$\underset{\bigcirc}{\text{Canonical extensions}}$

Scott-continuous maps

Topological lattice-based algebras

Two questions about canonical extensions (Canonical extensions and universal properties)

Mai Gehrke and Jacob Vosmaer

IMAPP, Radboud University, Nijmegen ILLC, University of Amsterdam

Topology, Algebra and Categories in Logic July 27, 2011

 $\underset{\bigcirc}{\text{Canonical extensions}}$

Scott-continuous maps

Topological lattice-based algebras

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

3

ヘロマ ヘ動 マイロマー

Two questions

(What are canonical extensions?) A reminder

How do we define Scott-continuous maps on the canonical extension of a lattice?

Canonical extensions via dcpo presentations

What do canonical extensions have to do with topological lattice-based algebras? Universal properties

Topological lattice-based algebras

(What are canonical extensions?)

Canonical extenions ...

• provide an algebraic generalization of the representation theorem for Boolean algebras.

Topological lattice-based algebras

(What are canonical extensions?)

Canonical extenions ...

- provide an algebraic generalization of the representation theorem for Boolean algebras.
- are abstract completions, characterized up to isomorphism by order-theoretical properties.

Topological lattice-based algebras

(What are canonical extensions?)

Canonical extenions ...

- provide an algebraic generalization of the representation theorem for Boolean algebras.
- are abstract completions, characterized up to isomorphism by order-theoretical properties.
- are duality-agnostic.

How do we define Scott-continuous maps on the canonical extension of a lattice?

Let \mathbb{L} be a lattice and let \mathbb{E} be a dcpo. We denote the canonical extension of \mathbb{L} by \mathbb{L}^{δ} .

Question:

How can we see whether a map $f: \mathbb{L}^{\delta} \to \mathbb{E}$ is in **Dcpo**($\mathbb{L}^{\delta}, \mathbb{E}$), i.e. whether *f* is Scott-continuous?

How do we define Scott-continuous maps on the canonical extension of a lattice?

Let $\mathbb L$ be a lattice and let $\mathbb E$ be a dcpo. We denote the canonical extension of $\mathbb L$ by $\mathbb L^\delta.$

Question:

How can we see whether a map $f: \mathbb{L}^{\delta} \to \mathbb{E}$ is in **Dcpo**($\mathbb{L}^{\delta}, \mathbb{E}$), i.e. whether *f* is Scott-continuous?

Our answer (G. & V. 2011):

How do we define Scott-continuous maps on the canonical extension of a lattice?

Let $\mathbb L$ be a lattice and let $\mathbb E$ be a dcpo. We denote the canonical extension of $\mathbb L$ by $\mathbb L^\delta.$

Question:

How can we see whether a map $f: \mathbb{L}^{\delta} \to \mathbb{E}$ is in **Dcpo**($\mathbb{L}^{\delta}, \mathbb{E}$), i.e. whether *f* is Scott-continuous?

Our answer (G. & V. 2011):

 We will see that L^δ can be presented as a dcpo by generators P and relations ⊑ and ⊲.

INSTITUTE FOR LOCIC LANCUAGE AND COMPU

3

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

How do we define Scott-continuous maps on the canonical extension of a lattice?

Let $\mathbb L$ be a lattice and let $\mathbb E$ be a dcpo. We denote the canonical extension of $\mathbb L$ by $\mathbb L^\delta.$

Question:

How can we see whether a map $f: \mathbb{L}^{\delta} \to \mathbb{E}$ is in **Dcpo**($\mathbb{L}^{\delta}, \mathbb{E}$), i.e. whether *f* is Scott-continuous?

Our answer (G. & V. 2011):

- We will see that L^δ can be presented as a dcpo by generators *P* and relations ⊑ and ⊲.
- The elements of Dcpo(L^δ, E) now correspond to those maps P → E which preserve the relations ⊑ and ⊲.

Canonical extensions o

Scott-continuous maps

Topological lattice-based algebras

Preliminaries

Dcpo presentations

Canonical extensions o

Scott-continuous maps

Topological lattice-based algebras

Preliminaries

Dcpo presentations

A dcpo presentation is a triple $\langle P, \sqsubseteq, \triangleleft \rangle$ where

• P is the set of generators;

Topological lattice-based algebras

Preliminaries

Dcpo presentations

- P is the set of generators;
- $\sqsubseteq \subseteq P \times P$ is a pre-order (reflexive and transitive);

Topological lattice-based algebras

Preliminaries

Dcpo presentations

- P is the set of generators;
- $\sqsubseteq \subseteq P \times P$ is a pre-order (reflexive and transitive);
- ⊲ ⊆ P × P(P), where a ⊲ U only if U is non-empty and directed, is the set of basic cover relations.

