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Preliminaries
Associative Lambek Calculus L: (Lambek 1958) (Γ 6= ε)

(Id) A ⇒ A

(\L)
Γ, B, ∆ ⇒ C Φ ⇒ A

Γ, Φ, A\B, ∆ ⇒ C
(\R)

A, Γ ⇒ B

Γ ⇒ A\B

(/L)
Γ, B, ∆ ⇒ C Φ ⇒ A

Γ, B/A, Φ, ∆ ⇒ C
(/R)

Γ, A ⇒ B

Γ ⇒ B/A

(·L)
Γ, A, B∆ ⇒ C

Γ, A · B, ∆ ⇒ C
(·R)

Γ ⇒ A ∆ ⇒ B

Γ, ∆ ⇒ A · B

(CUT )
Γ, A, ∆ ⇒ B Φ ⇒ A

Γ, Φ, ∆ ⇒ B

Nonassociative Lambek Calculus NL: (Lambek 1961)
Fomula structures (trees): formulas, Γ ◦∆; Sequent: Γ⇒ A

(\L)
∆ ⇒ A Γ[B] ⇒ C

Γ[∆ ◦ A\B] ⇒ C
(\R)

A ◦ Γ ⇒ B

Γ ⇒ A\B

(/L)
Γ[A] ⇒ C ∆ ⇒ B

Γ[A/B ◦∆] ⇒ C
(/R)

Γ ◦ B ⇒ A

Γ ⇒ A/B

(·L)
Γ[A ◦ B] ⇒ C

Γ[A · B] ⇒ C
(·R)

Γ ⇒ A ∆ ⇒ B

Γ ◦∆ ⇒ A · B

(CUT )
∆ ⇒ A Γ[A] ⇒ B

Γ[∆] ⇒ B

(CUT) is admissible in L and NL.
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A residuated semigroup: M = (M,≤, ·, \, /) s.t. (M,≤) is a poset such that
(M, ·) is semigroup \, / are binary operations on M , respectively, satisfying
the residuated law:

(RES) a · b ≤ c iff b ≤ a\c iff a ≤ c/b (1)

A residuated groupoid: need not be associative

A valuation µ inM is a homomorphism from the formula into algebraM. A
sequent Γ⇒ A is true in the model (M, µ), if µ(Γ) ≤ µ(A).

L is strongly complete w.r.t. residuated semigroups. NL is strongly complete
w.r.t. residuated groupoids.
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Lattice:
(∧L)

Γ[Ai] ⇒ B

Γ[A1 ∧ A2] ⇒ B
(∧R)

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B

(∨L)
Γ[A1] ⇒ B Γ[A2] ⇒ B

Γ[A1 ∨ A2] ⇒ B
(∨R)

Γ ⇒ Ai

Γ ⇒ A1 ∨ A2

Distributive axiom: (D) A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ (A ∧ C).

Full Lambek Calculus (FL) is strongly complete w.r.t lattice-ordered residuated
semigroup. Full Nonassociative Lambek Calculus (FNL) is strongly complete
w.r.t lattice-ordered residuated groupoid.

A distributive lattice-ordered residuated groupoid: (G,∧,∨, ·, \, /) such that
(G,∧,∨) is a distributive lattice and (G, ·, \, /) is a residuated groupoid, where
the order is lattices order.

Distributive Full Nonassociative Lambek Calculus (DFNL) is strongly complete
w.r.t distributive lattice-ordered residuated groupoid.

