporary modal logic
originated with C.I. Lewis’ dissatisfaction and critical attitude towards
Russell’s classical propositional calculus, notably its – supposedly coun-
terintuitive and repugnant to common sense – “paradoxes of material
implication” such as the laws of a fortiori and ex absurdo quodlibet :

α→ (β → α) and ¬α→ (α→ β).

In a series of writings culminating in his Symbolic Logic, coauthored
with C.H. Langford ([90]), Lewis introduced calculi of strict implication
to describe a tighter notion of implication intended to be true whenever
it is impossible that the antecedent holds while the consequent does not.
These calculi avoid Russell’s material paradoxes, yet derive “paradoxes
of strict implication” such as:

α→ (β ∨ ¬β) and (α ∧ ¬α)→ β.
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The Lewis-Langford analysis was therefore deemed inadequate by many
commentators since it fails to take into account the relevance connec-
tion between the antecedent and consequent of a logical implication.

On the other hand, Lewis showed how to derive his paradoxes using
just a few seemingly unobjectionable modes of inference ([90], Ch.8),
e.g., for ex absurdo quodlibet :

1. α ∧ ¬α assumption;
2. α 1, simplification: from α ∧ β derive α;
3. ¬α 1, simplification: from α ∧ β derive β;
4. α ∨ β 2, addition: from α derive α ∨ β;
5. β 3,4, disjunctive syllogism: from ¬α, α ∨ β derive β.

Hence the relevant logician must show what is wrong with this rea-
soning. Several possible replies were devised in the 1930’s, 1940’s, and
1950’s. Connexive logicians (e.g., [103]) worked out a notion of entail-
ment on the basis of two principles: that α entails β just in case α
is inconsistent with ¬β, and that α entails β only if α is consistent
with β. Such a concept validates some classically falsifiable principles
and falsifies some classical tautologies and valid inference rules – for
example, the simplification and addition moves in Lewis’ independent
proof are not permissible. Analytic logicians (e.g., [112]) defended a
Kantian-like view according to which the consequent of an implication
should not contain concepts not already included in its antecedent.
Given such a tenet, addition is clearly no good. Some philosophers
([53], [134], [122]), rather than questioning a specific step in Lewis’
argument, put the blame on the possibility of freely chaining such in-
ferential steps together. The resulting notions of entailment are only
restrictedly transitive. Finally, a few commentators ([43], [22]) detected
an equivocation in Lewis’ use of “entails”, while others ([45], [135]) ac-
cepted the independent proof, but denied the conclusion that it shows
that every impossible proposition implies anything.

A completely different reply to Lewis came in the late 1950’s from
the American logicians Alan R. Anderson and Nuel D. Belnap, who,
developing ideas of W. Ackermann ([1]), introduced the systems of
relevant logic E and R ([3],[4]). Anderson and Belnap ([2]) suggest that
the argument by Lewis is a fallacy of ambiguity : it equivocates over the
meaning of disjunction. There is no single disjunction that allows both
addition and the disjunctive syllogism; rather, there is an intensional
relevant disjunction for which the disjunctive syllogism is valid but
addition is not; and an extensional truth-functional disjunction for
which addition, but not the disjunctive syllogism, holds. Although
the connection was only implicit in Anderson and Belnap’s paper, the
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extensional “or” roughly corresponds to additive disjunction, while the
intensional “or” corresponds to multiplicative disjunction.

The placing of Anderson and Belnap’s R within the framework of
substructural logics is most apparent for the implication-negation frag-
ment: it is the corresponding fragment of LK without the weakening
rules [3] (or, identifying \ and / with →, the calculus InFLec). How-
ever, the full logic corresponding to LK without weakening (InFLec)
is not R but rather a weaker logic, studied intensively by Robert K.
Meyer in his PhD thesis [101] and known in relevant circles as LR, that
fails to derive the critical half of the distributive law:

α ∧ (β ∨ γ)→ (α ∧ β) ∨ (α ∧ γ).

For a partly satisfactory solution to the problem of finding a suitable
Gentzen-style formulation for R, instead, logicians had to wait until
1982, when Belnap ([10]) introduced the formalism of display logic.

An algebraic semantics for R in terms of involutive and distributive
FLec algebras, suggested by J.M. Dunn, was already available in 1966;
later, Urquhart introduced an operational semantics for the implica-
tion fragment of R and, finally, in the early 1970’s, a series of papers
by R. Routley and R.K. Meyer launched a long-awaited Kripke-style
relational semantics for both R and an array of kindred systems (see
[4] and [115]). This new research trend triggered the introduction of
additional relevant systems, mostly weaker than E or R, motivated
by natural semantical conditions. Since the Routley-Meyer evaluation
clauses for conjunction and disjunction validate distribution, such non-
distributive logics as LR have remained out of the limelight over the
last decades as far as relevant logics are concerned.