Topological lattice-based algebras

Preliminaries

Dcpo presentations

- P is the set of generators;
- $\sqsubseteq \subseteq P \times P$ is a pre-order (reflexive and transitive);
- ⊲ ⊆ P × P(P), where a ⊲ U only if U is non-empty and directed, is the set of basic cover relations.

Topological lattice-based algebras

Preliminaries

Dcpo presentations

A dcpo presentation is a triple $\langle P, \sqsubseteq, \triangleleft \rangle$ where

- P is the set of generators;
- $\sqsubseteq \subseteq P \times P$ is a pre-order (reflexive and transitive);
- ⊲ ⊆ P × P(P), where a ⊲ U only if U is non-empty and directed, is the set of basic cover relations.

Fact: every dcpo presentation uniquely presents a dcpo (Jung, Moshier & Vickers 2008).

Topological lattice-based algebras

Preliminaries

Dcpo presentations

A dcpo presentation is a triple $\langle P, \sqsubseteq, \triangleleft \rangle$ where

- P is the set of generators;
- $\sqsubseteq \subseteq P \times P$ is a pre-order (reflexive and transitive);
- ⊲ ⊆ P × P(P), where a ⊲ U only if U is non-empty and directed, is the set of basic cover relations.

Fact: every dcpo presentation uniquely presents a dcpo (Jung, Moshier & Vickers 2008).

Non-empty intersections

Let X be a set. For $U, V \subseteq X$, we define $U \notin V :\Leftrightarrow U \cap V \neq \emptyset$.

Topological lattice-based algebras

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

Preliminaries

Dcpo presentations

A dcpo presentation is a triple $\langle P, \sqsubseteq, \triangleleft \rangle$ where

- P is the set of generators;
- $\sqsubseteq \subseteq P \times P$ is a pre-order (reflexive and transitive);
- ⊲ ⊆ P × P(P), where a ⊲ U only if U is non-empty and directed, is the set of basic cover relations.

Fact: every dcpo presentation uniquely presents a dcpo (Jung, Moshier & Vickers 2008).

Non-empty intersections

Let *X* be a set. For *U*, *V* \subseteq *X*, we define *U* \emptyset *V* : \Leftrightarrow *U* \cap *V* \neq \emptyset .

Filters and ideals

Let \mathbb{P} be a poset. By $\mathcal{F} \mathbb{P}$ and $\mathcal{I} \mathbb{P}$ we denote the filters and ideals of \mathbb{P} , respectively.

A dcpo presentation for the canonical extension

Let \mathbb{L} be a lattice.

Definition

We define $\Delta(\mathbb{L})$ to be the dcpo presentation $\langle \mathcal{F} \mathbb{L}, \supseteq, \blacktriangleleft_{\mathbb{L}} \rangle$, where for all $F \in \mathcal{F} \mathbb{L}$ and directed $S \subseteq \mathcal{F} \mathbb{L}$,

$$F \triangleleft_{\mathbb{L}} S \text{ iff } \forall I \in I \mathbb{L}, \left[\forall F' \in S, F' \notin I \right] \Rightarrow F \notin I.$$

A dcpo presentation for the canonical extension

Let \mathbb{L} be a lattice.

Definition

We define $\Delta(\mathbb{L})$ to be the dcpo presentation $\langle \mathcal{F} \mathbb{L}, \supseteq, \blacktriangleleft_{\mathbb{L}} \rangle$, where for all $F \in \mathcal{F} \mathbb{L}$ and directed $S \subseteq \mathcal{F} \mathbb{L}$,

$$F \triangleleft_{\mathbb{L}} S \text{ iff } \forall I \in I \mathbb{L}, \left[\forall F' \in S, F' \notin I \right] \Rightarrow F \notin I.$$

Theorem (G. & V. 2011)

If \mathbb{L} is a lattice, then $\Delta(\mathbb{L})$ is a dcpo presentation of \mathbb{L}^{δ} , the canonical extension of \mathbb{L} .

Bonus: applications using dcpo algebras

Jung, Moshier and Vickers (2008) used dcpo presentations to order work with dcpo algebras.

