Substructural Logic for Orientable and Non-Orientable Surfaces

Christophe Fouqueré ${ }^{1} \quad$ Virgile Mogbil ${ }^{1} \quad$ Gabriele Pulcini ${ }^{2}$
${ }^{1}$ LIPN - UMR7030, CNRS - Université Paris 13 (France),
${ }^{2}$ Department of Philosophy, University of Chieti-Pescara (Italy)

TACL 2011
July 26, 2011

Topology and geometry appear as natural tools for studying Linear Logic proofs:

- Proofs may be represented as graphs where nodes are sub-formulas of the conclusions, edges are either axioms or cuts or introduction of connectives.
- Correctness of proofs is checked either sequentially by means of a sequent calculus, or geometrically by a global criterion on the corresponding graph (cyclicity, connexity, planarity, ...)

Two main variants of Linear Logic exist:

- variations on exponentials: light variants for studying complexity
- variations on structures: cyclic logic and extensions for studying (non-)commutativity

Permutative Logic is a non-commutative variant of linear logic.
Its logical status is based on a variety-presentation framework that models orientable structures.
\Leftrightarrow The aim is here to characterize orientable as well as non-orientable topological surfaces.

- We prove that the system keeps standard logical properties: cut elimination and focussing.
- We give also a few comments on relaxation, the binary relation induced by structural transformations that may increase the topological genus of the transformed surface.
(1) Topological Surfaces
(2) Topology in Linear Logic
(3) Sequent Calculus

4 Relaxation

Presentation of a topological surface

\mathscr{Q} is a closed and connected surface (2-manifold)
$\Downarrow \Uparrow$
set of triangles $\mathcal{T}=\left\{T_{1}, \ldots, T_{n}\right\}$ having the edges labelled (labels from $\mathcal{A}=\{a, b, c, \ldots\}$) and oriented
$\Downarrow \Uparrow$
polygon $P_{\mathcal{T}}$
$\Downarrow \Uparrow$
word $w_{P_{\mathcal{T}}}($ over $\mathcal{A} \cup \overline{\mathcal{A}}$ with $\overline{\mathcal{A}}=\{\bar{a}, \bar{b}, \bar{c}, \ldots\}$) which 'reads' the perimeter of $P_{\mathcal{T}}$ being fixed an orientation

Remark

The geometrical information expressed by \mathscr{Q} can be encoded (modulo homeomorphisms) in a finite and discrete combinatorial setting

Basic 2-Manifolds: orientable case

To go from polygons/words to surfaces: gluing of edges wrt their labels and orientations sphere: $x \bar{x} \quad$ cylinder: $x \ldots \bar{x} \ldots$ torus: $x y \overline{x y}$

Basic 2-Manifolds: non-orientable case

From polygons/words to surfaces:
gluing of edges wrt their labels and orientations

Möbius: x...x...

Klein: $x y x \bar{y}$

\downarrow

Basic 2-Manifolds: non-orientable case

From polygons/words to surfaces:
gluing of edges wrt their labels and orientations

Möbius: x...x...

Klein: $x y x \bar{y}$

Well, as usual

Classification (Massey)

Theorem

Any closed and connected surface \mathscr{Q} (possibly with boundary) is homeomorphic to:

- the sphere \mathscr{S} (orientable) or
- a connected sum of tori $\mathscr{T}_{1} \# \ldots \# \mathscr{T}_{n}$ (orientable) or
- a connected sum of projective planes $\mathscr{P}_{1} \# \ldots \# \mathscr{P}_{n}$ (non-orientable).

The proof consists in:

- rewriting any word w into an equivalent one (i.e. denoting an homeomorphic surface) in so-called canonical form (i.e.
explicitly denoting a surface homeomorphic to

$$
\left.\mathscr{T}_{1} \# \ldots \# \mathscr{T}_{n} \# \mathscr{P}_{1} \# \ldots \# \mathscr{P}_{m}\right)
$$

- stressing the basic homeomorphism $\mathscr{T} \# \mathscr{P} \sim \mathscr{P} \# \mathscr{P} \# \mathscr{P}$.

