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Topology and geometry appear as natural tools for studying Linear
Logic proofs:

Proofs may be represented as graphs where nodes are
sub-formulas of the conclusions, edges are either axioms or
cuts or introduction of connectives.

Correctness of proofs is checked either sequentially by means
of a sequent calculus, or geometrically by a global criterion on
the corresponding graph (cyclicity, connexity, planarity, . . . )

Two main variants of Linear Logic exist:

variations on exponentials: light variants for studying
complexity

variations on structures: cyclic logic and extensions for
studying (non-)commutativity
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Permutative Logic is a non-commutative variant of linear logic.

Its logical status is based on a variety-presentation framework that
models orientable structures.

åThe aim is here to characterize orientable as well as
non-orientable topological surfaces.

We prove that the system keeps standard logical properties:
cut elimination and focussing.

We give also a few comments on relaxation, the binary relation
induced by structural transformations that may increase the
topological genus of the transformed surface.
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Presentation of a topological surface

Q is a closed and connected surface (2-manifold)

⇓ ⇑
set of triangles T = {T1, . . . ,Tn} having the edges labelled

(labels from A = {a, b, c , . . .}) and oriented

⇓ ⇑
polygon PT

⇓ ⇑
word wPT (over A ∪A with A = {a, b, c, . . .}) which `reads' the

perimeter of PT being �xed an orientation

Remark

The geometrical information expressed by Q can be encoded
(modulo homeomorphisms) in a �nite and discrete combinatorial
setting
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Basic 2-Manifolds: orientable case

To go from polygons/words to surfaces:
gluing of edges wrt their labels and orientations

sphere: xx cylinder: x . . . x . . . torus: xyxy

Hx Hx Hx Hx
. . .

. . .
I
y

I
y

↓ ↓ ↓
. . .

. . .
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Basic 2-Manifolds: non-orientable case

From polygons/words to surfaces:
gluing of edges wrt their labels and orientations

Möbius: x . . . x . . . Klein: xyxy

Hx Nx
. . .

. . .
y

y

I

I

↓ ↓
. . .

. . .
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Basic 2-Manifolds: non-orientable case

From polygons/words to surfaces:
gluing of edges wrt their labels and orientations

Möbius: x . . . x . . . Klein: xyxy

Hx Nx
. . .

. . .
y

y

I

I

↓ ↓
. . .

. . .

Well, as usual
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Classi�cation (Massey)

Theorem

Any closed and connected surface Q (possibly with boundary) is

homeomorphic to:

the sphere S (orientable) or

a connected sum of tori T1# . . .#Tn (orientable) or

a connected sum of projective planes P1# . . .#Pn

(non-orientable).

The proof consists in:

rewriting any word w into an equivalent one (i.e. denoting an
homeomorphic surface) in so-called canonical form (i.e.
explicitly denoting a surface homeomorphic to
T1# . . .#Tn#P1# . . .#Pm),

stressing the basic homeomorphism T #P ∼P#P#P.
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From Words to pq-Permutations

A canonical word has 3 parts:
w = τp ∗ πq ∗ d1v1d1 ∗ . . . ∗ dkvkdk

(decomposed tori)
τp = a1b1a1b1 . . . apbpapbp 7→ T1# . . .#Tp

(decomposed proj. planes)
πq = c1c1 . . . cqcq 7→P1# . . .#Pq

(boundary made of k cycled parts) v1, . . . , vk

It may be presented as a pq-Permutation α = Σ〈p,q〉:

permutation Σ (a set of cycles) denoting the boundary,

double index 〈p, q〉 denoting the connected sum of p tori and
q projective planes.



Introduction Topological Surfaces Topology in Linear Logic Sequent Calculus Relaxation Conclusion

From Words to pq-Permutations

Example

Consider the word: abab ∗ cc ∗ d1ef d1 ∗ d2ghd2

The surface denoted

is homeomorphic to T #P
with the boundary decomposed into 2 components ef and gh

the associated pq-permutation is (e, f ), (g , h)〈1,1〉



Introduction Topological Surfaces Topology in Linear Logic Sequent Calculus Relaxation Conclusion

Topology in (Linear) Logic

Linear Logic has a graph-theoretical representation of proofs:

Interpretation of proofs as topological objects

⇒ surfaces drawn without crossing edges (Bellin and Fleury 98,

Métayer 01, Mellies 04)

⇒ computation of surfaces (Gaubert 04)
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Topology in (Linear) Logic