Topological lattice-based algebras

Bonus: applications using dcpo algebras

Jung, Moshier and Vickers (2008) used dcpo presentations to order work with dcpo algebras. In [G. &V. 2011], we show that these dcpo algebra techniques can be applied easily to prove the following well-known canonicity result:

Bonus: applications using dcpo algebras

Jung, Moshier and Vickers (2008) used dcpo presentations to order work with dcpo algebras. In [G. &V. 2011], we show that these dcpo algebra techniques can be applied easily to prove the following well-known canonicity result:

Theorem (G. & Harding 2001)

Let \mathbb{A} be a lattice-based algebra and let $s \leq t$ be an inequation. If for each operation ω occurring in s or t, $\omega_{\mathbb{A}}$ is an operator of which we take the lower canonical extension, then $\mathbb{A} \models s \leq t$ implies $\mathbb{A}^{\delta} \models s \leq t$.

What do canonical extensions have to do with topological lattice-based algebras?

• Reminder: canonical extensions are not only defined for lattices, but also for lattice-based algebras

What do canonical extensions have to do with topological lattice-based algebras?

- Reminder: canonical extensions are not only defined for lattices, but also for lattice-based algebras
- We will see that canonical extensions have certain universal properties with respect to topological lattice-based algebras.

What do canonical extensions have to do with topological lattice-based algebras?

- Reminder: canonical extensions are not only defined for lattices, but also for lattice-based algebras
- We will see that canonical extensions have certain universal properties with respect to topological lattice-based algebras.
- Why is this the case?

Topological lattice-based algebras

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

• have a lattice reduct;

Topological lattice-based algebras

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

Topological lattice-based algebras

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

Topological lattice-based algebras

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

We will be looking at two kinds of topological lattice-based algebras, both of which have Boolean (compact, Hausdorff, zero-dimensional) topologies.

Topological lattice-based algebras

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

3

ヘロト 人間 とくほ とくほ とう

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

We will be looking at two kinds of topological lattice-based algebras, both of which have Boolean (compact, Hausdorff, zero-dimensional) topologies.

• Profinite algebras (projective limits of finite algebras);

Topological lattice-based algebras

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

= 900

ヘロト 人間 とくほ とくほ とう

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

We will be looking at two kinds of topological lattice-based algebras, both of which have Boolean (compact, Hausdorff, zero-dimensional) topologies.

- Profinite algebras (projective limits of finite algebras);
- Profinite lattices with continuous monotone operations.

Topological lattice-based algebras

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

= 900

ヘロト 人間 とくほ とくほ とう

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

We will be looking at two kinds of topological lattice-based algebras, both of which have Boolean (compact, Hausdorff, zero-dimensional) topologies.

- Profinite algebras (projective limits of finite algebras);
- Profinite lattices with continuous monotone operations.

Topological lattice-based algebras

Topological lattice-based algebras

Topological lattice-based algebras are algebras which

- have a lattice reduct;
- are endowed with a topology such that all their operations are continuous.

We will be looking at two kinds of topological lattice-based algebras, both of which have Boolean (compact, Hausdorff, zero-dimensional) topologies.

- Profinite algebras (projective limits of finite algebras);
- Profinite lattices with continuous monotone operations.

Note: (2) is not a special case of (1)!

Topological lattice-based algebras

Profinite algebras

We will view finite algebras as topological algebras with a discrete topology. What does it mean for an algebra \mathbb{A} to be profinite?

 One can think of A to be constructed as a projective limit (consequently, as a subalgebra of a product) of finite algebras, and inherits a topology as such;

Topological lattice-based algebras

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

3

ヘロト 人間 とくほ とくほ とう

Profinite algebras

We will view finite algebras as topological algebras with a discrete topology.

What does it mean for an algebra \mathbb{A} to be profinite?

- One can think of A to be constructed as a projective limit (consequently, as a subalgebra of a product) of finite algebras, and inherits a topology as such;
- If A is already a topological algebra, saying that A is profinite means that for every *a*, *b* ∈ A s.t. *a* ≠ *b*, there is a continuous *f* : A → B to a finite B such that *f*(*a*) ≠ *f*(*b*): essentially, A is residually finite 'in a topological way'.

Topological lattice-based algebras

INSTITUTE FOR LOCIC LANGUAGE AND COMPUTATION

3

ヘロト 人間 とくほ とくほ とう

Profinite algebras

We will view finite algebras as topological algebras with a discrete topology.

What does it mean for an algebra \mathbb{A} to be profinite?

