Homotopical Fibring

Peter Arndt

Universität Regensburg

26.7.2011

$$\begin{array}{c} \langle \wedge, \vee, \neg | R_1, \ldots \rangle & \longrightarrow \langle \wedge, \vee, \neg, \Box_1, \Diamond_1 | R_1, R_2 \ldots \rangle \\ & \downarrow \\ \langle \wedge, \vee, \neg, \Box_2, \Diamond_2 | R_1, R'_2 \ldots \rangle & \longrightarrow \langle \wedge, \vee, \neg, \Box_1, \Diamond_1, \Box_2, \Diamond_2 | R_1, R_2, R'_2 \ldots \rangle \end{array}$$

$$\begin{array}{c} \langle \wedge, \vee, \neg | R_1, \ldots \rangle & \longrightarrow \langle \wedge, \vee, \neg, \Box_1, \Diamond_1 | R_1, R_2 \ldots \rangle \\ & \downarrow \\ \langle \wedge, \vee, \neg, \Box_2, \Diamond_2 | R_1, R'_2 \ldots \rangle & \longrightarrow \langle \wedge, \vee, \neg, \Box_1, \Diamond_1, \Box_2, \Diamond_2 | R_1, R_2, R'_2 \ldots \rangle \end{array}$$

Fibring is a pushout in a category of logics: C. Caleiro, A. Sernadas, C. Sernadas, 1998 – "Fibring as a categorical construction"

Signatures

Definition:

• A signature is a sequence of sets $C = (C_k | k \in \mathbb{N})$

We fix a set V of variables.

- The language L(C) over the signature C is the absolutely free algebra generated by V
- A morphism $f: C \to C'$ is a sequence of maps $f_k: C_k \to C'_k$

 \rightsquigarrow We get a category $\mathcal{S}\textit{ig}$

- A logic is a pair (C,⊢) where ⊢⊆ P(L(C)) × L(C) is monotonous, increasing, idempotent, substitution invariant and finitary
- A morphism $f \colon (C, \vdash) \to (C', \vdash')$ of logics is $f \colon C \to C'$ such that

$$\Gamma \vdash \varphi \Rightarrow f(\Gamma) \vdash' f(\varphi)$$

 \rightsquigarrow We get a category $\mathcal{L}\textit{og}$

 $\mathcal{L}og$ is fibred in posets over $\mathcal{S}ig$

Fact/Requirement: Consequence relations over a fixed signature (i.e. the fibers) form a complete lattice

Corollary: \mathcal{L} og is as cocomplete as \mathcal{S} ig is.

$$\mathcal{L}$$
og
 \downarrow
 \mathcal{S} ig \simeq Set $^{\mathbb{N}}$... i.e. cocomplete

Signatures: As before, $C = (C_k | k \in \mathbb{N})$ Morphisms of signatures: $(f_k : C_k \to L(C')_k | k \in \mathbb{N})$ (where $L(C')_k :=$ formulas with k variables)

New possibilities for combining and relating logics:

But: Now Sig is no longer cocomplete, hence neither is Log

Definition:

A morphism $f : (L, \vdash) \rightarrow (L', \vdash')$ of logics is an *equivalence* iff there exists a morphism $g : (L', \vdash') \rightarrow (L, \vdash)$ with $g \circ f(\phi) \dashv \vdash \phi \forall \phi \in L$ and $f \circ g(\phi) \dashv \vdash \phi \forall \phi \in L'$.

It is a weak equivalence iff $\Gamma \vdash \varphi \Leftrightarrow f(\Gamma) \vdash' f(\varphi)$ ("conservative translation") and for every $\phi \in L(C')$ there is a $\psi \in L(C)$ with $\phi \dashv' \vdash' f(\psi)$ ("dense")

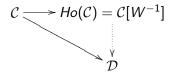
Proposition: These two notions coincide.

Example:
$$CPL = \langle \land, \neg | ... \rangle \longrightarrow \langle \lor, \neg | ... \rangle = CPL$$

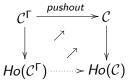
Abstract Homotopy Theory

Setting: Category C, $W \subseteq Mor C$

From this can construct the homotopy category



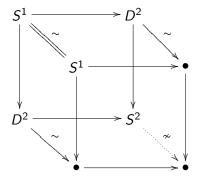
Want: Constructions respecting weak equivalences, e.g. homotopy pushouts By this we mean a Kan extension



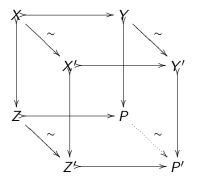
where Γ denotes the category of pushout data $_{\sqrt[V]{}}$

Peter Arndt (Regensburg)

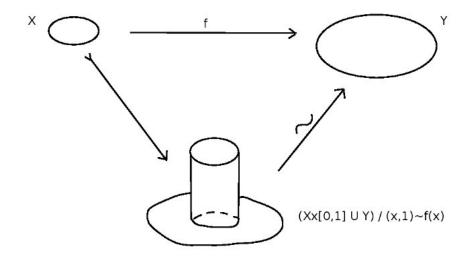
The pushout functor does not respect weak equivalences of diagrams:



The pushout functor *does* respect weak equivalences of diagrams *consisting of cofibrations*:

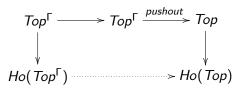


Can factorize any map of topological spaces by a cofibration, followed by a weak equivalence:



Recipe for constructing the homotopy pushout:

Replace a given diagram of pushout data by one consisting of cofibrations, then take the pushout:



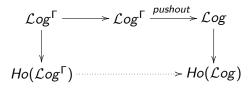
Theorem: The dotted arrow then is the desired Kan extension.

