Morphisms of Quantum Triads

Radek Šlesinger
xslesing@math.muni.cz
Department of Mathematics and Statistics
Masaryk University Brno

TACL 2011,
July 28, 2011, Marseille

Sup-lattice - a complete join-semilattice L Homomorphism $f\left(\bigvee x_{i}\right)=\bigvee f\left(x_{i}\right)$

Quantale - a sup-lattice Q with associative binary operation satisfying $q\left(\bigvee r_{i}\right)=\bigvee\left(q r_{i}\right)$ and $\left(V r_{i}\right) q=\bigvee\left(r_{i} q\right)$
Unital if Q has a multiplicative unit e
Homomorphism $f\left(\bigvee q_{i}\right)=\bigvee f\left(q_{i}\right)$ and $f(q r)=f(q) f(r)$

Examples

- Ideals of a ring (ideals generated by unions, ideal multiplication)
- Binary relations on a set (unions of relations, relation composition)
- Endomorphisms of a sup-lattice (pointwise suprema, mapping composition)
- Frame
\wedge as the binary operation
- Powerset of a semigroup $(A \cdot B=\{a \cdot b \mid a \in A, b \in B\})$
- $\mathcal{P}\left(X^{+}\right)$- free quantale over X
$\mathcal{P}\left(X^{*}\right)$ - free unital quantale over X

Right Q-module - a sup-lattice M with right action of the quantale satisfying $\left(\bigvee m_{i}\right) q=\bigvee\left(m_{i} q\right)$, $m\left(\bigvee q_{i}\right)=\bigvee\left(m q_{i}\right), m(q r)=(m r) q$
Unital if Q is unital and $m e=m$ for all m
Homomorphism $f\left(\bigvee m_{i}\right)=\bigvee f\left(m_{i}\right), f(m q)=f(m) q$

- A sub-sup-lattice of a quantale closed under right multiplication by quantale elements
- A sup-lattice with action of the quantale of its endomorphisms $f \cdot m=f(m)$ (a left module)
- Left-sided elements of a quantale (s.t. $q I \leq I$ for all $q \in Q$ $\Longleftrightarrow 1 I \leq I)$

Quantum triad (D. Kruml, 2008)

(L, T, R) such that

- Quantale T
- Left T-module L
- Right T-module R
- (T, T)-bimorphism (homomorphism of respective modules when fixing one
 component) $L \times R \rightarrow T$, satisfying associativities $T L R, L R T$

Example 1

$L=$ right-sided elements of a quantale Q
$R=$ right-sided elements of Q
$T=$ two-sided elements of Q

Example 2

Sup-lattice 2-forms (P. Resende 2004) (~ Galois connections)
L, R sup-lattices
$T=2$ (the 2-element frame)

Solution of the triad

Quantale Q such that

- L is a (T, Q)-bimodule
- R is a (Q, T)-bimodule
- there is a (Q, Q)-bimorphism
$R \times L \rightarrow Q$ satisfying associativities $Q R L, R L Q, R T L, L Q R, L R L, R L R$

Example of right/left/two-sided elements: Q is a solution

Two special solutions

$$
Q_{0}=R \otimes_{T} L
$$

- $\left(r_{1} \otimes I_{1}\right) \cdot\left(r_{2} \otimes I_{2}\right)=r_{1}\left(I_{1} r_{2}\right) \otimes I_{2}$
- $I^{\prime}(r \otimes I)=\left(I^{\prime} r\right) I$
- $(r \otimes I) r^{\prime}=r\left(\mid r^{\prime}\right)$
$Q_{1}=\{(\alpha, \beta) \in \mathbf{E n d}(L) \times \operatorname{End}(R) \mid \alpha(I) r=I \beta(r)$ for all $I \in L, r \in R\}$
- $\left(\alpha_{1}, \beta_{1}\right) \cdot\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{2} \circ \alpha_{1}, \beta_{1} \circ \beta_{2}\right)$
- $I^{\prime}(\alpha, \beta)=\alpha\left(I^{\prime}\right)$
- $(\alpha, \beta) r^{\prime}=\beta\left(r^{\prime}\right)$