- One can think of A to be constructed as a projective limit (consequently, as a subalgebra of a product) of finite algebras, and inherits a topology as such;
- If A is already a topological algebra, saying that A is profinite means that for every *a*, *b* ∈ A s.t. *a* ≠ *b*, there is a continuous *f* : A → B to a finite B such that *f*(*a*) ≠ *f*(*b*): essentially, A is residually finite 'in a topological way'.

Topological lattice-based algebras

Profinite algebras

We will view finite algebras as topological algebras with a discrete topology.

What does it mean for an algebra \mathbb{A} to be profinite?

- One can think of A to be constructed as a projective limit (consequently, as a subalgebra of a product) of finite algebras, and inherits a topology as such;
- If A is already a topological algebra, saying that A is profinite means that for every *a*, *b* ∈ A s.t. *a* ≠ *b*, there is a continuous *f*: A → B to a finite B such that *f*(*a*) ≠ *f*(*b*): essentially, A is residually finite 'in a topological way'.

See Johnstone (1982).

Topological lattice-based algebras

Examples of profinite algebras

Profiniteness gives a categorical characterizaton of some subcategories of categories of lattice-based algebras.

 Distributive lattices: L profinite iff L is (isomorphic to) a down-set lattice iff L is complete & bi-algebraic.

Topological lattice-based algebras

Examples of profinite algebras

Profiniteness gives a categorical characterizaton of some subcategories of categories of lattice-based algebras.

- Distributive lattices: L profinite iff L is (isomorphic to) a down-set lattice iff L is complete & bi-algebraic.
- Distributive lattices with operators: A profinite iff A is (iso to) the complex algebra of a hereditarily finite ordered Kripke frame. (V. 2010)

Topological lattice-based algebras

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Examples of profinite algebras

Profiniteness gives a categorical characterizaton of some subcategories of categories of lattice-based algebras.

- Distributive lattices: L profinite iff L is (isomorphic to) a down-set lattice iff L is complete & bi-algebraic.
- Distributive lattices with operators: A profinite iff A is (iso to) the complex algebra of a hereditarily finite ordered Kripke frame. (V. 2010)
- Heyting algebras: A profinite iff A is (iso to) the down-set lattice of image-finite poset iff A is complete, bi-algebraic and residually finite. (Bezhanishvili 2008)

Canonical extensions and profinite algebras

Let $e_{\mathbb{A}} \colon \mathbb{A} \to \mathbb{A}^{\delta}$ be the canonical extension of a lattice-based algebra.

Theorem (V. 2010)

Let $f: \mathbb{A} \to \mathbb{B}$ be a homomorphism to a profinite lattice-based algebra \mathbb{B} . Then there exists a unique complete homomorphism $f': \mathbb{A}^{\delta} \to \mathbb{B}$ such that $f' \circ e_{\mathbb{A}} = f$.

Canonical extensions and profinite algebras

Let $e_{\mathbb{A}} \colon \mathbb{A} \to \mathbb{A}^{\delta}$ be the canonical extension of a lattice-based algebra.

Theorem (V. 2010)

Let $f: \mathbb{A} \to \mathbb{B}$ be a homomorphism to a profinite lattice-based algebra \mathbb{B} . Then there exists a unique complete homomorphism $f': \mathbb{A}^{\delta} \to \mathbb{B}$ such that $f' \circ e_{\mathbb{A}} = f$.

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Canonical extensions and profinite algebras

Let $e_{\mathbb{A}} \colon \mathbb{A} \to \mathbb{A}^{\delta}$ be the canonical extension of a lattice-based algebra.

Theorem (V. 2010)

Let $f: \mathbb{A} \to \mathbb{B}$ be a homomorphism to a profinite lattice-based algebra \mathbb{B} . Then there exists a unique complete homomorphism $f': \mathbb{A}^{\delta} \to \mathbb{B}$ such that $f' \circ e_{\mathbb{A}} = f$.

In many cases, the canonical extension \mathbb{A}^{δ} itself is not profinite: see V. (2010, §3.4.2) or Gouveia (2010).