Exchange rule as a topological operation:
å(non-)commutative variants of Multiplicative Linear logic (MLL)

planar logic (Mellies 04)

the calculus of surfaces (Gaubert 04)

permutative logic (PL) (Andreoli, Pulcini, Ruet 05)
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Topology in (Linear) Logic: Ribbon presentation (Mellies 04)

Proof structures may be represented by ribbons.
A non-commutative proof structure is correct when:

(commutative criterion) the ribbon presentation of the
commutative translation is homeomorphic to the disk

the ribbon presentation is planar and has a unique external
border σ

σ contains all the conclusions

0 (B � A)( (A� B) ≡ 0 (A⊥OB⊥)` (A� B)

A ⊙ BA⊥�B⊥

(A⊥�B⊥)` (A ⊙ B)

ax ax
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Topology in (Linear) Logic: Orientable surface presentation
(Métayer 01)

Proofs are presented as the result of gluing edges (e.g.
formulas) of a surface.

formula → 1-cell,
rule → 2-cell

>A >A ` A,A⊥
(axiom)
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Topology in (Linear) Logic: Orientable surface presentation
(Métayer 01)

Proofs are presented as the result of gluing edges (e.g.
formulas) of a surface.

formula → 1-cell,
rule → 2-cell

>A

>

B

>
A⊗B

Γ ` A ∆ ` B
Γ,∆ ` A⊗ B

(binary rule)
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Topology in (Linear) Logic: Orientable surface presentation
(Métayer 01)

Proofs are presented as the result of gluing edges (e.g.
formulas) of a surface.

formula → 1-cell,
rule → 2-cell

>A >

B>A

>

B

>
A⊗B

A ` A
ax

B ` B
ax

A,B ` A⊗ B
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Topology in (Linear) Logic: Orientable surface presentation
(Métayer 01)

Proofs are presented as the result of gluing edges (e.g.
formulas) of a surface.

formula → 1-cell,
rule → 2-cell

>A >

B>A

>

B

>
A⊗B

>
A⊗B

>
A⊗B

A ` A
ax

B ` B
ax

A,B ` A⊗ B

A⊗ B ` A⊗ B

A cyclic proof is correct i� it is homeomorphic to a disk.
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Topology in (Linear) Logic: Orientable surface presentation
(Métayer 01)

Proofs are presented as the result of gluing edges (e.g.
formulas) of a surface.

formula → 1-cell,
rule → 2-cell

<
B⊗A

<
A⊗B>

< >

<

A ` A
ax

B ` B
ax

A,B ` A⊗ B

B,A ` A⊗ B
Exchange

B ⊗ A ` A⊗ B

-> topological cylinder.
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Topology in (Linear) Logic: Permutative Logic

The permutative logic PL,designed by Andreoli, Pulcini and Ruet
concerns orientable surfaces: cylinder/divide and torus.

The general form of a sequent is `q (Γ1), . . . , (Γn)

q represents the number of "tori handles"

Γi is a cyclic sequence of formulas built from atoms, ⊗ and O

Its structure is a (p)q-permutation, where p (number of projective
planes) is not taken into account.

Γ1 Γ2
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Permutative Logic: Axiom and Cut Rules

`0 (A,A⊥)
(ax)

A, A⊥

`q Σ, (Γ,A) `q′ Ξ, (A⊥,∆)

`q+q′ Σ,Ξ, (Γ,∆)
(Cut)

�→ �→A⊥,∆Γ, A Γ, A,A⊥,∆ Γ,∆
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Permutative Logic: Structural Rules

`q Σ, (Γ,∆)

`q Σ, (Γ), (∆)
(Cylinder)

A

A

A

�→�→
∆

Γ Γ Γ
∆ ∆

`q Σ, (Γ), (∆)

`q+1 Σ, (Γ,∆)
(Torus)

�→ �→
Γ

∆

Γ

∆

Γ,
∆
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Orientable and non-Orientable Surfaces

In order to take care of non-orientable surfaces, two additions are
necessary in a sequent calculus for surfaces (sPL):

A sequent has another index p to represent the number of
"projective planes"

Orientation is given by a unary operator on formulas

De�nition

Formulas are inductively built from a countable in�nite set of atoms
A = {a, b, c , . . . , a⊥, b⊥, c⊥, . . .} throughout the two usual
multiplicative connectives O and ⊗, together with an unary bar
operation (_̄) (a ∈ A):

F ::= a | F̄ | F1 O F2 | F1 ⊗ F2
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Orientable Structural Rules

Already in Permutative Logic:

`pq Σ, (Γ,∆)
cylinder`pq Σ, (Γ), (∆)

`pq Σ, (Γ), (∆)
torus`pq+1

Σ, (Γ,∆)

