A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model constructio

Proof sketch

A Canonical Model for Presheaf Semantics

Ivano A. Ciardelli

INRIA, LaBRI Université de Bordeaux 1

What is this?

A Canonical Model for Presheaf Semantics

Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

This is not

- a new result
- a result in categorical logic
- a brilliant idea

his is

- a totally natural construction which does not seem to appear anywhere
- a constructive completeness proof
- a logical proof, assuming no category theory

What is this?

A Canonical Model for Presheaf Semantics

Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

This is not

- a new result
- a result in categorical logic
- a brilliant idea

his is

- a totally natural construction which does not seem to appear anywhere
- a constructive completeness proof
- a logical proof, assuming no category theory

What is this?

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

This is not

- a new result
- a result in categorical logic
- a brilliant idea

This is

- a totally natural construction which does not seem to appear anywhere
- a constructive completeness proof
- a logical proof, assuming no category theory

Presheaf semantics: models

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

Definition

A presheaf model M for \mathcal{L} is a presheaf of first-order

 \mathcal{L} -structures over a Grothendieck site (\mathfrak{C}, \lhd):

• for any object u a first-order model M_u

• for any arrow $f: v \to u$ a homomorphism $\uparrow_f: M_u \to M_v$ satisfying the following extra conditions. Separateness: if $u \triangleleft \mathcal{F}$ and $a \uparrow_f = b \uparrow_f$ for all $f \in \mathcal{F}$, then a = b. Locality of atoms: if $u \triangleleft \mathcal{F}$ and $\vec{a} \uparrow_f \in R_{\text{dom}(f)}$ for all $f \in \mathcal{F}$, $\vec{a} \in R_u$.

Presheaf semantics: Kripke-Joyal forcing

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model constructio

Proof sketch

$$u \Vdash_{\nu} R(\vec{t}) \quad \iff$$

$$u \Vdash_{\nu} t_{1} = t_{2} \quad \iff$$

$$u \Vdash_{\nu} \varphi \land \psi \quad \iff$$

$$u \Vdash_{\nu} \varphi \lor \psi \quad \iff$$

$$u \Vdash_{\nu} \varphi \lor \psi \quad \iff$$

$$u \Vdash_{\nu} \varphi \Rightarrow \psi \quad \iff$$

$$u \Vdash_{\nu} \forall x \varphi \quad \iff$$

$$u \Vdash_{\nu} \exists x \varphi \quad \iff$$

 $[\vec{t}]_{\nu} \in R_{\mu}$ $\Rightarrow [t_1]_{\nu} = [t_2]_{\nu}$ $u \Vdash_{\nu} \varphi$ and $u \Vdash_{\nu} \psi$ there is $\mathcal{F} \triangleright u$ s.t. for all $f \in \mathcal{F}$ $\operatorname{dom}(f) \Vdash_{\nu} \varphi$ or $\operatorname{dom}(f) \Vdash_{\nu} \psi$ $u < \emptyset$ for $f: v \to u$, if $v \Vdash_{\nu} \varphi$ then $v \Vdash_{\nu} \psi$ for $f: v \rightarrow u$ and $a \in M_v, v \Vdash_{\nu[x \mapsto a]} \varphi$ there is $\mathcal{F} \triangleright u$ and elts $a_f \in M_{\text{dom}(f)}$ s.t. dom(f) $\Vdash_{\nu[x\mapsto a_f]} \varphi$ for any $f \in \mathfrak{F}$

Completeness

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model constructio

Proof sketch

Theorem (Intuitionistic completeness for presheaf semantics)

$$\models_{\textit{ps}} \varphi \iff \vdash_{\textit{IQL}} \varphi$$

Usually established by:

- equivalence with Ω-models;
- construction of a canonical Kripke model.