Couple of solutions

There is a $\phi: Q_{0} \rightarrow Q_{1}, \phi(r \otimes I)=((-\cdot r) I, r(I \cdot-))$ which forms a so-called couple of quantales (Egger - Kruml 2008):
Q_{0} is a $\left(Q_{1}, Q_{1}\right)$-bimodule with $\phi(q) r=q r=q \phi(r)$ for all $q, r \in Q_{0}$

All solutions Q of (L, T, R) then provide factorizations of the couple:

- There are maps $\phi_{0}: Q_{0} \rightarrow Q$ and $\phi_{1}: Q \rightarrow Q_{1}$ s.t. $\phi_{1} \circ \phi_{0}=\phi$
- $\phi_{0}\left(\phi_{1}(k) q\right)=k \phi_{0}(q)$ and $\phi_{o}\left(q \phi_{1}(k)\right)=\phi_{0}(q) k\left(\right.$ so ϕ_{0} becomes a coupling map under scalar restriction along ϕ_{1})

Example

L is a sup-lattice, $R=T=\mathbf{2}$
$L \times 2 \rightarrow 2:(0, y) \mapsto 0,(x, 0) \mapsto 0,(x, 1) \mapsto 1$
Then
$Q_{0}=\mathbf{2} \otimes_{2} L=L$ with $x y=y$,
$Q_{1}=\left\{(x \mapsto 0, y \mapsto 0),\left(\mathrm{id}_{L}, \mathrm{id}_{R}\right)\right\}=\mathbf{2}$

Triad morphisms

Let (L, T, R) and (\bar{L}, T, \bar{R}) be triads over the same quantale T.
Module homomorphisms $f_{L}: L \rightarrow \bar{L}$ and $f_{R}: R \rightarrow \bar{R}$, that satisfy $f_{L}(I) f_{R}(r)=I r$ for every I, r, induce a quantale homomorphism $R \otimes_{T} L \rightarrow \bar{R} \otimes_{T} \bar{L}$.

In the context of 2-forms: orthomorphisms

Both f_{L} and f_{R} are surjections $\Longrightarrow \bar{L} \otimes_{T} \bar{R}$ is a quantale quotient of $L \otimes_{T} R$.

Definition

A right Q-module M is flat if $M \otimes_{Q}-: Q$-Mod \rightarrow SLat preserves monomorphisms (injective homomorphisms)

For unital modules (Joyal and Tierney 1984):
M flat $\Longleftrightarrow M$ projective ($\operatorname{Hom}(M,-)$ preserves epimorphisms).

Both f_{L} and f_{R} are injections and R, \bar{L} (or vice versa) are flat \Longrightarrow $\bar{L} \otimes_{T} \bar{R}$ is a subquantale of $L \otimes_{T} R$.

Projective modules (RŠ 2010)

- Infinitely 0-distributive (for all $x \in M, A \subseteq M$: $x \wedge a=0$ for all $a \in A \Longrightarrow x \wedge \bigvee A=0$) and
- finitely spatial (every element is a join of join-irreducibles) right Q-module M is projective $\Longleftrightarrow M \cong \prod M d_{i}$ where each d_{i} is an idempotent element of Q.

Example (Galatos - Tsinakis)

$\mathcal{P}(\mathbf{F m})$ (sets of formulas), $\mathcal{P}(\mathbf{E q})$ (sets of equations) are projective (cyclic) module over $\mathcal{P}((\Sigma)$ (sets of substitutions).

References

- A. Joyal and M. Tierney: An extension of the Galois theory of Grothendieck, American Mathematical Society, 1984
- J. Egger, D. Kruml: Girard couples of quantales, Applied categorical structures, 18 (2008), pp. 123-133
- D. Kruml: Quantum triads: an algebraic approach, http://arxiv.org/abs/0801.0504
- P. Resende: Sup-lattice 2-forms and quantales, Journal of Algebra, 276 (2004), pp. 143167
- R. Šlesinger: Decomposition and Projectivity of Quantale Modules, Acta Universitatis Matthiae Belii, Series Mathematics 16, 2010

Thank you for your attention!

