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Two questions

(What are canonical extensions?)
A reminder

How do we define Scott-continuous maps on the canonical
extension of a lattice?

Canonical extensions via dcpo presentations

What do canonical extensions have to do with topological
lattice-based algebras?

Universal properties
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(What are canonical extensions?)

Canonical extenions . . .
• provide an algebraic generalization of the representation

theorem for Boolean algebras.

• are abstract completions, characterized up to isomorphism
by order-theoretical properties.

• are duality-agnostic.
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How do we define Scott-continuous maps on the
canonical extension of a lattice?

Let L be a lattice and let E be a dcpo. We denote the canonical
extension of L by Lδ.

Question:
How can we see whether a map f : Lδ → E is in Dcpo(Lδ,E),
i.e. whether f is Scott-continuous?

Our answer (G. & V. 2011):

• We will see that Lδ can be presented as a dcpo by
generators P and relations v and /.

• The elements of Dcpo(Lδ,E) now correspond to those
maps P → E which preserve the relations v and /.
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Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where

• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.
Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;

• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.
Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);

• / ⊆ P × P(P), where a / U only if U is non-empty and
directed, is the set of basic cover relations.

Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.

Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.

Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.
Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.
Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Preliminaries

Dcpo presentations
A dcpo presentation is a triple 〈P,v, /〉 where
• P is the set of generators;
• v ⊆ P × P is a pre-order (reflexive and transitive);
• / ⊆ P × P(P), where a / U only if U is non-empty and

directed, is the set of basic cover relations.
Fact: every dcpo presentation uniquely presents a dcpo (Jung,
Moshier & Vickers 2008).

Non-empty intersections
Let X be a set. For U,V ⊆ X , we define U G V :⇔ U ∩ V , ∅.

Filters and ideals
Let P be a poset. By F P and IP we denote the filters and
ideals of P, respectively.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

A dcpo presentation for the canonical extension

Let L be a lattice.

Definition
We define ∆(L) to be the dcpo presentation 〈F L,⊇, /L〉, where
for all F ∈ F L and directed S ⊆ F L,

F /L S iff ∀I ∈ IL,
[
∀F ′ ∈ S, F ′ G I

]
⇒ F G I.

Theorem (G. & V. 2011)
If L is a lattice, then ∆(L) is a dcpo presentation of Lδ, the
canonical extension of L.
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Bonus: applications using dcpo algebras

Jung, Moshier and Vickers (2008) used dcpo presentations to
order work with dcpo algebras.

In [G. &V. 2011], we show that
these dcpo algebra techniques can be applied easily to prove
the following well-known canonicity result:

Theorem (G. & Harding 2001)
Let A be a lattice-based algebra and let s 4 t be an inequation.
If for each operation ω occurring in s or t , ωA is an operator of
which we take the lower canonical extension, then A |= s 4 t
implies Aδ

|= s 4 t .
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What do canonical extensions have to do with
topological lattice-based algebras?

• Reminder: canonical extensions are not only defined for
lattices, but also for lattice-based algebras

• We will see that canonical extensions have certain
universal properties with respect to topological
lattice-based algebras.

• Why is this the case?
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Topological lattice-based algebras

Topological lattice-based algebras are algebras which
• have a lattice reduct;

• are endowed with a topology such that all their operations
are continuous.

We will be looking at two kinds of topological lattice-based
algebras, both of which have Boolean (compact, Hausdorff,
zero-dimensional) topologies.

• Profinite algebras (projective limits of finite algebras);
• Profinite lattices with continuous monotone operations.

Note: (2) is not a special case of (1)!
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Profinite algebras

We will view finite algebras as topological algebras with a
discrete topology.
What does it mean for an algebra A to be profinite?

1. One can think of A to be constructed as a projective limit
(consequently, as a subalgebra of a product) of finite
algebras, and inherits a topology as such;

2. If A is already a topological algebra, saying that A is
profinite means that for every a,b ∈ A s.t. a , b, there is a
continuous f : A→ B to a finite B such that f(a) , f(b):
essentially, A is residually finite ‘in a topological way’.

See Johnstone (1982).
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Examples of profinite algebras

Profiniteness gives a categorical characterizaton of some
subcategories of categories of lattice-based algebras.
• Distributive lattices: L profinite iff L is (isomorphic to) a

down-set lattice iff L is complete & bi-algebraic.

• Distributive lattices with operators: A profinite iff A is (iso
to) the complex algebra of a hereditarily finite ordered
Kripke frame. (V. 2010)

• Heyting algebras: A profinite iff A is (iso to) the down-set
lattice of image-finite poset iff A is complete, bi-algebraic
and residually finite. (Bezhanishvili 2008)
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Canonical extensions and profinite algebras

Let eA : A→ Aδ be the canonical extension of a lattice-based
algebra.

Theorem (V. 2010)
Let f : A→ B be a homomorphism to a profinite lattice-based
algebra B. Then there exists a unique complete
homomorphism f ′ : Aδ

→ B such that f ′ ◦ eA = f .

Aδ

f ′

��
A

eA
>>||||||||

f
// B

In many cases, the canonical extension Aδ itself is not profinite:
see V. (2010, §3.4.2) or Gouveia (2010).
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Profinite lattices with (continuous) monotone
operations

A profinite lattice with (continuous) monotone operations is a
lattice-based algebra A = 〈A ;∧,∨,0,1, (ωA)ω∈Ω〉 such that:
• 〈A ;∧,∨,0,1〉 is a profinite lattice;

• each ωA is monotone (and continuous w.r.t. the profinite
topology on 〈A ;∧,∨,0,1〉).

Non-continuous examples
Complex algebras obtained from arbitrary Kripke frames (both
intuitionistic and modal).

Continuous example (V. 2010, §4.2)
Complex algebras of image-finite modal Kripke frames.
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When are the operations continuous?

Theorem (V. 2010)
Let A be a profinite lattice with with monotone operations. Then
there exists a unique complete lattice homomorphism
g : Aδ

→ A such that g ◦ eA = idA.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

When are the operations continuous?

Theorem (V. 2010)
Let A be a profinite lattice with with monotone operations. Then
there exists a unique complete lattice homomorphism
g : Aδ

→ A such that g ◦ eA = idA.

Aδ

g lattice hom.
��

A

eA
>>||||||||

idA
// A



Canonical extensions Scott-continuous maps Topological lattice-based algebras

When are the operations continuous?

Theorem (V. 2010)
Let A be a profinite lattice with with monotone operations. Then
there exists a unique complete lattice homomorphism
g : Aδ

→ A such that g ◦ eA = idA.
Moreover, the following are equivalent:

1. g : Aδ
→ A is an algebra homomorphism with respect to

the full signature of A;

2. all the operations of A are continuous, i.e. A is a Boolean
topological algebra.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

When are the operations continuous?

Theorem (V. 2010)
Let A be a profinite lattice with with monotone operations. Then
there exists a unique complete lattice homomorphism
g : Aδ

→ A such that g ◦ eA = idA.
Moreover, the following are equivalent:

1. g : Aδ
→ A is an algebra homomorphism with respect to

the full signature of A;
2. all the operations of A are continuous, i.e. A is a Boolean

topological algebra.



Canonical extensions Scott-continuous maps Topological lattice-based algebras

Example

Recall that profinite Boolean algebras with continuous modal
operator correspond to image-finite Kripke frames. The last
theorem now dualizes to the following folklore (?) result:

Fact
Let F be a Kripke frame and let ueF be its ultrafilter extension.
The following are equivalent:

1. F embeds into ueF;
2. F is image-finite.
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Thank you!
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