From Words to pq-Permutations

A canonical word has 3 parts:

$$
w=\tau_{p} * \pi_{q} * d_{1} v_{1} \bar{d}_{1} * \ldots * d_{k} v_{k} \bar{d}_{k}
$$

- (decomposed tori)

$$
\tau_{p}=a_{1} b_{1} \bar{a}_{1} \bar{b}_{1} \ldots a_{p} b_{p} \bar{a}_{p} \bar{b}_{p} \mapsto \mathscr{T}_{1} \# \ldots \# \mathscr{T}_{p}
$$

- (decomposed proj. planes)

$$
\pi_{q}=c_{1} c_{1} \ldots c_{q} c_{q} \mapsto \mathscr{P}_{1} \# \ldots \# \mathscr{P}_{q}
$$

- (boundary made of k cycled parts) v_{1}, \ldots, v_{k}

It may be presented as a pq-Permutation $\alpha=\Sigma_{\langle p, q\rangle}$:

- permutation Σ (a set of cycles) denoting the boundary,
- double index $\langle p, q\rangle$ denoting the connected sum of p tori and q projective planes.

From Words to pq-Permutations

Example

Consider the word: $a b \bar{a} \bar{b} * c c * d_{1} e f \bar{d}_{1} * d_{2} g \overline{h d_{2}}$

- The surface denoted
- is homeomorphic to $\mathscr{T} \# \mathscr{P}$
- with the boundary decomposed into 2 components ef and $g \bar{h}$
- the associated pq-permutation is $(e, f),(g, \bar{h})_{\langle 1,1\rangle}$

Topology in (Linear) Logic

Linear Logic has a graph-theoretical representation of proofs:
Interpretation of proofs as topological objects
\Rightarrow surfaces drawn without crossing edges (Bellin and Fleury 98, Métayer 01, Mellies 04)
\Rightarrow computation of surfaces (Gaubert 04)

Topology in (Linear) Logic

Exchange rule as a topological operation:
\Leftrightarrow (non-)commutative variants of Multiplicative Linear logic (MLL)

- planar logic (Mellies 04)
- the calculus of surfaces (Gaubert 04)
- permutative logic (PL) (Andreoli, Pulcini, Ruet 05)

Topology in (Linear) Logic: Ribbon presentation (Mellies 04)

Proof structures may be represented by ribbons.
A non-commutative proof structure is correct when:

- (commutative criterion) the ribbon presentation of the commutative translation is homeomorphic to the disk
- the ribbon presentation is planar and has a unique external border σ
- σ contains all the conclusions
$\nvdash(B \odot A) \multimap(A \odot B) \equiv \nvdash\left(A^{\perp} \nabla B^{\perp}\right) \ngtr(A \odot B)$

Topology in (Linear) Logic: Orientable surface presentation (Métayer 01)

Proofs are presented as the result of gluing edges (e.g. formulas) of a surface.

```
formula }->\mathrm{ 1-cell,
rule }->\mathrm{ 2-cell
```



```
\[
\overline{\vdash A, A^{\perp}}(\text { axiom })
\]
```


Topology in (Linear) Logic: Orientable surface presentation (Métayer 01)

Proofs are presented as the result of gluing edges (e.g. formulas) of a surface.

formula	\rightarrow	1 -cell,
rule	\rightarrow	2 -cell

$$
\left.\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \text { (binary rule }\right)
$$

Topology in (Linear) Logic: Orientable surface presentation (Métayer 01)

Proofs are presented as the result of gluing edges (e.g. formulas) of a surface.

$$
\begin{array}{lll}
\text { formula } & \rightarrow & 1 \text {-cell, }, \\
\text { rule } & \rightarrow & 2 \text {-cell }
\end{array}
$$

Topology in (Linear) Logic: Orientable surface presentation (Métayer 01)

Proofs are presented as the result of gluing edges (e.g. formulas) of a surface.

$$
\begin{array}{lll}
\text { formula } & \rightarrow & 1 \text {-cell, }, \\
\text { rule } & \rightarrow & 2 \text {-cell }
\end{array}
$$

A cyclic proof is correct iff it is homeomorphic to a disk.

Topology in (Linear) Logic: Orientable surface presentation (Métayer 01)

Proofs are presented as the result of gluing edges (e.g. formulas) of a surface.

formula	\rightarrow	1 -cell,
rule	\rightarrow	2 -cell

$$
\frac{{\frac{\overline{A \vdash A}^{a x} \quad \overline{B \vdash B}^{A, B \vdash A \otimes B}}{}}_{\frac{{ }^{B, A \vdash A \otimes B}}{B \otimes A \vdash A \otimes B}}}{}
$$

-> topological cylinder.