Fuzzy logics. The first examples of logics failing to admit the struc-
tural rule of contraction occurred in the setting of many-valued logics.
In the 1920’s, Jan  Lukasiewicz introduced logics with n truth values for
every finite n > 2, as well as an infinite-valued logic  L over the closed
real unit interval [0, 1], where 0 represents absolute falsity, 1 represents
absolute truth, and values between 0 and 1 can be thought of as in-
termediate “degrees of truth.” The truth functions corresponding to
negation and implication are

¬x = 1− x and x→ y = min(1, 1− x+ y).

In classical logic, there are several equivalent ways to define disjunc-
tion using negation and implication; for example, α ∨ β is classically
equivalent to both ¬α→ β and (α→ β)→ β. However, in  L:

x⊕y = ¬x→ y = min(1, x+y) and x∨y = (x→ y)→ y = max(x, y).
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Similarly, there are two possibilities for conjunction:

x · y = max(0, x+ y − 1) and x ∧ y = min(x, y).

An axiomatization for  L was proposed by  Lukasiewicz, but although a
completeness proof was obtained by Wajsberg in the 1930’s, published
proofs, by Rose and Rosser [114] and Chang [27] (introducing MV-
algebras, see Example 4.5), appeared only in the late 1950’s.

In subsequent years, the study of  Lukasiewicz logic has become ever
more intertwined with research into fuzzy logics. Following the ap-
proach promoted by Hájek in his influential monograph [65], the con-
junction connective · of fuzzy logics is interpreted by a continuous t-
norm (commutative associative increasing binary function on [0, 1] with
unit 1), the implication connective→ by its residuum, and falsity con-
stant 0 by 0. Other connectives, 1 interpreted by 1, ∧ by min, and ∨ by
max, are definable. Fundamental examples of continuous t-norms are
the  Lukasiewicz conjunction max(0, x+y−1), Gödel t-norm min(x, y),
and the product t-norm xy (product of reals), which give rise, respec-
tively, to  Lukasiewicz logic  L, Gödel-Dummett logic G ([60], [42]), as
well as a relative newcomer, product logic P ([66]).

Common generalizations of these logics have included (in chronolog-
ical order) Hájek’s basic logic BL ([65]), Esteva and Godo’s monoidal t-
norm logic MTL ([47]), and Metcalfe and Montagna’s uninorm logic UL
([99]). The variety of UL-algebras UL consists of semilinear bounded
commutative FL-algebras, the variety MT L consists of UL-algebras
satisfying 1 ≈ > and 0 ≈ ⊥, and the variety BL of BL-algebras con-
sists of MTL-algebras satisfying x ∧ y ≈ x · (x → y). The importance
of these logics and their algebras is supported by the fact that BL
has been shown to be the logic of continuous t-norms ([31]), MTL,
the logic of left-continuous t-norms ([79]), and UL, the logic of left-
continuous uninorms ([99]). Algebraically, this means that the varieties
BL, MT L, and BL, are generated not only by their totally ordered
members but also by their so-called “standard” members of the form
〈[0, 1],min,max, ·,→, 1, 0,⊥,>〉.

Perhaps surprisingly given their origins, it has emerged that many of
these logics and their accompanying classes of algebras have an elegant
presentation as Gentzen-style proof systems. The catch is that instead
of sequents, they are formulated using hypersequents, introduced by
Avron in [5] and consisting of finite multisets of sequents. The mono-
graph [100] provides a comprehensive account of hypersequent (and
other) calculi for fuzzy logics and their applications.
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Set theory. A particularly intriguing motivation for dropping contrac-
tion rules arises from Curry’s 1942 proof that the law of absorption,
corresponding to the sequent ⇒ (α → (α → β)) → (α → β), plays
a crucial role in set-theoretic paradoxes ([34]). At the turn of the last
century, Russell showed that naive set theory yields, via unrestricted
comprehension, a formula provably equivalent to its own negation. This
is a contradiction if the underlying logic derives the law of excluded
middle and other classical principles. Some mathematicians, including
Brouwer, began therefore to nurture the belief that an intuitionistically
correct set theory would escape Russell’s paradox. However, as Curry
demonstrated, the following variant of Russell’s paradox follows from
intuitionistically acceptable principles. Let α be an arbitrary sentence
in the language of the theory, and let C = {x : x ∈ x→ α}. Then:

1. C ∈ C → (C ∈ C → α) definition of C;
2. (C ∈ C → α)→ C ∈ C definition of C;
3. (C ∈ C → (C ∈ C → α))→ (C ∈ C → α) law of absorption;
4. C ∈ C → α 1, 3, modus ponens;
5. C ∈ C 2, 4, modus ponens;
6. α 4, 5, modus ponens.

Hence any set theory which contains an unrestricted comprehension ax-
iom and the (intuitionistically correct) law of absorption is bound to be
trivial. From a substructural point of view, however, the excluded mid-
dle and the law of absorption are equally vicious: the former requires
a use of right contraction, while the latter presupposes an application
of left contraction. Intuitionistic logic is not substructural enough to
accommodate naive set theory.

