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Natural extensions



Profinite completion of an algebra A

I the inverse limit Â of the family

{A/θ | θ ∈ Conf A },

where Conf A is the set of congruences on A of
finite index

I the natural homomorphisms A→ A/θ separate
the elements of A

A embeds into Â via the embedding
a 7→ (a/θ)θ∈Conf A
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I a complete lattice into which A embeds via an
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i.e. each of its elements is a join of meets and a
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I and compact
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e(I )⇔ F ∩ I 6= ∅

for every filter F and ideal I of A
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Natural extension of an algebra A

Let A ∈ V = ISP(M), where M is finite

I the map

e : A→MV(A,M)

a 7→ e(a) : V(A,M)→ M

h 7→ h(a)

is an embedding

I the natural extension nV(A) is the topological

closure of e(A) in the topological space M
V(A,M)
T



Natural extension of an algebra A

Let A ∈ V = ISP(M), where M is finite

I the map

e : A→MV(A,M)

a 7→ e(a) : V(A,M)→ M

h 7→ h(a)

is an embedding

I the natural extension nV(A) is the topological

closure of e(A) in the topological space M
V(A,M)
T



Natural extension of an algebra A

Let A ∈ V = ISP(M), where M is finite

I the map

e : A→MV(A,M)

a 7→ e(a) : V(A,M)→ M

h 7→ h(a)

is an embedding

I the natural extension nV(A) is the topological

closure of e(A) in the topological space M
V(A,M)
T



Natural extension of an algebra A

Let A ∈ V = ISP(M), where M is finite

I the map

e : A→MV(A,M)

a 7→ e(a) : V(A,M)→ M

h 7→ h(a)

is an embedding

I the natural extension nV(A) is the topological

closure of e(A) in the topological space M
V(A,M)
T



Davey, G, Haviar and Priestley (in press)
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. Â is formed by all the {∨, 0}-preserving maps
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Let A be a semilattice in S

I A is a poset

I Existence and uniqueness of a canonical
extension of a poset (Dunn, Gehrke, Palmigiano 2005)

I The canonical extension of A is a compact and
dense completion C relative to some order
embedding e : A ↪→ C
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C is a completion of A if C is a complete
lattice and there exists an order embedding
e : A ↪→ C



C is compact if∧
e(F ) 6

∨
e(I )⇔ F ∩ I 6= ∅

for every down-directed up-set F and every
up-directed down-set I of A



C is dense if every element of C is a join
of meets of down-directed up-sets of e(A)
and a meet of joins of up-directed down-sets
of e(A)
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I Â is a complete lattice
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Define C∨(A) := { joins of directed meets of e(A)}

I C∨(A) contains e(A), 0Â and 1Â
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I C∨(A) is a complete lattice

I Directed meets coincide in C∨(A) and Â
and so C∨(A) is compact

I C∨(A) is dense
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I C∨(A) is a subsemilattice of Â
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Theorem

The canonical extension of a semilattice A ∈ S
is the subsemilattice of Â formed by all joins of
meets of down-directed up-sets of e(A).

We denote the canonical extension of a
semilattice A ∈ S by Aδ

∨.
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Proposition

Let A be a semilattice in S. Then Aδ
∨ satisfies the∨∧

restricted distributive law:

∨
{
∧

e(Y ) | Y ∈ Y } =∧
{
∨

e(Z ) | Z ⊆ A, ∀Y ∈ Y Z ∩ Y 6= ∅ },

for every family Y of down-directed subsets of A.



Theorem

Let L be a lattice with 0 and let A = L∨ be its
semilattice reduct in S
The lattice Aδ

∨ is the canonical extension of L.
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Proposition

Let L be a bounded distributive lattice.

Suppose the poset IP(L) of prime ideals of L has

finite width.

The canonical extension of L is isomorphic to the

profinite completion L̂∨ of its ∨-semilattice reduct
L∨.



Thank you!