Topology in (Linear) Logic: Permutative Logic

The permutative logic PL,designed by Andreoli, Pulcini and Ruet concerns orientable surfaces: cylinder/divide and torus.

The general form of a sequent is $\vdash_{q}\left(\Gamma_{1}\right), \ldots,\left(\Gamma_{n}\right)$

- q represents the number of "tori handles"
- Γ_{i} is a cyclic sequence of formulas built from atoms, \otimes and \ngtr

Its structure is a $(p) q$-permutation, where p (number of projective planes) is not taken into account.

Permutative Logic: Axiom and Cut Rules

$\overline{\vdash_{0}\left(A, A^{\perp}\right)}(a x)$

$$
\frac{\vdash_{q} \Sigma,(\Gamma, A) \quad \vdash_{q^{\prime}} \equiv,\left(A^{\perp}, \Delta\right)}{\vdash_{q+q^{\prime}} \Sigma, \equiv,(\Gamma, \Delta)}(C u t)
$$

Permutative Logic: Structural Rules

$$
\frac{\vdash_{q} \Sigma,(\Gamma, \Delta)}{\vdash_{q} \Sigma,(\Gamma),(\Delta)}(\text { Cylinder })
$$

$$
\frac{\vdash_{q} \Sigma,(\Gamma),(\Delta)}{\vdash_{q+1} \Sigma,(\Gamma, \Delta)} \text { (Torus) }
$$

Orientable and non-Orientable Surfaces

In order to take care of non-orientable surfaces, two additions are necessary in a sequent calculus for surfaces (sPL):

- A sequent has another index p to represent the number of "projective planes"
- Orientation is given by a unary operator on formulas

Definition

Formulas are inductively built from a countable infinite set of atoms $\mathcal{A}=\left\{a, b, c, \ldots, a^{\perp}, b^{\perp}, c^{\perp}, \ldots\right\}$ throughout the two usual multiplicative connectives \varnothing and \otimes, together with an unary bar operation $(-)(a \in \mathcal{A})$:

$$
F::=a|\bar{F}| F_{1} \oslash F_{2} \mid F_{1} \otimes F_{2}
$$

Orientable Structural Rules

Already in Permutative Logic:

$$
\frac{\vdash_{q}^{p} \Sigma,(\Gamma, \Delta)}{\vdash_{q}^{p} \Sigma,(\Gamma),(\Delta)} \text { cylinder } \quad \frac{\vdash_{q}^{p} \Sigma,(\Gamma),(\Delta)}{\vdash_{q+1}^{p} \Sigma,(\Gamma, \Delta)} \text { torus }
$$

The shape is invariant wrt a global change of the orientation:

$$
\frac{\vdash_{q}^{p} \Sigma}{\vdash_{q}^{p} \bar{\Sigma}} \text { invert }
$$

Non-Orientable Structural Rules

Two new rules for dealing with non-orientable surfaces:
$\frac{\vdash_{q}^{p} \Sigma,(\Gamma, \Delta)}{\vdash_{q}^{p+1} \Sigma,(\Gamma, \bar{\Delta})}$ Möbius

$\frac{\vdash_{q}^{p} \Sigma,(\Gamma),(\Delta)}{\vdash_{q}^{p+2} \Sigma,(\Gamma, \bar{\Delta})}$ Klein

\mapsto

IDENTITY GROUP

$$
\frac{\vdash_{0}^{0}\left(A, A^{\perp}\right)}{} \text { ax. } \quad \frac{\vdash_{q}^{p} \Sigma,(\Gamma, A) \quad \vdash_{q^{\prime}}^{p^{\prime}} \equiv,\left(\Delta, A^{\perp}\right)}{\vdash_{q+q^{\prime}}^{p+p^{\prime}} \Sigma, \equiv,(\Gamma, \Delta)} \mathrm{cut}
$$

LOGICAL RULES

$$
\frac{\vdash_{q}^{p} \Sigma,(\Gamma, A, B)}{\vdash_{q}^{p} \Sigma,(\Gamma, A \& B)} 8 \quad \frac{\vdash_{q}^{p} \Sigma,(\Gamma, A) \quad \vdash_{q^{\prime}}^{p^{\prime}} \equiv,(\Delta, B)}{\vdash_{q+q^{\prime}}^{p+p^{\prime}} \Sigma, \equiv,(\Gamma, A \otimes B, \Delta)} \otimes
$$

Theorem (cut-elimination)

Any proof in sPL can be transformed into a proof without cut.
The proof is done by induction, studying the various cases of conmutation.
It may also be done via a cut-elimination proof of a focalized sequent calculus.