(CUT) is not admissible in system with (D).
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Modalities(MOORTGAT 1996)

(♦L)
Γ[〈A〉] ⇒ B

Γ[♦A] ⇒ B
(♦R)

Γ ⇒ A

〈Γ〉 ⇒ ♦A

(� ↓ L)
Γ[A] ⇒ B

Γ[〈� ↓ A〉] ⇒ B
(� ↓ R)

〈Γ〉 ⇒ A

Γ ⇒ � ↓ A

(4)
Γ[〈∆〉] ⇒ A

Γ[〈〈∆〉〉] ⇒ A
(T )

Γ[〈∆〉] ⇒ A

Γ[∆] ⇒ A

A distributive lattice-ordered residuated groupoid with S4-operators (S4-dlrg)
is a structure (G,∧,∨, ·, \, /,♦,� ↓) such that (G,∧,∨) is a distributive lattice
and (G, ·, \, /,♦,� ↓) is a structure such that ·, \, / and ♦, � ↓ are binary and
unary operations on G, respectively, satisfying the above conditions (1) and
standard modal S4-axioms:

T a ≤ ♦a, 4 ♦♦a ≤ ♦a (2)

K ♦(a ∧ b) ≤ ♦a ∧ ♦b (3)

Remark: K is admissible in S4-dlrg. Here after we slip this axiom.

DNFLS4 is strongly complete w.r.t S4-dlrg
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A class of algebras K is said to have the finite embeddability property (FEP) if
for every algebra A in K and every finite partial subalgebra B of A, there
exists a finite algebra D in K such that B embeds into D.

FEP imply the decidability of the universal theories of relative algebra.
FEP imply consequence relation of the corresponding logic is decidable.

[8]. M. Farulewski, Finite embeddability property for residuated groupoids, Reports on Mathematical Logic, 43:25-42, 2008.

[4]. W. Buszkowski, and M. Farulewski, Nonassociative Lambek Calculus with Addi- tives and Context-Free Languages. In: O. Grumberg et al. (eds.),

Languages: From Formal to Natural, LNCS 5533:45-58, 2009.

FEP of residuated groupoids
FEP of distributive lattice-ordered residuated groupoids

[5]. W. Buszkowski, Interpolation and FEP for Logic of Residuated Algebras, Logic Journal of the IGPL,

FEP of RAs (residuated algebras), distributive lattice-ordered RAs,
boolean RAs, Heyting RAs and double RAs

FEP of S4-dlrgs (Our results also state for dlrgs with modal operators
satisfying 4 or T only).
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A class K of algebras has Strong Finite Model Property (SFMP) if every Horn
clause that fails to hold in K can be falsified in a finite member of K.

Strong Finite Model Property (SFMP) of a formal system S: if ` φ⇒ A does
not hold in S, then there exist a finite model of S (M, µ) such that all sequents
from Φ are true, but Γ⇒ A is not in (M, µ).

If a formal system S is strongly complete with respect to K, then it yields,
actually, an axiomatization of the Horn theory of K; hence SFMP for S with
respect to K yields SFMP for K.

Theorem
If a class of algebras K is closed under (finite) products, then SFMP for K is
equivalent to FEP for K

SFMP for DNFLS4(FEP of S4-dlrgs)
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Linguistic analysis of modalities and additives
L or NL enriched with modalities or additive can be used to analysis some
linguistic phenomenon like feature agreement, feature description, parasitic
gap and so on.
Let me show some very easy example:
� ↓sing np denote singular noun phrase and � ↓pl np denote plural noun
phrase

1 walks→ � ↓sing np\s
2 walk→ � ↓pl np\s
3 walked→ np\s
4 John→ � ↓sing np
5 the Beatles→ � ↓pl np
6 the Chinese→ � ↓sing � ↓pl np

John walks. John walked. John walk.

� ↓sing np ⇒ � ↓sing np s ⇒ s

� ↓sing np ◦ � ↓sing np\s ⇒ s
(\L)

np ⇒ np

〈� ↓sing np〉 ⇒ np
(�↓L)

� ↓sing np ⇒ np
(T) s ⇒ s

� ↓sing np ◦ np\s ⇒ s
(\L)

� ↓sing np ⇒ � ↓pl np s ⇒ s

� ↓sing np ◦ � ↓pl np\s ⇒ s
(\L) (not derivable)

Zhe Lin (TACL 2011) Finite Embeddability Property of Distributive Lattice-ordered Residuated Groupoids with Modal OperatorsCheit 8 / 19



The Chinese walk. The Chinese walks.
np ⇒ np

〈� ↓pl np〉 ⇒ np
(�↓L), (T)