The first logician who explored the possibility of reconstructing set
theory on a nonclassical basis was Skolem, who devoted a series of
papers to the subject in the late 1950’s and early 1960’s (see, e.g.,
[121]). Skolem thought that infinite-valued  Lukasiewicz logic  L was
a plausible candidate: Russell’s paradoxical sentence is equivalent to
its own negation, but this causes no problem in  L where any formula
whose value is 0.5 has this property. Moreover, absorption and other
contraction-related principles do not hold for  L.

However, weakening also plays a role in producing the set-theoretic
paradoxes. A result by Grishin ([64]), in fact, indicates that if we
add the extensionality axioms to classical logic without contraction
(a weaker system than  L), contraction can be recovered. Subsequent
research on logical bases for naive set theories has therefore focused on
systems in the vicinity of linear logic although the systems FLew and
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InFLew, interesting for being decidable at the first order level, have also
been investigated extensively by Ono and Komori in [109].

Linear logic. Further motivation for dropping structural rules arose
from the constructive approach to logic. Since Heyting, followers of this
approach have focused on the notion of proof, stressing, however, that
what matters is not whether a given formula is provable, but how it is
proved. A formula may therefore be identified with its set of proofs, so
that a proof of α from the assumptions α1, ..., αn – seen as a method
for converting proofs of α1, ..., αn into a proof of α – amounts to a
function f(x1, ..., xn) which associates to elements ai ∈ Ai, the element
f(a1, ..., an) ∈ A.

This idea is already implicit in the so-called Brouwer-Heyting-Kolmogorov
interpretation of intuitionistic logic. In the 1960’s, W.A. Howard ([78])
added to this interpretation the identification of intuitionistic natural
deduction proofs with terms of typed lambda calculus. A proof of the
formula α is associated with a term of type α, and it then becomes
possible to spell out the computational content of the inference rules in
the {∧,→}-fragment of the intuitionistic natural deduction calculus:

• if t and s are terms of respective types α and β, then 〈t, s〉 (the
pairing of t and s) is a term of type α ∧ β;
• if t is a term of type α ∧ β, then π1(t) and π2(t) (the first and

second projections of t) are terms of respective types α and β;
• if x is a variable of type α and t is a term of type β, then λx.t

(the abstraction of t w.r.t. x) is a term of type α→ β;
• if t and s are terms of respective types α → β and α, then ts

(the application of t to s) is a term of type β.

The ensuing correspondence between intuitionistic natural deduction
proofs and terms in the lambda calculus with projection and pairing
functors can be seen as a fully-fledged isomorphism (and is indeed re-
ferred to as the Curry-Howard isomorphism) in that there is a perfect
match between the notions of conversion, normality, and reduction in-
troduced in the two frameworks.

In the light of the Curry-Howard isomorphism, it was acknowledged
that the problem of finding a “semantics of proofs” for a given con-
structive logic and the problem of providing lambda calculus (or, for
that matter, functional programming) with a semantic interpretation
were two sides of the same coin. In Dana Scott’s domain theory, a first
attempt to accomplish this task, a type α was interpreted by means of
a particular topological space. On the other hand, Jean-Yves Girard
([57]) introduced for this purpose in the mid 1980’s, the notion of a
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coherent space – a set A equipped with a reflexive and symmetric rela-
tion RA, called the coherence relation of the space. Now, a type (alias
formula) α can be associated with a coherent space A =

〈
A,RA

〉
, and

a term t of type α (alias a proof of α) with a clique of A, i.e., with
a subset B ⊆ A of pairwise coherent elements of A. Similarly, com-
pound formulas and their proofs can be interpreted using more complex
coherent spaces. This semantics of proofs allows for substructural dis-
tinctions; for example:

• The space A ·B is a coherent space whose universe is the carte-
sian product A×B, and whose coherence relation is given by:

(a, b)RA·B(a′, b′) iff aRAa′ and bRBb′.

• The space A ∧ B is a coherent space whose universe is the
disjoint union A ] B = {(a, 0) : a ∈ A} ∪ {(b, 1) : b ∈ B}, and
whose coherence relation is given by:

(a, 0)RA∧B(a′, 0) iff aRAa′;
(b, 1)RA∧B(b′, 1) iff bRBb′;
(a, 0)RA∧B(b, 1) for any a ∈ A, b ∈ B.

Omitting details, let us just mention that Girard introduces a co-
herent space A → B corresponding to intuitionistic implication and
a coherent space A( B corresponding to a new kind of implication,
which he terms linear implication. If we let !A be the space whose
universe is the set of finite cliques of A, and whose coherence relation
is given by

cR!Ac′ iff there exists a clique c′′ of A such that c, c′ ⊆ c′′,

then we get the fundamental property that the space A( B is isomor-
phic to the space !A → B; in other words, the semantics of coherent
spaces yields a decomposition of intuitionistic implication into a new
kind of implication, linear implication, and a new unary operator, !. A
new kind of logic, linear logic, had been born.

