Completions of semilattices

joint work with Hilary Priestley

TACL July 27, 2011

Maria João Gouveia

Universidade de Lisboa

Finitely generated varieties of lattice-based algebras

Canonical extensions

Natural extensions

Profinite completion of an algebra A

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Profinite completion of an algebra A

▶ the inverse limit of the family

 $\{ \mathbf{A}/\theta \mid \theta \in \operatorname{Con}_f \mathbf{A} \},\$

where $Con_f \mathbf{A}$ is the set of congruences on \mathbf{A} of finite index

Profinite completion of an algebra A

▶ the inverse limit of the family

 $\{ \mathbf{A}/\theta \mid \theta \in \operatorname{Con}_f \mathbf{A} \},\$

where Con_f **A** is the set of congruences on **A** of finite index

▶ the natural homomorphisms $\mathbf{A} \rightarrow \mathbf{A}/\theta$ separate the elements of \mathbf{A}

A embeds into $\hat{\mathbf{A}}$ via the embedding $a \mapsto (a/\theta)_{\theta \in \mathsf{Con}_f \mathbf{A}}$

▲□▶ ▲圖▶ ▲屋▶ ★屋▶ 三臣 - のへの

a complete lattice into which A embeds via an embedding e

a complete lattice into which A embeds via an embedding e

dense

a complete lattice into which A embeds via an embedding e

dense

i.e. each of its elements is a join of meets and a meet of joins of elements of e(A)

a complete lattice into which A embeds via an embedding e

dense

i.e. each of its elements is a join of meets and a meet of joins of elements of e(A)

and compact

a complete lattice into which A embeds via an embedding e

dense

i.e. each of its elements is a join of meets and a meet of joins of elements of e(A)

and compact

i.e.

$$\bigwedge e(F) \leqslant \bigvee e(I) \Leftrightarrow F \cap I \neq \emptyset$$

for every filter F and ideal I of A

Gehrke and Harding 2001

- a canonical extension of A always exists
- it is unique up to isomorphism

Gehrke and Harding 2001

- a canonical extension of A always exists
- it is unique up to isomorphism

\mathbf{A}^δ denotes the canonical extension of \mathbf{A}

Gehrke and Harding 2001

- a canonical extension of A always exists
- it is unique up to isomorphism

\mathbf{A}^δ denotes the canonical extension of \mathbf{A}

Harding 2006

$$\blacktriangleright$$
 $\mathbf{A}^{\delta} \cong \hat{\mathbf{A}}$

・ロト ・西・・川川・ ・ 日・ ・ 日・

<□▶ <□▶ < 三▶ < 三▶ < 三▶ のへの

Let $\mathbf{A} \in \mathcal{V} = \mathbb{ISP}(\mathbf{M})$, where \mathbf{M} is finite

Let $\mathbf{A} \in \mathcal{V} = \mathbb{ISP}(\mathbf{M})$, where \mathbf{M} is finite

the map

$$e \colon \mathbf{A} o \mathbf{M}^{\mathcal{V}(\mathbf{A},\mathbf{M})}$$

 $a \mapsto e(a) \colon \mathcal{V}(\mathbf{A},\mathbf{M}) o M$
 $h \mapsto h(a)$

is an embedding

Let $\mathbf{A} \in \mathcal{V} = \mathbb{ISP}(\mathbf{M})$, where \mathbf{M} is finite

the map

$$e : \mathbf{A}
ightarrow \mathbf{M}^{\mathcal{V}(\mathbf{A},\mathbf{M})}$$

 $a
ightarrow e(a) : \mathcal{V}(\mathbf{A},\mathbf{M})
ightarrow M$
 $h
ightarrow h(a)$

is an embedding

▶ the natural extension n_V(A) is the topological closure of e(A) in the topological space M_T^{V(A,M)}

Davey, G, Haviar and Priestley (in press)