� ↓sing � ↓pl np ⇒ � ↓sing np
(�↓L), (�↓R) s ⇒ s

� ↓sing � ↓pl np ◦ � ↓sing np\s ⇒ s
(\L)

� ↓pl np ⇒ � ↓pl np

〈� ↓sing � ↓pl np〉 ⇒ � ↓pl np
(�↓L), (T) s ⇒ s

� ↓sing � ↓pl np ◦ � ↓sing np\s ⇒ s
(\L)

1 become→ vp/np ∨ ap
2 wealthy→ ap

3 and→ (ap ∨ np\ap ∨ np)/ap ∨ np
4 a professor→ np

become a professor and wealthy

ap ⇒ np ∨ ap

np ⇒ ap ∨ np
ap ∨ np ⇒ ap ∨ np vp ⇒ vp

vp/ap ∨ np ◦ ap ∨ np ⇒ vp

vp/ap ∨ np ◦ (np ◦ ap ∨ np\ap ∨ np) ⇒ vp

vp/ap ∨ np ◦ (np ◦ ((ap ∨ np\ap ∨ np)/ap ∨ np ◦ ap)) ⇒ vp
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Interpolation property

Lemma

If Φ `NL Γ[∆]⇒ A, then there exists a formula D such that Φ `NL ∆⇒ D and
Φ `NL Γ[D]⇒ A, where D is a subformula of some formulae appearing in
Γ[∆]⇒ A and Φ.

NL♦ (Jäger 2004) NL∧(Farulewski 2008) DFNL (Buszkowski, and
Farulewski 2009) NLS4 (Plummer 2008).
The consequence relation of NL is decidable in polynomial time
(Buszkowski 2005)
Context-freeness of NL♦ (Jäger 2004), NLS4 (Plummer 2008), DFNL
(Buszkowski, and Farulewski).
FEP of Rgs, Dlrgs (Farulewski 2008, Buszkowski, and Farulewski 2009),
FEP of RAs, distributive lattice-ordered RAs, boolean RAs, Heyting RAs
and double RAs (Buszkowski 2010)
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Question:
? interpolation property for DNFLS4 YES

Let T denote a set of formulas
T -sequent: A sequent such that all formulas occurring in it belong to T .
Φ `S Γ⇒T A: If Γ⇒ A has a deduction from Φ (in the given calculus S)
which consists of T -sequents only (called a T -deduction).
T -equivalent: Two formulae A and B are said to be T -equivalent in
calculus S, if and only if `S A⇒T B and `S B ⇒T A.
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Lemma

Let T be a set of formulae closed under ∨, ∧. If Φ `DFNLS4 Γ[〈∆〉]⇒T A then
there exists a D ∈ T such that Φ `DFNLS4

〈∆〉 ⇒T D, Φ `DFNLS4
〈D〉 ⇒T D,

and Φ `DFNLS4
Γ[D]⇒T A.

Lemma

Let T be a set of formulae closed under ∨, ∧. If Φ `DFNLS4 Γ[∆]⇒T A then
there exists a D ∈ T such that Φ `DFNLS4 ∆⇒T D and
Φ `DFNLS4

Γ[D]⇒T A.

Lemma
If T is set of formulas generated from a finite set and closed under ∧, ∨, then
T is finite up to the relation of T -equivalence in DFNLS4.
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LetM = (M, ·, ♦) be a groupoid with a unary operation ♦.
U � V = {a · b ∈ G : a ∈ U, b ∈ V }U\V = {z ∈ G : U � {z} ⊆ V }, V/U = {z ∈ M; {z} � U ⊆ V }

�U = {�a ∈ M|a ∈ U}� ↓ U = {z ∈ M|♦z ∈ U}

U ∨ V = U ∪ V , U ∧ V = U ∩ V

C : P (M)→ P (M) (4T-closure operator onM)
(C1) U ⊆ C(U). (C2) if U ⊆ V then C(U) ⊆ C(V )

(C3) C(C(U)) ⊆ C(U). (C4) C(U) � C(V ) ⊆ C(U � V )

(C5) �C(U) ⊆ C(�U)

(C6) C(♦C(♦C(U))) ⊆ C(♦U). (C7) C(U) ⊆ C(♦U)

For any U ⊆M : U is C-closed, if C(U) = U . C(M): the family of all closed
subsets of M . Operation on C(M) are defined as follows:

U ⊗ V = C(U � V ), �U = C(�U), U ∨C V = C(U ∨ V ), \, / � ↓, ∧ as above.