How can we make intuitive sense of this logic? One option is to view
formulas as concrete resources that once consumed in a deduction to get
some conclusion, cannot be recycled or reused. Formulas of the form
!α, on the other hand, represent “ideal” resources that can be reused at
will. Thus, while the availability of an intuitionistic implication α→ β
means that using as many α’s as I might need I can get one β, the
availability of a linear implication α( β expresses the fact that using
just one α I can get one β – something that squares perfectly with
the coherent space isomorphism pointed out above. We can also view
the other compound formulas of linear logic as concrete resources: for
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example, α ·β expresses the availability of both resource α and resource
β, while α ∧ β expresses the availability of any one of these resources.

In his seminal 1987 paper, Girard introduces a sequent calculus for
this new logic that corresponds (with a quite different syntax) to InFLB

e

(i.e., LK without weakening and contraction, with the split connectives)
extended with the following rules for the unary connective ! (of course! )
(? (why not? ) can be defined dually as ?α = ¬!¬α):

α,Γ⇒ ∆
!α,Γ⇒ ∆

(!⇒) Γ⇒ ∆
!α,Γ⇒ ∆

(!wl)
!α, !α,Γ⇒ ∆

!α,Γ⇒ ∆
(!cl) !Γ⇒ α

!Γ⇒!α
(⇒!)

where !Γ is obtained by prefixing ! to all formulas in Γ.
The importance of the exponentials is fully realized if we take into

account the fact that Girard was not interested in setting up a logic
weaker than classical or intuitionistic logic: he rather wanted a logic
that permits a better analysis of proofs through a stricter control of
structural rules. Exponentials are there precisely to recapture the de-
ductive power of weakening and contraction, an aim that is attained –
in a sense – by showing that both classical logic and intuitionistic logic
can be embedded into linear logic.

6. The interplay of algebra and logic

As we have seen in earlier sections, although ordered algebras and
logics have typically emerged from distinct traditions, they may nev-
ertheless be related via algebraization. In this final section, we illus-
trate the benefits of this correspondence with some examples where
techniques in one field may be used to solve problems in the other.
Needless to say, we do not aim for completeness, not even for the few
topics covered here; rather our intention is to share some of the core
ideas involved in the proofs and provide a pointer to key references.

6.1. Completeness. One of the most surprising and revealing fea-
tures of recent work on the correspondence between ordered algebras
and logic is the encroachment of algebraic methods on that typically
most syntactic of endeavors: establishing cut elimination for Gentzen
systems. To be more precise (since cut elimination in proof-theoretic
parlance usually implies giving an algorithm for removing cuts from
derivations), these methods, originating independently in the work of
Maehara ([93]) and Okada ([104],[105],[106]), establish the admissibility
of cut for the cut-free system. Or to put matters yet another way, com-
pleteness is proved for the cut-free system with respect to some class of
algebras. Such results do not supplant constructive proofs (where the
elimination algorithm may be fundamental), but suffice for the kind of
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benefits, such as establishing decidability or interpolation (see below),
that a cut-free Gentzen system affords a class of ordered algebras.

The algebraic approach to completeness has undoubtedly made Gentzen
systems more attractive to algebraists, and promises to lead – through
the combination with other algebraic techniques – to insights and proofs
unobtainable solely by syntactic means. Indeed, algebraic methods
have been employed by Terui ([131]) to give a semantic characteriza-
tion of extensions of the sequent calculus RL for residuated lattices
with (certain forms of) structural rules that admit cut elimination.
Also, Ciabattoni, Galatos, and Terui ([29]) have combined algebraic
and syntactic techniques to obtain an algorithm that converts Hilbert-
style axioms of a certain form into structural rules for sequent and
hypersequent calculi that preserve cut elimination.

Here our aim will be more modest. We will give the main ideas of
the proof of the completeness of cut-free RL with respect to residuated
lattices, taking elements of our presentation from [80], [9], and [131].
As a starting point, let us consider a construction of residuated lattices
that has proved invaluable in several contexts. Let M = 〈M, ·, 1〉 be a
monoid, and for each X, Y ⊆M , define:

X · Y = {x · y|x ∈ X and y ∈ Y };
X\Y = {y ∈M |X · {y} ⊆ Y };
Y/X = {y ∈M |{y} ·X ⊆ Y }.

Then the “powerset algebra” ℘(M) = 〈℘(M),∩,∪, ·, \, /, {1}〉 is easily
seen to be a residuated lattice.

This is just the first step of the construction, however. Next, a special
kind of map on ℘(M) is used to refine this algebra according to the job
at hand. A nucleus on the powerset ℘(M) is a map γ : ℘(M)→ ℘(M)
satisfying X ⊆ γ(X), γ(γ(X)) ⊆ γ(X), X ⊆ Y implies γ(X) ⊆ γ(Y ),
and γ(X) · γ(Y ) ⊆ γ(X · Y ).

Lemma 6.1. If M is a monoid and γ is a nucleus on ℘(M), then

℘(M)γ = 〈γ(℘(M)),∩,∪γ, ·γ, \, /, γ({1})〉
is a complete residuated lattice with X ∪γ Y = γ(X ∪ Y ) and X ·γ Y =
γ(X · Y ).