Theorem (focalization)

A focalized sequent calculus equivalent to sPL may be defined.
A focalized sequent is of the form $\quad \vdash_{q}^{p} \Gamma \mid \Sigma$ where

- 「 is a cyclic sequence of formulas separated by ',',
- Σ is a multiset of cyclic sequences of formulas separated by ';',
- p and q are integers.
Γ as well as Σ may be eventually empty.

QUOTIENT RULES

$$
\begin{aligned}
& \frac{\vdash_{q}^{p} \Gamma \mid \Sigma ;(\Delta) ;\left(\Delta^{\prime}\right) ; \equiv}{\vdash_{q}^{p} \Gamma \mid \Sigma ;\left(\Delta^{\prime}\right) ;(\Delta) ; \equiv} \text { multiset } \frac{\vdash_{q}^{p} \Gamma, \Delta \mid \Sigma}{\vdash_{q}^{p} \Delta, \Gamma \mid \Sigma} \text { cycle } \\
& \frac{\vdash_{q}^{p} \Gamma \mid \Sigma}{\vdash_{q}^{p} \bar{\Gamma} \mid \bar{\Sigma}} \text { invert } \\
& \frac{\vdash_{q}^{p} \mid(\Gamma) ; \Sigma}{\vdash_{q}^{p} \Gamma \mid \Sigma} \text { focus } \frac{\vdash_{q}^{p} \Gamma \mid \Sigma}{\vdash_{q}^{p} \mid(\Gamma) ; \Sigma} \text { defocus }
\end{aligned}
$$

Note that defocus rule may be viewed as a special case of the cylinder rule (with () as neutral w.r.t. ';').

IDENTITY GROUP

$$
\frac{\vdash_{0}^{0} A, A^{\perp} \mid}{} \text { ax. } \quad \frac{\vdash_{q}^{p} \Gamma, A\left|\Sigma \quad \vdash_{q^{\prime}}^{p^{\prime}} \Delta, A^{\perp}\right| \equiv}{\vdash_{q+q^{\prime}}^{p+p^{\prime}} \Gamma, \Delta \mid \Sigma ; \text { ㄹut }} \text { cut }
$$

ORIENTABLE STRUCTURAL RULES

$$
\frac{\vdash_{q}^{p} \Gamma, \Delta \mid \Sigma}{\vdash_{q}^{p} \Gamma \mid \Sigma ;(\Delta)} \text { cylinder } \quad \frac{\vdash_{q}^{p} \Gamma \mid \Sigma ;(\Delta)}{\vdash_{q+1}^{p} \Gamma, \Delta \mid \Sigma} \text { torus }
$$

NON-ORIENTABLE STRUCTURAL RULES

$$
\frac{\vdash_{q}^{p} \Gamma, \Delta \mid \Sigma}{\vdash_{q}^{p+1} \Gamma, \bar{\Delta} \mid \Sigma} \text { Möbius } \quad \frac{\vdash_{q}^{p} \Gamma \mid \Sigma ;(\Delta)}{\vdash_{q}^{p+2} \Gamma, \bar{\Delta} \mid \Sigma} \text { Klein }
$$

LOGICAL RULES

$$
\frac{\vdash_{q}^{p} \Gamma, A, B \mid \Sigma}{\vdash_{q}^{p} \Gamma, A \ngtr B \mid \Sigma} \gtrdot \quad \frac{\vdash_{q}^{p} \Gamma, A\left|\Sigma \quad \vdash_{q^{\prime}}^{p^{\prime}} \Delta, B\right| \equiv}{\vdash_{q+q^{\prime}}^{p+p^{\prime}} \Gamma, A \otimes B, \Delta \mid \Sigma ; \equiv} \otimes
$$