Canonical model construction: the underlying site

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

Definition (Canonical site)

- Category: we take the Lindenbaum-Tarski algebra $\overline{\mathcal{L}}$
 - Objects: equivalence classes $\overline{\varphi}$ of formulas
 - Arrows: $\overline{\varphi} \leq \overline{\psi} \iff \varphi \vdash \psi$

• Grothendieck topology: $\overline{\varphi} \lhd \mathfrak{F} \iff \overline{\varphi} = \bigvee \mathfrak{F}$

Observation

Spelling out, $\overline{\varphi} \lhd \{\overline{\psi}_i \mid i \in J\}$ means: for any χ

 $\varphi \vdash \chi \quad \Longleftrightarrow \quad (\psi_i \vdash \chi \text{ for all } i \in \mathfrak{I})$

Canonical model construction: the underlying site

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

Definition (Canonical site)

- Category: we take the Lindenbaum-Tarski algebra $\overline{\mathcal{L}}$
 - Objects: equivalence classes $\overline{\varphi}$ of formulas
 - Arrows: $\overline{\varphi} \leq \overline{\psi} \iff \varphi \vdash \psi$
- Grothendieck topology: $\overline{\varphi} \lhd \mathfrak{F} \iff \overline{\varphi} = \bigvee \mathfrak{F}$

Observation

Spelling out, $\overline{\varphi} \lhd \{\overline{\psi}_i \,|\, i \in J\}$ means: for any χ

 $\varphi \vdash \chi \quad \Longleftrightarrow \quad (\psi_i \vdash \chi \text{ for all } i \in \mathfrak{I})$

Canonical model construction: the underlying site

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

Definition (Canonical site)

- Category: we take the Lindenbaum-Tarski algebra $\overline{\mathcal{L}}$
 - Objects: equivalence classes \overline{arphi} of formulas
 - Arrows: $\overline{\varphi} \leq \overline{\psi} \iff \varphi \vdash \psi$
- Grothendieck topology: $\overline{\varphi} \lhd \mathfrak{F} \iff \overline{\varphi} = \bigvee \mathfrak{F}$

Observation

Spelling out, $\overline{\varphi} \triangleleft \{\overline{\psi}_i \mid i \in \mathcal{I}\}$ means: for any χ

 $\varphi \vdash \chi \iff (\psi_i \vdash \chi \text{ for all } i \in \mathfrak{I})$

Canonical model construction: the presheaf

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

- Put $t \equiv_{\varphi} t'$ in case $\varphi \vdash t = t'$.
- Denote by t^{φ} the equivalence class of $t \mod \equiv_{\varphi}$.

Definition (Canonical presheaf)

- Model $M_{\overline{\varphi}}$:
 - Universe |M_{\varphi}|: set of equivalence classes t^{\varphi} of closed terms;
 - ② Function symbols: $f_{\overline{\varphi}}(\vec{t}^{\varphi}) = f(\vec{t})^{\varphi}$;
 - (3) Relation symbols: $\vec{t}^{\varphi} \in R_{\overline{\varphi}} \iff \varphi \vdash R(\vec{t}).$
- Restriction. If $t^{\psi} \in M_{\overline{\psi}}$ and $\overline{\varphi} \leq \overline{\psi}$, put $t^{\psi} |_{\overline{\varphi}} = t^{\varphi}$.

Canonical model construction: the presheaf

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

- Put $t \equiv_{\varphi} t'$ in case $\varphi \vdash t = t'$.
- Denote by t^{φ} the equivalence class of $t \mod \equiv_{\varphi}$.

Definition (Canonical presheaf)

- Model $M_{\overline{\varphi}}$:
 - Universe |M_{\varphi}|: set of equivalence classes t^{\varphi} of closed terms;
 - 2 Function symbols: $f_{\overline{\varphi}}(\vec{t}^{\varphi}) = f(\vec{t})^{\varphi}$;

• Restriction. If $t^{\psi} \in M_{\overline{\psi}}$ and $\overline{\varphi} \leq \overline{\psi}$, put $t^{\psi} |_{\overline{\varphi}} = t^{\varphi}$.

Canonical model construction: the presheaf

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

- Put $t \equiv_{\varphi} t'$ in case $\varphi \vdash t = t'$.
- Denote by t^{φ} the equivalence class of $t \mod \equiv_{\varphi}$.