Now we turn our attention to the sequent calculus RL and residuated
lattices. The idea is to construct a special example of the latter such
that (similar to the Lindenbaum-Tarski algebra construction), validity
in this algebra corresponds to cut-free derivability in RL. Let Fm∗

be the free monoid generated by the formulas of RL; that is, the ele-
ments Fm∗ of Fm∗ are finite sequences of formulas, multiplication is
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concatenation, and the unit element is the empty sequence. Intuitively,
we build our algebra from sets of sequences of formulas that “play the
same role” in cut-free derivations in RL. We define:

[Γ1 Γ2 ⇒ α] = {Γ ∈ Fm∗|Γ1,Γ,Γ2 ⇒ α is cut-free derivable in RL};
D = {[Γ1 Γ2 ⇒ α]|Γ1,Γ2 ∈ Fm∗ and α ∈ Fm};

γ(X) =
⋂
{Y ∈ ℘(Fm∗)|X ⊆ Y ⊆ D}.

Then γ is a nucleus on ℘(Fm∗) and hence the algebra ℘(Fm∗)γ is a
residuated lattice.

We define an evaluation for this algbera by e(p) = γ({p}) and prove
by induction on formula complexity that for each α ∈ Fm:

α ∈ e(α) ⊆ [ ⇒ α].

Now consider a sequent α1, . . . , αn ⇒ β such that α1 · . . . · αn ≤ β
holds in all residuated lattices. In particular, it holds in ℘(Fm∗)γ, so
e(α1) · . . . · e(αn) ⊆ e(β). But then, since αi ∈ e(αi) for i = 1 . . . n and
e(β) ⊆ [ ⇒ β],

α1 · . . . · αn ∈ [ ⇒ β].

I.e., α1, . . . , αn ⇒ β is cut-free derivable in RL.
The core idea of proofs of the form outlined above is to show the

completeness of a system by establishing the admissibility of a partic-
ular rule for that system: in this case, cut. This idea applies also to
other completeness results and gives corresponding generation results
for classes of algebras. In particular, elimination of the “density rule”
of Takeuti and Titani ([128]) has been used by Metcalfe and Montagna
([99], see also [100]) to show the completeness of certain fuzzy logics
with respect to algebras based on the rational unit interval [0, 1] ∩ Q,
or, reformulating this algebraically, the generation of certain varieties
of semilinear commutative bounded FL-algebras by their dense totally
ordered members. First it is shown that adding the density rule to any
axiomatic extension of a Hilbert system UL for semilinear commutative
bounded FL-algebras gives a system that is complete with respect to
the dense totally ordered members of the corresponding variety. For the
second step, axiomatizations are reformulated as hypersequent calculi
and it is shown that in certain cases, applications of the hypersequent
version of the density rule can be eliminated (constructively, similarly
to cut elimination) from derivations.

6.2. Decidability. Decidability problems – determining whether there
exists an effective method for checking membership of some class – have
long played a prominent role in both logic and algebra, bridging the gap
between abstract presentations and computational methods. Perhaps
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most significant are the validity problem for a logic L – can we decide
whether `

L
α holds for any formula α? – and, for a class of algebras

K, the decidability of the equational theory – can we decide whether
`

Eq(K)
α ≈ β holds for any equation α ≈ β? Of course, decidability of

the validity problem for an algebraizable logic implies decidability of
the equational theory for the corresponding class of algebras and vice
versa.

Intriguingly, when tackling these problems for substructural logics
and classes of residuated lattices, methods from both fields, logic and
algebra, appear to be essential. Let us consider first a strategy for logics
that makes use of cut-free Gentzen systems. We have already seen that
cut elimination for LJ and LK facilitates a simple proof of decidability
of the validity problem for propositional classical logic and proposi-
tional intuitionistic logic, and consequently, the equational theory of
Boolean algebras and Heyting algebras. The proof for the sequent cal-
culus RL and neighboring systems admitting cut elimination such as
FL, FLe, FLw, and FLew is even easier. We simply observe that se-
quents occurring in any cut-free derivation for these systems must get
smaller as we progress upwards in the tree, so proof search is finite.
The proof for FLec (a reworking of a proof for InFLec by Meyer [101])
is more complicated, but follows a similar pattern: we introduce a re-
stricted version of the calculus and show that the number of sequents
occurring in cut-free derivations for the restricted system must be finite
(see, e.g., [51] for details).

Cut-free sequent calculi are powerful tools but there remain many
substructural logics, not too mention interesting classes of algebras,
that are (at least so far) lacking in this department. In some cases,
however, more complicated structures can be used to obtain decidabil-
ity results. For example, display calculi, mentioned in the remarks on
relevance logics, with more structural connectives have been used to
establish decidability for the equational theory of various varieties of
distributive residuated lattices ([20], [21], [86]). Also, hypersequent cal-
culi, mentioned above in connection with fuzzy logics, have been used
to establish decidability for various semilinear varieties (see [100] for
details).