This solves two problems: Non-existence of colimits in Ho(Top) and non-preservation of weak equivalences by pushout.

Actually the upper arrow has itself a universal property, and is also called the homotopy colimit.

Logics

Want to construct homotopy pushouts of logics in the same way. i.e. replace a given diagram of pushout data by one consisting of cofibrations, then take the pushout:



Definition: A morphism $f: (S, \vdash) \to (S', \vdash')$ is a cofibration if the underlying signature morphism is given by injective maps $(f_k: C_k \to C'_k)$ Will show: The dotted arrow then is the desired Kan extension.

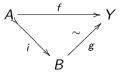
Actually the upper arrow has itself a universal property, and is also called the homotopy colimit. This will solve the problem of non-existence of colimits in $\mathcal{L}og$.

A left proper ABC Cofibration Category is a triple (C, Cof, W) where C is a category and $Cof, W \subseteq Mor(C)$ are classes of morphisms such that

- (CC 1) Both *Cof* and *W* contain all isomorphisms of *C*. For two maps $A \xrightarrow{f} B \xrightarrow{g} C$ if any two of *f*, *g* and $g \circ f$ are weak equivalences, then so is the third. *Cof* is closed under composition.
- (CC 2) For a cofibration $i : A \rightarrow B$ and a map $f : A \rightarrow Y$ there exists a pushout diagram

in which \overline{i} is a cofibration. If f is a weak equivalence, then so is \overline{f} .

(CC 3) For any morphism $f : A \rightarrow Y$ there exists a commutative diagram



in which i is a cofibration and g a weak equivalence.

- (CC 4) For each object Y there is a trivial cofibration $Y \xrightarrow{\sim} RY$ with RY a fibrant object. Here an object R is called fibrant if every trivial cofibration $R \xrightarrow{\sim} Y$ has a retraction $r : Y \to R$ with $r \circ i = id_R$.
- (CC 5) Coproducts of (trivial) cofibrations are (trivial) cofibrations
- (CC 6) Colimits of sequences of cofibrations exist, their transfinite composition is a cofibration. If all are weak equivalences, then so is their transfinite composition.

Theorem (A. Rădulescu-Banu, 2006)

 Homotopy pushouts in an ABC cofibration category can be constructed as above.

All homotopy colimits exist

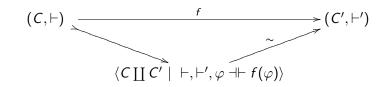
Theorem

With the given classes of weak equivalences and cofibrations \mathcal{L} og is an ABC cofibration category

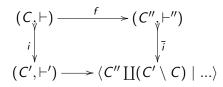
Corollary: Usual fibring preserves weak equivalences.

About the proof

(CC 3)



(CC 2)



Definition: By hofibring we mean homotopy pushouts in the category $\mathcal{L}og$.

Proposition: If a property is preserved under fibring and under weak equivalences, then it is preserved under hofibring

Proposition: The following are such properties:

- Existence of implicit connectives
- Metatheorem of deduction
- Being protoalgebraizable, algebraizable, equivalential, ...
- Craig interpolation

Completeness Preservation

- *C*-interpretation structure: $\mathcal{B} = (B, \leq, \top)$
- Interpretation system: $\mathcal{I} = (C, \mathcal{A})$
- $\Gamma \vDash_{\mathcal{I}} \varphi :\Leftrightarrow \forall \mathcal{B} \in \mathcal{A} \forall v \colon L(\mathcal{C}) \to \mathcal{B} \colon v(\Gamma) = \{\top\} \Rightarrow v(\varphi) = \top$
- (*C*, \vdash) is complete w.r.t. $\mathcal{I} :\Leftrightarrow \vdash = \vDash_{\mathcal{I}}$

Theorem

The category of interpretation structures is a left proper ABC cofibration category

Theorem

Completeness w.r.t. an interpretation system is preserved under weak equivalences. Hence hofibring preserves completeness.

Variations of the setup also leading to ABC cofibration categories:

- can vary the properties required from consequence relations (but we need substitution invariance)
- can use sorted signatures, coloured operads
- fibring of institutions via c-parchments
- undercategories
- (conjecture:) into the sorted version include "provisos" → 1st and higher order logic
- (conjecture:) "logical spaces"

...

- Choose abstract model for logics
- Ochoose notion of translation
- Say when a translation is a weak equivalence

Then: Choose a framework for $(\infty, 1)$ -categories; e.g. quasicategories, simplicial categories, relative categories, complete Segal spaces always work!

If one can find more structure, even better; e.g. *I*-categories, categories with cylinder functor, Quillen model categories, ...

Then construct homotopy colimits.

Homotopical view point on categories of logics

A. Homotopy limits; possible translation semantics

B. Find other models for given categories of logics (i.e. equivalent, but differently presented, $(\infty,1)\text{-}categories)$

C. Homotopical versions of properties of categories of logics; e.g. homotopically locally presentable

D. Directed Homotopy Theory

Construction: Directed Classifying Space of a logic ~ Invariants of logics; e.g. fundamental category, directed homology Other nerve-like constructions...

Thank you!