Definition (Canonical presheaf)

- Model $M_{\overline{\varphi}}$:
 - Universe |M_{\varphi}|: set of equivalence classes t^{\varphi} of closed terms;
 - 2 Function symbols: $f_{\overline{\varphi}}(\vec{t}^{\varphi}) = f(\vec{t})^{\varphi}$;
 - **3** Relation symbols: $\vec{t}^{\varphi} \in R_{\overline{\varphi}} \iff \varphi \vdash R(\vec{t}).$
- Restriction. If $t^{\psi} \in M_{\overline{\psi}}$ and $\overline{\varphi} \leq \overline{\psi}$, put $t^{\psi} |_{\overline{\varphi}} = t^{\varphi}$.

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model constructio

Proof sketch

Truth Lemma

For any formula φ and sentence ψ ,

$$\overline{\varphi}\Vdash\psi\quad\Longleftrightarrow\quad\varphi\vdash\psi$$

Proof By induction on ψ . The two directions of each inductive step amount to the introduction and elimination rules for the given logical constant. Let us look at the case of the existential quantifier.

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

- \Rightarrow
 - Suppose $\overline{\varphi} \Vdash \exists x \psi(x)$.
 - There is a family $\{\overline{\varphi_i} \mid i \in \mathcal{I}\}$ and elts $t_i^{\varphi_i} \in M_{\overline{\varphi_i}}$ such that $\overline{\varphi_i} \Vdash_{[x \mapsto t_i^{\varphi_i}]} \psi(x)$ for all $i \in \mathcal{I}$.
 - Since $[t] = t^{\varphi_i}$ for closed t at $\overline{\varphi_i}$, this is $\overline{\varphi_i} \Vdash \psi(t_i)$.
 - By induction hypothesis amounts to $\varphi_i \vdash \psi(t_i)$.
 - By rule $(\exists i)$, for any $i \in \mathcal{I}$ we have $\varphi_i \vdash \exists x \psi(x)$.
 - Since $\overline{\varphi} \triangleleft \{\overline{\varphi_i} \mid , i \in \mathcal{I}\}$, by the meaning of \triangleleft we have $\varphi \vdash \exists x \psi(x)$.

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model construction

Proof sketch

 \Leftarrow

- Suppose $\varphi \vdash \exists x \psi(x)$.
- We must provide a covering of $\overline{\varphi}$ and local witnesses.
- For any constant *c*, define $\varphi_c = \varphi \land \psi(c)$.
- Since $\varphi_c \vdash \psi(c)$, by induction hypothesis $\overline{\varphi_c} \Vdash \psi(c)$.
- Since $[c] = c^{\varphi_c}$ at $\overline{\varphi_c}$, also $\overline{\varphi_c} \Vdash_{[x \mapsto c^{\varphi_c}]} \psi(x)$, i.e. the element c^{φ_c} is a witness for the existential at $\overline{\varphi_c}$.
- It remains to be seen that $\overline{\varphi} \triangleleft \{\overline{\varphi_c} \mid c \text{ a constant}\}.$

A Canonical Model for Presheaf Semantics

Ivano A. Ciardelli

Presheaf semantics

Canonical model constructior

Proof sketch

\Leftarrow , continued

- Suppose ξ is derivable from $\varphi \wedge \psi(c)$ for any constant c.
- Let c^* be a constant that occurs neither in φ nor in ξ .
- In particular, $\varphi \wedge \psi(c^*) \vdash \xi$, that is, $\varphi, \psi(c^*) \vdash \xi$.
- But since c* occurs neither in φ nor in ξ, by the rule (∃e) we have φ, ∃xψ(x) ⊢ ξ.
- Thus by the assumption $\varphi \vdash \exists x \psi(x)$ we also have $\varphi \vdash \xi$.
- This shows that $\overline{\varphi} \triangleleft \{\overline{\varphi_c} \mid c \text{ a constant}\}.$
- Hence we conclude $\overline{\varphi} \Vdash \exists x \psi(x)$.

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model constructio

Proof sketch

Theorem (Completeness)

If $\models_{ps} \varphi$ then $\vdash \varphi$

Proof

If $\models_{ps} \varphi$ then in the given canonical model we must have $\overline{\top} \Vdash \varphi$, whence by truth lemma $\top \vdash \varphi$, i.e. $\vdash \varphi$.

A Canonical Model for Presheaf Semantics

> Ivano A. Ciardelli

Presheaf semantics

Canonical model constructio

Proof sketch

Thank you for your attention