 $\blacktriangleright \hat{\mathbf{A}} \cong n_{\mathcal{V}}(\mathbf{A})$

Davey, G, Haviar and Priestley (in press)

$$\blacktriangleright \hat{\mathbf{A}} \cong n_{\mathcal{V}}(\mathbf{A})$$

▶ If $R \subseteq \bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$ entails $\bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$, then $n_{\mathcal{V}}(\mathbf{A}) = \{R\text{-preserving maps } \mathcal{V}(\mathbf{A}, \mathbf{M}) \to M\}$

Davey, G, Haviar and Priestley (in press)

$$\blacktriangleright \hat{\mathbf{A}} \cong n_{\mathcal{V}}(\mathbf{A})$$

▶ If $R \subseteq \bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$ entails $\bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$, then $n_{\mathcal{V}}(\mathbf{A}) = \{R \text{-preserving maps } \mathcal{V}(\mathbf{A}, \mathbf{M}) \to M\}$ and so

 $\mathbf{A}^{\delta} \cong \hat{\mathbf{A}} \cong n_{\mathcal{V}}(\mathbf{A}) = \{\overline{R} \text{-preserving maps } \mathcal{V}(\mathbf{A}, \mathbf{M}) \to M\}$

$\blacktriangleright S = \mathbb{ISP}(M)$, where $M = \langle \{0,1\}; \lor, 0 \rangle$

$\blacktriangleright S = \mathbb{ISP}(M)$, where $M = \langle \{0,1\}; \lor, 0 \rangle$

Hofmann, Mislove, Stralka \blacktriangleright { \lor , 0} entails $\bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$ 1974

▲□▶ ▲□▶ ▲重▶ ▲重▶ 三重 - わんの

$\blacktriangleright S = \mathbb{ISP}(M)$, where $M = \langle \{0,1\}; \lor, 0 \rangle$

Hofmann, Mislove, Stralka \blacktriangleright { \lor , 0} entails $\bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$ 1974

▷ $\hat{\mathbf{A}}$ is formed by all the { \vee ,0}-preserving maps $S(\mathbf{A}, \mathbf{M})$ to \mathbf{M}

$\blacktriangleright S = \mathbb{ISP}(M)$, where $M = \langle \{0,1\}; \lor, 0 \rangle$

Hofmann, Mislove, Stralka \blacktriangleright { \lor , 0} entails $\bigcup_{n \in \mathbb{N}} \mathbb{S}(\mathbf{M}^n)$ 1974

 \blacktriangleright \hat{A} is the join-semilattice $\mathcal{S}(\mathcal{S}(A, M), M)$

▲口 ▶ ▲厨 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 □ のへの

► A is a poset

 Existence and uniqueness of a canonical extension of a poset (Dunn, Gehrke, Palmigiano 2005)

A is a poset

 Existence and uniqueness of a canonical extension of a poset (Dunn, Gehrke, Palmigiano 2005)

► The canonical extension of A is a compact and dense completion C relative to some order embedding e: A → C

C is a completion of **A** if **C** is a complete lattice and there exists an order embedding $e: \mathbf{A} \hookrightarrow \mathbf{C}$

C is compact if $\bigwedge e(F) \leqslant \bigvee e(I) \Leftrightarrow F \cap I \neq \emptyset$ for every down-directed up-set *F* and every up-directed down-set *I* of **A**

C is dense if every element of *C* is a join of meets of down-directed up-sets of e(A)and a meet of joins of up-directed down-sets of e(A)

▶ A is a poset

- Existence and uniqueness of a canonical extension of a poset (Dunn, Gehrke, Palmigiano 2005)
- ► The canonical extension of A is a compact and dense completion C relative to some order embedding e: A → C

Let **A** be a semilattice in S

▶ A is a poset

- Existence and uniqueness of a canonical extension of a poset (Dunn, Gehrke, Palmigiano 2005)
- ► The canonical extension of A is a compact and dense completion C relative to some order embedding e: A → C
- Can we relate the canonical extension of A and its profinite completion Â?