A complementary algebraic approach to establishing decidability stems
from the familiar observation that if a finitely axiomatizable logic is
complete with respect to a class of finite algebras – the so-called fi-
nite model property – then we can check whether a given formula holds
in the one-element members, then the two-element members, and so
on, and at the same time search for a derivation of height one, height
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two, etc. Hence the validity problem is decidable. From an algebraic
perspective, we say that a class of algebras has the finite model prop-
erty FMP if every equation that fails to hold in the class, fails in a
finite member of the class. However, when the forthcoming algebraic
method applies, we actually get something stronger, the strong finite
model property SFMP: any quasi-equation that fails to hold in the class,
fails in a finite member of the class. If a finitely axiomatizable class
of algebras has the FMP, then its equational theory is decidable, and
if it has the SFMP, then its quasi-equational theory (and in fact, for
quasivarieties of residuated lattices, its universal theory) is decidable.

The SFMP corresponds in turn to an embedding property known to
researchers such as McKinsey and Tarski in the 1940’s ([98]), explored
in particular by Evans ([48]), and developed extensively for residuated
lattices and related structures by Blok and Van Alten ([14], [16], [133]).
Given an algebra A = 〈A, 〈fA

i |i ∈ I〉〉 of any type and B ⊆ A, a partial
subalgebra B of A is the partial algebra 〈B, 〈fB

i |i ∈ I〉〉 where for i ∈ I,
k-ary fi, and b1, . . . , bk ∈ B,

fB
i (b1, . . . , bk) =

{
fB
i (b1, . . . , bk) iffB

i (b1, . . . , bk) ∈ B
undefined otherwise.

An embedding of a partial algebra B into an algebra A of the same type
is a 1-1 map ϕ : B → A such that ϕ(fB

i (b1, . . . , bk)) = fA
i (ϕ(b1), . . . , ϕ(ak))

whenever fB
i (b1, . . . , bk) is defined.

A class K of algebras of the same type has the finite embeddability
property (FEP for short) if every finite partial subalgebra of some mem-
ber of K can be embedded into some finite member of K. It is easily
seen that if a (quasi)variety K has the FEP, then K has the SFMP.
Moreover, for quasivarieties of finite type such as (quasi)varieties of
residuated lattices we have an equivalence between the two properties.

The FEP is easily established for the variety of Heyting algebras HA
(the subvariety of CFL satisfying the additional equations xy ≈ x ∧ y
and x∧0 ≈ 0; see Example 4.2). Following McKinsey and Tarski’s proof
([98]), let B be a finite partial subalgebra of some A ∈ HA. Then the
lattice D generated by B ∪ {0, 1} is a finitely generated distributive
lattice and hence finite, even though this might not be true of the
Heyting algebra finitely generated by B. Since the meet operation
in any finite distributive lattice is residuated, D can be made into a
Heyting algebra. Moreover, the partially defined residuum operation
of B coincides (where defined) with the residuum of the meet of D, so
B can be embedded into this algebra.
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This proof, however, relies on the fact that the lattice reduct of a
member of the variety is distributive, and that the meet coincides with
the product. A more complicated construction has been introduced by
Blok and Van Alten ([14], [16], [133]) that establishes the FEP for nu-
merous subvarieties of FL (and many other classes of algebras) obeying
some kind of integrality or idempotency property. In particular, this
construction was used by Ono (private communication, see also [85]) to
establish the decidability of various semilinear varieties corresponding
to fuzzy logics; a simplified presentation may be found in [28].

For varieties of residuated lattices such as RL and CRL that lack
integrality and idempotence properties, (versions of) the following al-
gebra based on the integers provides a good candidate for a counterex-
ample:

Z = 〈Z,min,max,+,→, 0〉,
where x → y = −x + y. (Refer to Example 4.4.) Consider the quasi-
equation:

(1 ≤ x & x · y ≈ 1) ⇒ (x ≈ 1).

It is easy to see that this holds in all finite residuated lattices, but fails
in Z. So the SFMP and hence the FEP fails for RL and CRL.

Finally, what of classes of algebras for which these algebraic or syn-
tactic methods do not suffice? Proofs that the universal theory of
(commutative) residuated lattices are undecidable may be lifted from
the corresponding proofs for full linear logic of [91]. Urquhart proved
that certain varieties of distributive residuated lattices are undecidable
([132]). Finally, many interesting problems are open. In particular, it
is unknown whether the variety of cancellative residuated lattices (even
adding commutativity and/or integrality) is decidable, or the variety
of semilinear (commutative) residuated lattices. A selection of results
with references to the first (perhaps implicit) proof is given in Table 2,
omitting references when the result is folklore.