However, proving directly that the focalized system is equivalent to the intial one is not as easy as it seems because focussing is a strong constraint. For that purpose, we use an intermediary system fsPL where

- one deletes the defocus rule: $\frac{\vdash_{q}^{p} \Gamma \mid \Sigma}{\vdash_{q}^{p} \mid(\Gamma) ; \Sigma}$ defocus
- one adds the two following rules:

$$
\frac{\vdash_{q}^{p} \Gamma, \Lambda, \Delta \mid \Sigma}{\vdash_{q+1}^{p} \Gamma, \Delta, \Lambda \mid \Sigma} \text { torus' } \quad \frac{\vdash_{q}^{p} \Gamma, \Lambda, \Delta \mid \Sigma}{\vdash_{q}^{p+2} \Gamma, \Delta, \bar{\Lambda} \mid \Sigma} \text { Klein' }
$$

The defocus rule is a special case of the cylinder rule and rules Klein' and torus' are derivable in the focalized sequent calculus.

Hence the following propositions may be proved by induction:

Proposition

A sequent is provable in $f s P L$ iff it is provable in foc-sPL.

Definition (max-focalization)

A proof (in fsPL or foc-sPL) is maximally focalized iff there is no proof of the same sequent with longer sequences of cylinder rule applications.

Proposition

A sequent $\vdash_{q}^{p} \Gamma \mid \Sigma$ is provable in $f s P L$ iff it has a maximally focalized proof in foc-sPL.
Cuts in a maximally focalized proof in foc-sPL of a sequent $\vdash_{q}^{p} \Gamma \mid \Sigma$ may be eliminated.

Phase Semantics

Phase semantics exist for Linear Logic and Non-Commutative Logic. What is the main difficulty when turning to a calculus of surfaces?

- The orientation has to be taken into account.
- The context cannot be neglected:
- In NL, the non-commutative structure is an order variety. Hence a formula on which an operation is applied may be 'extracted' from its context: the structure of the semantics is close to what is required with Linear Logic.
- This is no more true in the calculus of surfaces.

Hence,

- a context phase space Con(M)interprets sequents. Formulas are denoted by a subset $\operatorname{Supp}(M)$ of Con(M).
- orthogonality is defined wrt it.
- the denotation of the negation of a formula is the restriction to $\operatorname{Supp}(M)$ of its orthogonals.
The phase semantics is sound and complete.

Varieties and presentations

Any variety-presentation framework deals with two classes of objects: varieties and presentations, and with two basic operations of composition and decomposition.

A variety can always be decomposed into a presentation, simply by assuming a point x of its support as point of view. Conversely, two presentations α and β having disjoint supports, can always be composed in order to form a variety $\alpha \star \beta$.

- the composition \star is associative and commutative with a neutral element.
- any variety-presentation framework induces a focalized system.

Relaxation

One can define on the set of varieties, a binary relation \preccurlyeq called relaxation.
Relaxation aims to model transformations induced on sequents by structural rules:
\Leftrightarrow A variety α relaxes a variety β if α can be rewritten into β through a series of structural rules.

Definition (relaxation on a system \mathcal{S})

- terms: pq-permutations $\alpha, \beta, \gamma, \ldots$
- rewriting rules: $s P L$ structural rules (cylinder, torus, Klein and Möbius)

Relaxation:

$$
\alpha \preccurlyeq \beta \text { iff } \alpha \rightsquigarrow_{\mathcal{S}}^{*} \beta
$$

Relaxation

It induces a loss of information (hence relaxation): the typical case is when α and β are two orders on the same set of points and β is obtained from α by weakening (relaxing) the structure of α.

- The decision of relaxation is essentially a trivial question for sets or partial orders,
- the problem of checking whether two pq-permutations are in relation of relaxation is not as trivial as before.