The shape is invariant wrt a global change of the orientation:

`pq Σ
invert`pq Σ
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Non-Orientable Structural Rules

Two new rules for dealing with non-orientable surfaces:

`pq Σ, (Γ,∆)
Möbius

`p+1
q Σ, (Γ,∆)

�→ �→Γ ∆ Γ ∆
Γ ∆

`pq Σ, (Γ), (∆)
Klein

`p+2
q Σ, (Γ,∆)

Γ ∆

�→

Γ,∆
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IDENTITY GROUP

ax.
`0
0

(A,A⊥)
`pq Σ, (Γ,A) `p′q′ Ξ, (∆,A⊥)

cut
`p+p′

q+q′ Σ,Ξ, (Γ,∆)

LOGICAL RULES

`pq Σ, (Γ,A,B)
O`pq Σ, (Γ,A O B)

`pq Σ, (Γ,A) `p′q′ Ξ, (∆,B)
⊗

`p+p′

q+q′ Σ,Ξ, (Γ,A⊗ B,∆)
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Theorem (cut-elimination)

Any proof in sPL can be transformed into a proof without cut.

The proof is done by induction, studying the various cases of
conmutation.
It may also be done via a cut-elimination proof of a focalized
sequent calculus.

Theorem (focalization)

A focalized sequent calculus equivalent to sPL may be de�ned.

A focalized sequent is of the form `pq Γ|Σ
where

Γ is a cyclic sequence of formulas separated by ',',

Σ is a multiset of cyclic sequences of formulas separated by ';',

p and q are integers.

Γ as well as Σ may be eventually empty.
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QUOTIENT RULES

`pq Γ|Σ; (∆); (∆′); Ξ
multiset`pq Γ|Σ; (∆′); (∆); Ξ

`pq Γ,∆|Σ
cycle`pq ∆, Γ|Σ

`pq Γ|Σ
invert`pq Γ|Σ

`pq |(Γ); Σ
focus`pq Γ|Σ

`pq Γ|Σ
defocus`pq |(Γ); Σ

Note that defocus rule may be viewed as a special case of the
cylinder rule (with () as neutral w.r.t. ';').



Introduction Topological Surfaces Topology in Linear Logic Sequent Calculus Relaxation Conclusion

IDENTITY GROUP

ax.
`0
0
A,A⊥|

`pq Γ,A|Σ `p′q′ ∆,A⊥|Ξ
cut

`p+p′

q+q′ Γ,∆|Σ; Ξ

ORIENTABLE STRUCTURAL RULES

`pq Γ,∆|Σ
cylinder`pq Γ|Σ; (∆)

`pq Γ|Σ; (∆)
torus`pq+1

Γ,∆|Σ

NON-ORIENTABLE STRUCTURAL RULES

`pq Γ,∆|Σ
Möbius

`p+1
q Γ,∆|Σ

`pq Γ|Σ; (∆)
Klein

`p+2
q Γ,∆|Σ

LOGICAL RULES

`pq Γ,A,B|Σ
O`pq Γ,A O B|Σ

`pq Γ,A|Σ `p′q′ ∆,B|Ξ
⊗

`p+p′

q+q′ Γ,A⊗ B,∆|Σ; Ξ
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However, proving directly that the focalized system is equivalent to
the intial one is not as easy as it seems because focussing is a
strong constraint. For that purpose, we use an intermediary system
fsPL where

one deletes the defocus rule:
`pq Γ|Σ

defocus`pq |(Γ); Σ

one adds the two following rules:

`pq Γ,Λ,∆|Σ
torus'`pq+1

Γ,∆,Λ|Σ
`pq Γ,Λ,∆|Σ

Klein'
`p+2
q Γ,∆,Λ|Σ

The defocus rule is a special case of the cylinder rule and rules
Klein' and torus' are derivable in the focalized sequent calculus.
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Hence the following propositions may be proved by induction:

Proposition

A sequent is provable in fsPL i� it is provable in foc-sPL.

De�nition (max-focalization)

A proof (in fsPL or foc-sPL) is maximally focalized i� there is no
proof of the same sequent with longer sequences of cylinder rule
applications.

Proposition

A sequent `pq Γ|Σ is provable in fsPL i� it has a maximally

focalized proof in foc-sPL.

Cuts in a maximally focalized proof in foc-sPL of a sequent `pq Γ|Σ
may be eliminated.
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Phase Semantics

Phase semantics exist for Linear Logic and Non-Commutative Logic.
What is the main di�culty when turning to a calculus of surfaces?

