Introduction

Quantum triads

Solutions

Morphisms

Morphisms of Quantum Triads

Radek Šlesinger xslesing@math.muni.cz

Department of Mathematics and Statistics Masaryk University Brno

> TACL 2011, July 28, 2011, Marseille

Introduction

Quantum triads

Solutions

Sup-lattice – a complete join-semilattice L Homomorphism $f(\bigvee x_i) = \bigvee f(x_i)$

Quantale – a sup-lattice Q with associative binary operation satisfying $q(\bigvee r_i) = \bigvee(qr_i)$ and $(\bigvee r_i) q = \bigvee(r_iq)$ Unital if Q has a multiplicative unit eHomomorphism $f(\bigvee q_i) = \bigvee f(q_i)$ and f(qr) = f(q)f(r)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Examples

- Ideals of a ring (ideals generated by unions, ideal multiplication)
- Binary relations on a set (unions of relations, relation composition)
- Endomorphisms of a sup-lattice (pointwise suprema, mapping composition)
- Frame
 - \wedge as the binary operation
- Powerset of a semigroup

$$(A \cdot B = \{a \cdot b \mid a \in A, b \in B\})$$

\$\mathcal{P}(X^+)\$ - free quantale over \$X\$
 \$\mathcal{P}(X^*)\$ - free unital quantale over \$X\$

Introd 000	uction	Quantum triads	Solutions	Morphisms
	Right Q -module -	- a sup-lattice <i>M</i> with rig	•	

quantale satisfying $(\bigvee m_i) q = \bigvee (m_i q)$, $m(\bigvee q_i) = \bigvee (mq_i), m(qr) = (mr)q$ Unital if Q is unital and me = m for all m Homomorphism $f(\bigvee m_i) = \bigvee f(m_i), f(mq) = f(m)q$

- A sub-sup-lattice of a quantale closed under right multiplication by quantale elements
- A sup-lattice with action of the quantale of its endomorphisms $f \cdot m = f(m)$ (a left module)

• Left-sided elements of a quantale (s.t. $ql \leq l$ for all $q \in Q$ $\iff 1l \leq l$)

Quantum triad (D. Kruml, 2008)

- (L, T, R) such that
 - Quantale T
 - Left *T*-module *L*
 - Right *T*-module *R*

(T, T)-bimorphism

 (homomorphism of respective modules when fixing one component) L × R → T, satisfying associativities TLR, LRT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction 000	Quantum triads	Solutions	Morphisms

Example 1

- L = right-sided elements of a quantale Q
- R = right-sided elements of Q
- T = two-sided elements of Q

Example 2

Sup-lattice 2-forms (P. Resende 2004) (\sim Galois connections)

- L, R sup-lattices
- T = 2 (the 2-element frame)

Solution of the triad

Example of right/left/two-sided elements: Q is a solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two special solutions

$$Q_0 = R \otimes_T L$$

•
$$(r_1 \otimes l_1) \cdot (r_2 \otimes l_2) = r_1(l_1 r_2) \otimes l_2$$

•
$$l'(r \otimes l) = (l'r)l$$

•
$$(r \otimes l)r' = r(lr')$$

$$Q_1 = \{(\alpha, \beta) \in \mathbf{End}(L) \times \mathbf{End}(R) \mid \alpha(l)r = l\beta(r)$$

for all $l \in L, r \in R\}$

•
$$(\alpha_1, \beta_1) \cdot (\alpha_2, \beta_2) = (\alpha_2 \circ \alpha_1, \beta_1 \circ \beta_2)$$

•
$$l'(\alpha,\beta) = \alpha(l')$$

•
$$(\alpha,\beta)r' = \beta(r')$$

Couple of solutions

There is a $\phi: Q_0 \to Q_1$, $\phi(r \otimes I) = ((-\cdot r)I, r(I \cdot -))$ which forms a so-called couple of quantales (Egger – Kruml 2008):

 Q_0 is a (Q_1,Q_1) -bimodule with $\phi(q)r=qr=q\phi(r)$ for all $q,r\in Q_0$

All solutions Q of (L, T, R) then provide factorizations of the couple:

- There are maps $\phi_0 \colon Q_0 \to Q$ and $\phi_1 \colon Q \to Q_1$ s.t. $\phi_1 \circ \phi_0 = \phi$
- φ₀(φ₁(k)q) = kφ₀(q) and φ_o(qφ₁(k)) = φ₀(q)k (so φ₀ becomes a coupling map under scalar restriction along φ₁)

Introduction 000	Quantum triads	Solutions	Morphisms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example

L is a sup-lattice, R = T = 2

$$L imes \mathbf{2}
ightarrow \mathbf{2}$$
: $(0, y) \mapsto 0$, $(x, 0) \mapsto 0$, $(x, 1) \mapsto 1$

Then $Q_0 = \mathbf{2} \otimes_{\mathbf{2}} L = L$ with xy = y, $Q_1 = \{(x \mapsto 0, y \mapsto 0), (\mathrm{id}_L, \mathrm{id}_R)\} = \mathbf{2}$

Triad morphisms

Let
$$(L, T, R)$$
 and $(\overline{L}, T, \overline{R})$ be triads over
the same quantale T .
Module homomorphisms $f_L : L \to \overline{L}$ and
 $f_R : R \to \overline{R}$, that satisfy $f_L(I)f_R(r) = Ir$ for
every I, r , induce a quantale
homomorphism $R \otimes_T L \to \overline{R} \otimes_T \overline{L}$.

In the context of **2**-forms: orthomorphisms

Both f_L and f_R are surjections $\implies \overline{L} \otimes_T \overline{R}$ is a quantale quotient of $L \otimes_T R$.

Introduction	Quantum triads	Solutions	Morphisms
000			

Definition

A right *Q*-module *M* is flat if $M \otimes_Q -: Q \operatorname{-Mod} \to SLat$ preserves monomorphisms (injective homomorphisms)

For unital modules (Joyal and Tierney 1984): M flat $\iff M$ projective (Hom(M, -) preserves epimorphisms).

Both f_L and f_R are injections and R, \overline{L} (or vice versa) are flat \implies $\overline{L} \otimes_T \overline{R}$ is a subquantale of $L \otimes_T R$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Projective modules (RŠ 2010)

- Infinitely 0-distributive (for all $x \in M$, $A \subseteq M$: $x \land a = 0$ for all $a \in A \implies x \land \bigvee A = 0$) and
- finitely spatial (every element is a join of join-irreducibles)

right *Q*-module *M* is projective $\iff M \cong \prod Md_i$ where each d_i is an idempotent element of *Q*.

Example (Galatos – Tsinakis)

 $\mathcal{P}(\mathbf{Fm})$ (sets of formulas), $\mathcal{P}(\mathbf{Eq})$ (sets of equations) are projective (cyclic) module over $\mathcal{P}((\Sigma)$ (sets of substitutions).

References

- A. Joyal and M. Tierney: An extension of the Galois theory of Grothendieck, American Mathematical Society, 1984
- J. Egger, D. Kruml: *Girard couples of quantales*, Applied categorical structures, 18 (2008), pp. 123–133
- D. Kruml: *Quantum triads: an algebraic approach*, http://arxiv.org/abs/0801.0504
- P. Resende: *Sup-lattice 2-forms and quantales*, Journal of Algebra, 276 (2004), pp. 143167
- R. Šlesinger: *Decomposition and Projectivity of Quantale Modules*, Acta Universitatis Matthiae Belii, Series Mathematics 16, 2010

Introduction	
000	

Quantum triads

Solutions

Morphisms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Thank you for your attention!