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへの

SQC.

▶ Â is a complete lattice

Every element of is a meet of joins of elements of e(A)

▶ Â is a complete lattice

Every element of is a meet of joins of elements of e(A)

• $C_{\vee}(A)$ contains e(A), $0_{\hat{\mathbf{A}}}$ and $1_{\hat{\mathbf{A}}}$

• $C_{\vee}(A)$ contains e(A), $0_{\hat{A}}$ and $1_{\hat{A}}$

• $\mathbf{C}_{\vee}(A)$ is a subsemilattice of $\hat{\mathbf{A}}$

- $C_{\vee}(A)$ contains e(A), $0_{\hat{A}}$ and $1_{\hat{A}}$
- $\mathbf{C}_{\vee}(A)$ is a subsemilattice of $\hat{\mathbf{A}}$
- $C_{\vee}(A)$ is a complete lattice

- $C_{\vee}(A)$ contains e(A), $0_{\hat{A}}$ and $1_{\hat{A}}$
- $\mathbf{C}_{\vee}(A)$ is a subsemilattice of $\hat{\mathbf{A}}$
- $C_{\vee}(A)$ is a complete lattice
- Directed meets coincide in $\mathbf{C}_{\vee}(A)$ and $\hat{\mathbf{A}}$

- $C_{\vee}(A)$ contains e(A), $0_{\hat{A}}$ and $1_{\hat{A}}$
- **•** $\mathbf{C}_{\vee}(A)$ is a subsemilattice of $\hat{\mathbf{A}}$
- $C_{\vee}(A)$ is a complete lattice
- Directed meets coincide in C_V(A) and Â and so C_V(A) is compact

- $C_{\vee}(A)$ contains e(A), $0_{\hat{A}}$ and $1_{\hat{A}}$
- $\mathbf{C}_{\vee}(A)$ is a subsemilattice of $\hat{\mathbf{A}}$
- $C_{\vee}(A)$ is a complete lattice
- Directed meets coincide in C_V(A) and Â and so C_V(A) is compact
- $\mathbf{C}_{\vee}(A)$ is dense

Theorem

The canonical extension of a semilattice $\mathbf{A} \in S$ is the subsemilattice of $\widehat{\mathbf{A}}$ formed by all joins of meets of down-directed up-sets of e(A).

Theorem

The canonical extension of a semilattice $\mathbf{A} \in S$ is the subsemilattice of $\widehat{\mathbf{A}}$ formed by all joins of meets of down-directed up-sets of e(A).

We denote the canonical extension of a semilattice $\mathbf{A} \in \mathcal{S}$ by $\mathbf{A}_{\vee}^{\delta}$.

Proposition

Let **A** be a semilattice in S. Then $\mathbf{A}^{\delta}_{\vee}$ satisfies the $\bigvee \bigwedge$ restricted distributive law:

$$\bigvee \{ \bigwedge e(Y) \mid Y \in \mathcal{Y} \} = \\ \bigwedge \{ \bigvee e(Z) \mid Z \subseteq A, \forall Y \in \mathcal{Y} \ Z \cap Y \neq \emptyset \},$$

for every family \mathcal{Y} of down-directed subsets of A.

Theorem

Let **L** be a lattice with 0 and let $\mathbf{A} = \mathbf{L}_{\vee}$ be its semilattice reduct in SThe lattice $\mathbf{A}_{\vee}^{\delta}$ is the canonical extension of **L**.

L

Proposition

Let **L** be a bounded distributive lattice. Suppose the poset $\mathcal{I}_P(\mathbf{L})$ of prime ideals of **L** has finite width. The canonical extension of **L** is isomorphic to the

profinite completion $\widehat{\bm{L}_{\vee}}$ of its $\vee\text{-semilattice}$ reduct $\bm{L}_{\vee}.$

Thank you!