A profinite lattice with (continuous) monotone operations is a lattice-based algebra $\mathbb{A} = \langle A; \land, \lor, 0, 1, (\omega_{\mathbb{A}})_{\omega \in \Omega} \rangle$ such that:

• $\langle A; \land, \lor, 0, 1 \rangle$ is a profinite lattice;

A profinite lattice with (continuous) monotone operations is a lattice-based algebra $\mathbb{A} = \langle A; \land, \lor, 0, 1, (\omega_{\mathbb{A}})_{\omega \in \Omega} \rangle$ such that:

- $\langle A; \land, \lor, 0, 1 \rangle$ is a profinite lattice;
- each ω_A is monotone (and continuous w.r.t. the profinite topology on (A; ∧, ∨, 0, 1)).

A profinite lattice with (continuous) monotone operations is a lattice-based algebra $\mathbb{A} = \langle A; \land, \lor, 0, 1, (\omega_{\mathbb{A}})_{\omega \in \Omega} \rangle$ such that:

- $\langle A; \land, \lor, 0, 1 \rangle$ is a profinite lattice;
- each ω_A is monotone (and continuous w.r.t. the profinite topology on (A; ∧, ∨, 0, 1)).

Non-continuous examples

Complex algebras obtained from arbitrary Kripke frames (both intuitionistic and modal).

A profinite lattice with (continuous) monotone operations is a lattice-based algebra $\mathbb{A} = \langle A; \land, \lor, 0, 1, (\omega_{\mathbb{A}})_{\omega \in \Omega} \rangle$ such that:

- $\langle A; \land, \lor, 0, 1 \rangle$ is a profinite lattice;
- each ω_A is monotone (and continuous w.r.t. the profinite topology on (A; ∧, ∨, 0, 1)).

Non-continuous examples

Complex algebras obtained from arbitrary Kripke frames (both intuitionistic and modal).

Continuous example (V. 2010, §4.2)

Complex algebras of image-finite modal Kripke frames.

Topological lattice-based algebras

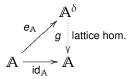
When are the operations continuous?

Topological lattice-based algebras

When are the operations continuous?

Theorem (V. 2010)

Let \mathbb{A} be a profinite lattice with with monotone operations. Then there exists a unique complete lattice homomorphism $g: \mathbb{A}^{\delta} \to \mathbb{A}$ such that $g \circ e_{\mathbb{A}} = id_{\mathbb{A}}$.



When are the operations continuous?

Theorem (V. 2010)

Let \mathbb{A} be a profinite lattice with with monotone operations. Then there exists a unique complete lattice homomorphism $g: \mathbb{A}^{\delta} \to \mathbb{A}$ such that $g \circ e_{\mathbb{A}} = id_{\mathbb{A}}$.

Moreover, the following are equivalent:

1. $g: \mathbb{A}^{\delta} \to \mathbb{A}$ is an algebra homomorphism with respect to the full signature of \mathbb{A} ;

Topological lattice-based algebras

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

When are the operations continuous?

Theorem (V. 2010)

Let \mathbb{A} be a profinite lattice with with monotone operations. Then there exists a unique complete lattice homomorphism $q: \mathbb{A}^{\delta} \to \mathbb{A}$ such that $q \circ e_{\mathbb{A}} = id_{\mathbb{A}}$.

Moreover, the following are equivalent:

- 1. $g: \mathbb{A}^{\delta} \to \mathbb{A}$ is an algebra homomorphism with respect to the full signature of \mathbb{A} ;
- 2. all the operations of A are continuous, i.e. A is a Boolean topological algebra.

Topological lattice-based algebras

Recall that profinite Boolean algebras with continuous modal operator correspond to image-finite Kripke frames. The last theorem now dualizes to the following folklore (?) result:

Fact

Let \mathfrak{F} be a Kripke frame and let $\mathfrak{ue} \mathfrak{F}$ be its ultrafilter extension. The following are equivalent:

Topological lattice-based algebras

Recall that profinite Boolean algebras with continuous modal operator correspond to image-finite Kripke frames. The last theorem now dualizes to the following folklore (?) result:

Fact

Let \mathfrak{F} be a Kripke frame and let \mathfrak{ue} \mathfrak{F} be its ultrafilter extension. The following are equivalent:

1. F embeds into ue F;

Topological lattice-based algebras

Recall that profinite Boolean algebras with continuous modal operator correspond to image-finite Kripke frames. The last theorem now dualizes to the following folklore (?) result:

Fact

Let \mathfrak{F} be a Kripke frame and let \mathfrak{ue} \mathfrak{F} be its ultrafilter extension. The following are equivalent:

- 1. F embeds into ue F;
- 2. \mathfrak{F} is image-finite.

Canonical extensions o

Scott-continuous maps

Thank you!

Topological lattice-based algebras