The orientation has to be taken into account.
The context cannot be neglected:

In NL, the non-commutative structure is an order variety.
Hence a formula on which an operation is applied may be
`extracted' from its context: the structure of the semantics is
close to what is required with Linear Logic.
This is no more true in the calculus of surfaces.

Hence,

a context phase space Con(M)interprets sequents. Formulas
are denoted by a subset Supp(M)of Con(M).

orthogonality is de�ned wrt it.

the denotation of the negation of a formula is the restriction
to Supp(M)of its orthogonals.

The phase semantics is sound and complete.



Introduction Topological Surfaces Topology in Linear Logic Sequent Calculus Relaxation Conclusion

Varieties and presentations

Any variety-presentation framework deals with two classes of
objects: varieties and presentations, and with two basic operations
of composition and decomposition.

A variety can always be decomposed into a presentation, simply by
assuming a point x of its support as point of view. Conversely, two
presentations α and β having disjoint supports, can always be
composed in order to form a variety α ? β .

the composition ? is associative and commutative with a
neutral element.

any variety-presentation framework induces a focalized system.
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Relaxation

One can de�ne on the set of varieties, a binary relation 4 called
relaxation.
Relaxation aims to model transformations induced on sequents by
structural rules:
åA variety α relaxes a variety β if α can be rewritten into β
through a series of structural rules.

De�nition (relaxation on a system S)
terms: pq-permutations α, β, γ, . . .

rewriting rules: sPL structural rules (cylinder, torus, Klein
and Möbius)

Relaxation:
α 4 β i� α ∗S β
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Relaxation

It induces a loss of information (hence relaxation):
the typical case is when α and β are two orders on the same set of
points and β is obtained from α by weakening (relaxing) the
structure of α.

The decision of relaxation is essentially a trivial question for
sets or partial orders,

the problem of checking whether two pq-permutations are in
relation of relaxation is not as trivial as before.
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Relaxation

Example

α 4 β, where α = (a, b, c), (d)〈2,0〉 and β = (a, c), (b, d)〈3,1〉.

(a, b, c), (d)〈2,0〉
Möbius

(a, c , b), (d)〈2,1〉
torus

(a, c, b, d)〈3,1〉
cylinder

(a, c), (b, d)〈3,1〉
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Decision of Relaxation

Σ〈p,q〉 4 Ξ〈p′,q′〉 ? ⇒ `topologically minimal' path from the
permutation Σ to the permutation Ξ

De�nition (system S ′)
We aim to produce a chain Σ ∗S′ Ξ.

terms: permutations Σ,Ξ, . . .

rules: speci�c instances of the S rules:

Σ, (Γ, a,∆, b)
Ξ(a) = b: cylinder

Σ, (Γ, a, b), (∆)

Σ, (Γ, a), (∆, b)
torus

Ξ, (Γ, a, b,∆)

Σ, (Γ, a,∆, b)
Ξ(a) = b: Möbius

Σ, (Γ, a, b,∆)

Σ, (Γ, a), (∆, b)
Klein

Σ, (Γ, a, b,∆)
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Decision of Relaxation

Example

Σ = (a, b, c), (d) ∗S′ Ξ = (a, c), (b, d).

(a, b, c), (d)
Ξ(a) = c Möbius

(a, c, b), (d)
Ξ(c) = a cylinder

(a, c), (b), (d)
Ξ(b) = d torus

(a, c), (b, d)

The chain C : Σ ∗S′ Ξ `topologically cost':

1 proj. plane (Möbius) + 1 torus ∼ 3 proj. planes.
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Decision of Relaxation

Theorem

Any chain a�orded by S ′ turns out to be minimal w.r.t. its

`topological cost'.

Proof.

Any chain Σ ∗S′ Ξ just `mimics' the process of formation (through
identi�cation of paired edges) of the quotient surface SΣ ∗SΞ,
where:

SΣ is the surface denoted by Σ〈0,0〉

SΞ is the surface denoted by Ξ〈0,0〉

SΣ ∗SΞ is obtained by connecting SΣ and SΞ through
identi�cation of a couple of paired edges
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What do we have?

We have a logical system that integrates orientable as well as
non-orientable structural rules.

We prove that the system keeps standard logical properties:
cut elimination and focussing.

We give also a few comments on relaxation, induced by
structural transformations that may increase the topological
genus of the transformed surface.

What remains to do?

An extension of the correctness criterion (of Métayer or
Melliès) for Permutative Logic as well as for sPL.

A denotational semantics that (really !) relates logic and
topology.

A full study of rules, particularly singling out redundant rules
(e.g. the Möbius rule).
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Thanks for your attention
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