Theorem

C(M) = (C(M), ⊗, \, /, �, � ↓,∧,∨C) is an S4-lattice order residuated
groupoid.
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U � V = {a · b ∈ G : a ∈ U, b ∈ V }U\V = {z ∈ G : U � {z} ⊆ V }, V/U = {z ∈ M; {z} � U ⊆ V }

�U = {�a ∈ M|a ∈ U}� ↓ U = {z ∈ M|♦z ∈ U}

U ∨ V = U ∪ V , U ∧ V = U ∩ V

C : P (M)→ P (M) (4T-closure operator onM)
(C1) U ⊆ C(U). (C2) if U ⊆ V then C(U) ⊆ C(V )

(C3) C(C(U)) ⊆ C(U). (C4) C(U) � C(V ) ⊆ C(U � V )

(C5) �C(U) ⊆ C(�U)

(C6) C(♦C(♦C(U))) ⊆ C(♦U). (C7) C(U) ⊆ C(♦U)

For any U ⊆M : U is C-closed, if C(U) = U . C(M): the family of all closed
subsets of M . Operation on C(M) are defined as follows:

U ⊗ V = C(U � V ), �U = C(�U), U ∨C V = C(U ∨ V ), \, / � ↓, ∧ as above.

Theorem

C(M) = (C(M), ⊗, \, /, �, � ↓,∧,∨C) is an S4-lattice order residuated
groupoid.
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T : nonempty set of formulae containing all subformulae of formulae in Φ; T∗ : all formula structures form out of formulae in T . Similarly; T∗[◦]: all

contexts in which all formulae belong to T .

Let Γ[◦] ∈ T ∗ and A ∈ T ; B(T ): the family of all sets [Γ[◦], A]

[Γ[◦], A] = {∆ : ∆ ∈ T ∗ and Φ `DFNLS4
Γ[∆]⇒T A}

CT (U) =
⋂
{[Γ[◦], A] ∈ B(T ) : U ⊆ [Γ[◦], A]}

Lemma
CT is a S4-modal closed operator.

T : containing all formulae in Φ, closed under subformulae,∧ and∨. G(T ∗) = (T
∗
, ◦, 〈〉): a groupoid, 〈〉 is an unary operation on T

∗ .

Lemma

CT (G(T ∗)) is a S4-lrg
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µ: µ(p) = [p].

[A]⊗ [B] = [A ·B], [A]\[B] = [A\B], [A]/[B] = [A/B] (4)

�[A] = [♦A] � ↓ [A] = [� ↓ A] (5)

[A] ∩ [B] = [A ∧B] [A] ∨C [B] = [A ∨B] (6)

all formulas appearing in them belong to T .

Lemma

For any nontrivial closed set U ∈ CT (G(T ∗)), there exists a formula A ∈ R
such that U = [A].

Lemma

CT (G(T ∗)) is a finite 4T− dlrg.
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Lemma
T denotes a set of formulae, containing all formulae in Φ and closed under ∧,
∨, and subformulae. Let µ be a valuation in CT (G(T ∗)) such that µ(p) = [p].
For any T -sequent Γ⇒ A, this sequent is true in (CT (G(T ∗)), µ) if and only if
Φ `DFNLS4 Γ⇒T A.

Theorem
Assume that Φ `DFNLS4 Γ⇒ A does not hold. Then there exist a finite
distributive lattice ordered residuated groupoid with 4T-operators G and a
valuation µ such that all sequents from Φ are true but Γ⇒ A is not true in (G,
µ).

Corollary

S4− dlrgs has FEP.
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Thank you
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