6.3. Amalgamation and interpolation. Amalgamation is an im-
portant categorical property of classes of algebras (and more generally
in model theory, structures) that guarantees that under certain condi-
tions, two members of the class that contain a common subalgebra can
be regarded as subalgebras of a third member so that their intersection
contains the common subalgebra. Close relationships between amal-
gamation and fundamental logical properties, including the Robinson
property, Beth definability, and various forms of interpolation, are well
known and much studied ([113], [6], [94], [95], [96], [92], [36]). Indeed,
a broad and quite bewildering number of notions have been introduced
to match exactly algebraic and logical concepts occurring in this area.



66GEORGE METCALFE, FRANCESCO PAOLI, AND CONSTANTINE TSINAKIS

Variety Name Equational Theory Universal Theory
Residuated lattices RL decidable undecidable [80]
Commutative RL CRL decidable undecidable [91]
Distributive RL DRL decidable [86] undecidable [50]
Distributive CRL CDRL decidable [21] undecidable [50]
Idempotent CDRL CIdDRL undecidable [132] undecidable [132]
Integral RL IRL decidable decidable [14]
Integral CRL CIRL decidable decidable [14]
Semilinear RL SemRL
Semilinear CRL CSemRL
MTL-algebras MT L decidable [85] decidable [85]
Cancellative RL CanRL
Cancellative CRL CCanRL
`-groups LG decidable [77] undecidable [58]
MV-algebras MV decidable decidable
Abelian `-groups AbLG decidable [76] decidable [76]
Heyting algebras HA decidable [54] decidable [54]
Boolean algebras BA decidable decidable

Table 2. (Un)decidability of some subvarieties of RL
and FL

We refer to [51] and [84] for a guide to some of the choices on offer. Here
we prefer to illustrate this quite general relationship between logic and
algebra by focussing on one particularly useful example: a connection
between amalgamation and the deductive interpolation property.

A variety V has the amalgamation property AP if for all A,B,C ∈ V
and embeddings i and j of A into B and C, respectively, there exist
D ∈ V and embeddings h, k of B and C, respectively, into D such that
h ◦ i = k ◦ j.

Let us write var(K) for the variables occurring in some expression
(formula, equation, set of equations, etc.) K. A variety V is said to
have the Deductive Interpolation Property DIP if whenever Σ `

Eq(V)
ε,

there exists a set of equations Π with var(Π) ⊆ var(Σ) ∩ var(ε) such
that Σ `

Eq(V)
Π and Π `

Eq(V)
ε.

Theorem 6.2. A variety of commutative residuated lattices has the
AP iff it has the DIP.

The preceding result is stated and proved in [52]. However, it is
a consequence of the general fact that for varieties with at least one
nullary operation and all operations of finite arity, the AP and the DIP
are equivalent in the presence of the congruence extension property.
This being said, the result paves the way for an intriguing approach to
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proving amalgamation for varieties of commutative residuated lattices:
namely, we show that a related interpolation property holds for the cor-
responding logic. Let us say that a logic L of a variety of commutative
residuated lattices has the Craig interpolation property CIP if when-
ever `

L
α→ β, there exists a formula γ with var(γ) ⊆ var(α)∩var(β)

such that `
L
α → γ and `

L
γ → β. In fact, in the context of com-

mutative residuated lattices, the CIP is a strictly stronger property, a
consequence of the local deduction theorem (part (1) of the following
theorem).

Theorem 6.3. Suppose that a variety V of commutative residuated
lattices is an equivalent algebraic semantics for a logic L. Then:

(1) T ∪ {α} `
L
β iff T `

L
(α ∧ 1)n → β for some n ∈ N.

(2) If L has the CIP, then V has the DIP and hence the AP.

Proof. (1) is provable either by a simple induction on the height of a
derivation of T ∪ {α} `

L
β or as an immediate consequence of Corol-

lary 4.23 (1). For (2), it is suffices by algebraizability to prove the
logical counterpart of the DIP for L. Suppose that T `

L
α. Then

{β1 ∧ . . . ∧ βn} `L
α for some {β1, . . . , βn} ⊆ T and by (1), `

L

(β1 ∧ . . . ∧ βn ∧ 1)n → α for some n ∈ N. If L has the CIP, then
`

L
(β1 ∧ . . . ∧ βn ∧ 1)n → γ and `

L
γ → α for some formula γ

with var(γ) ⊆ var(β1 ∧ . . . ∧ βn) ∩ var(α). But then, again by (1),
{β1 ∧ . . . ∧ βn} `L

γ and {γ} `
L
α as required. �

Theorem 6.4 ([107]). FLe has the CIP.

Proof. For convenience (basically to reduce the number of cases con-
siderably), we will make use of a slightly different calculus. Let us use
(just for this proof) Γ and ∆ to denote finite multisets rather than
sequences of formulas; Γ,∆ and () now denote the multiset union of Γ
and ∆, and the empty multiset, respectively. Sequents are then ordered
pairs of finite multisets of formulas and we obtain a calculus – easily
seen to prove the same sequents as FLe – simply by reinterpreting the
calculus FL with this new definition. Let us make a couple more cos-
metic changes. We remove the redundant exchange rules, write α→ β
for α\β and drop the rules for /, to obtain a calculus that we denote
FLme . It then suffices to prove the following:

If `
FLm

e
Γ,∆ ⇒ α, then there exists a formula β with var(β) ⊆

var(Γ) ∩ var(∆, α) such that `
FLm

e
Γ⇒ β and `

FLm
e

∆, β ⇒ α.