Relaxation

Example

$\alpha \preccurlyeq \beta$, where $\alpha=(a, b, c),(\bar{d})_{\langle 2,0\rangle}$ and $\beta=(a, \bar{c}),(\bar{b}, \bar{d})_{\langle 3,1\rangle}$.

$$
\begin{aligned}
& \frac{(a, b, c),(\bar{d})_{\langle 2,0\rangle}}{\left.(a, \bar{c}, \bar{b})^{(\bar{d}}\right)_{\langle 2,1\rangle}} \text { Möbius } \text { torus } \\
& \frac{(a, \bar{c}, \bar{b}, \bar{d})_{\langle 3,1\rangle}}{(a, \bar{c}),(\bar{b}, \bar{d})_{\langle 3,1\rangle}} \text { cylinder }
\end{aligned}
$$

Decision of Relaxation

$\Sigma_{\langle p, q\rangle} \preccurlyeq \Xi_{\left\langle p^{\prime}, q^{\prime}\right\rangle}$? \Rightarrow 'topologically minimal' path from the permutation Σ to the permutation $\overline{\text { 末 }}$

Definition (system \mathcal{S}^{\prime})

We aim to produce a chain $\Sigma \rightsquigarrow_{\mathcal{S}^{\prime}}^{*}$ 三.

- terms: permutations Σ, \equiv, \ldots
- rules: specific instances of the \mathcal{S} rules:

$$
\begin{aligned}
& \equiv(a)=b: \quad \frac{\Sigma,(\Gamma, a, \Delta, b)}{\Sigma,(\Gamma, a, b),(\Delta)} \text { cylinder } \frac{\Sigma,(\Gamma, a),(\Delta, b)}{\bar{\Xi},(\Gamma, a, b, \Delta)} \text { torus } \\
& \equiv(a)=\bar{b}: \quad \frac{\Sigma,(\Gamma, a, \Delta, b)}{\Sigma,(\Gamma, a, \bar{b}, \bar{\Delta})} \text { Möbius } \frac{\Sigma,(\Gamma, a),(\Delta, b)}{\Sigma,(\Gamma, a, \bar{b}, \bar{\Delta})} \text { Klein }
\end{aligned}
$$

Decision of Relaxation

Example

$\Sigma=(a, b, c),(\bar{d}) \rightsquigarrow_{\mathcal{S}^{\prime}}^{*} \equiv=(a, \bar{c}),(\bar{b}, \bar{d})$.

$$
\begin{aligned}
& \equiv(a)=\bar{c} \frac{(a, b, c),(\bar{d})}{(a, \bar{c}, \bar{b}),(\bar{d})} \text { Möbius } \\
& \equiv(\bar{c})=a \frac{(a, \bar{c}),(\bar{b}),(\bar{d})}{\text { cylinder }} \text { torus } \\
& \equiv(\bar{b})=\bar{d} \frac{(a, \bar{c}),(\bar{b}, \bar{d})}{}
\end{aligned}
$$

The chain $\mathscr{C}: \Sigma \rightsquigarrow_{\mathcal{S}^{\prime}}^{*}$ 三'topologically cost':
1 proj. plane (Möbius) +1 torus ~ 3 proj. planes.

Decision of Relaxation

Theorem

Any chain afforded by \mathcal{S}^{\prime} turns out to be minimal w.r.t. its 'topological cost'.

Proof.

Any chain $\Sigma \rightsquigarrow_{\mathcal{S}^{\prime}}^{*}$ 三 just 'mimics' the process of formation (through identification of paired edges) of the quotient surface $\mathscr{S}_{\Sigma} * \mathscr{S}_{\equiv}$, where:

- \mathscr{S}_{Σ} is the surface denoted by $\Sigma_{\langle 0,0\rangle}$
- $\mathscr{S} \equiv$ is the surface denoted by $\bar{\Xi}_{\langle 0,0\rangle}$
- $\mathscr{S}_{\Sigma} * \mathscr{S}_{\equiv}$ is obtained by connecting \mathscr{S}_{Σ} and \mathscr{S}_{\equiv} through identification of a couple of paired edges

What do we have?

- We have a logical system that integrates orientable as well as non-orientable structural rules.
- We prove that the system keeps standard logical properties: cut elimination and focussing.
- We give also a few comments on relaxation, induced by structural transformations that may increase the topological genus of the transformed surface.

What remains to do?

- An extension of the correctness criterion (of Métayer or Melliès) for Permutative Logic as well as for sPL.
- A denotational semantics that (really !) relates logic and topology.
- A full study of rules, particularly singling out redundant rules (e.g. the Möbius rule).

Thanks for your attention