We proceed by induction on the height of a cut-free derivation d of
Γ,∆⇒ α in FLme . Suppose first for the base case that Γ,∆⇒ α is an
instance of (id). If Γ is (α) and ∆ is (), let β be α. If Γ is () and ∆ is



68GEORGE METCALFE, FRANCESCO PAOLI, AND CONSTANTINE TSINAKIS

(α), let β be 1. Also, if Γ,∆⇒ α is an instance of (⇒ 1), then Γ and
∆ are () and α is 1, so let β be 1. The case for 0 is similar.

For the inductive step, we must consider the last application of a rule
in d. Let us just treat the paradigmatic case of implication. Suppose
first that α is α1 → α2 and d ends with:

...
Γ,∆, α1 ⇒ α2

Γ,∆⇒ α1 → α2
(⇒→)

Then by the induction hypothesis, there exists β with var(β) ⊆ var(Γ)∩
var(∆, α1 → α2) such that Γ ⇒ β and ∆, β, α1 ⇒ α2 are derivable in
FLme . Hence also, by (⇒→), the sequent ∆, β ⇒ α1 → α2 is derivable
in FLme .

Suppose now that d ends with:

...
Γ1,∆1 ⇒ γ1

...
Γ2,∆2, γ2 ⇒ α

Γ1,Γ2, γ1 → γ2,∆1,∆2 ⇒ α
(→⇒)

There are two subcases. First, suppose that Γ is Γ1,Γ2 and ∆ is γ1 →
γ2,∆1,∆2. Then by the induction hypothesis twice, there exist β1, β2

such that the following sequents are derivable in FLme :

Γ1 ⇒ β1 Γ2 ⇒ β2 ∆1, β1 ⇒ γ1 ∆2, γ2, β2 ⇒ α

where var(β1), var(β2) ⊆ var(Γ) ∩ var(∆, α). Let β be β1 · β2. Then
we have the following required derivations:

...
Γ1 ⇒ β1

...
Γ2 ⇒ β2

Γ1,Γ2 ⇒ β1 · β2
(⇒ ·)

...
∆1, β1 ⇒ γ1

...
∆2, γ2, β2 ⇒ α

∆1,∆2, γ1 → γ2, β1, β2 ⇒ α
(→⇒)

∆1,∆2, γ1 → γ2, β1 · β2 ⇒ α
(· ⇒)

Now suppose that Γ is Γ1,Γ2, γ1 → γ2 and ∆ is ∆1,∆2. Here we must
be a bit more careful. Considering the derivable sequent Γ1,∆1 ⇒ γ1,
we associate Γ1 with γ1, and obtain by the induction hypothesis, a
formula β1 with var(β1) ⊆ var(Γ) ∩ var(∆, α) such that the following
sequents are FLme -derivable:

∆1 ⇒ β1 Γ1, β1 ⇒ γ1.

For the derivable sequent Γ2,∆2, γ2 ⇒ α, we apply the induction hy-
pothesis to obtain β2 with var(β2) ⊆ var(Γ)∩ var(∆, α) such that the
following sequents are FLme -derivable:

Γ2, γ2 ⇒ β2 ∆2, β2 ⇒ α.
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Variety Name CIP DIP AP

Residuated lattices RL yes ? ?
Commutative RL CRL yes yes yes
Integral CRL CIRL yes yes yes
Semilinear CRL CSemRL no ? ?
MTL-algebras MT L no ? ?
`-groups LG no no no
MV-algebras MV no yes yes
Abelian `-groups AbLG no yes yes
Heyting algebras HA yes yes yes
Boolean algebras BA yes yes yes

Table 3. Amalgamation and interpolation properties
for some subvarieties of RL and FL

Let β be β1 → β2. Then we have the following required derivations:

...
Γ1, β1 ⇒ γ1

...
Γ2, γ2 ⇒ β2

Γ1,Γ2, γ1 → γ2, β1 ⇒ β2
(→⇒)

Γ1,Γ2, γ1 → γ2 ⇒ β1 → β2
(⇒→)

...
∆1 ⇒ β1

...
∆2, β2 ⇒ α

∆1,∆2, β1 → β2 ⇒ α
(→⇒)

�

Corollary 6.5. CRL admits the DIP and therefore the AP.

This proof method works also for proving amalgamation for CIRL
and related varieties, as well as BA andHA, but fails in the absence of a
suitable Gentzen system. Indeed, we remark that there are many open
problems regarding interpolation and amalgamation to be resolved for
classes of residuated lattices. In particular, although RL has the Craig
interpolation property, it is unknown whether it has the amalgamation
or deductive interpolation properties. Table 3 summarizes the known
landscape for a selection of subvarieties of RL and FL.
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