Free alg's via
functor on partial alg's

Free algebras via a functor on partial algebras

Dion Coumans and Sam van Gool

Topology, Algebra and Categories in Logic (TACL)
26 - 30 July 2011
Marseilles, France
Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

Logic via algebra

- Algebraic logic \mathcal{L}, signature σ, variety $\mathbf{V}_{\mathcal{L}}$ of σ-algebras

Free alg's via
functor on partial alg's

Dion Coumans and
Sam van Gool

Logic via algebra

- Algebraic logic \mathcal{L}, signature σ, variety $\mathbf{V}_{\mathcal{L}}$ of σ-algebras
- Studying the logic $\mathcal{L} \leadsto$ Studying finitely generated free $\mathbf{V}_{\mathcal{L}}$-algebras

Free alg's via
functor on partial alg's

- Algebraic logic \mathcal{L}, signature σ, variety $\mathbf{V}_{\mathcal{L}}$ of σ-algebras
- Studying the logic $\mathcal{L} \leadsto$ Studying finitely generated free $\mathbf{V}_{\mathcal{L}}$-algebras

Logic via algebra

Free alg's via

Logic via algebra

- Algebraic logic \mathcal{L}, signature σ, variety $\mathbf{V}_{\mathcal{L}}$ of σ-algebras
- Studying the logic $\mathcal{L} \leadsto \rightarrow$ Studying finitely generated free $\mathbf{V}_{\mathcal{L}}$-algebras

Free alg's via
functor on partial alg's

Dion Coumans and
Sam van Gool

Free algebra as colimit of a chain

- In many cases, a variety $\left(\mathbf{V}_{\mathcal{L}}\right)^{-}$of reducts is well-understood and locally finite, e.g.:

Free algebra as colimit of a chain

Free algebra as colimit of a chain

- In many cases, a variety $\left(\mathbf{V}_{\mathcal{L}}\right)^{-}$of reducts is well-understood and locally finite, e.g.:
- Modal algebras = Boolean algebras $+\diamond$,
- Heyting algebras $=$ Distributive lattices $+\rightarrow$,

Free algebra as colimit of a chain

- In many cases, a variety $\left(\mathbf{V}_{\mathcal{L}}\right)^{-}$of reducts is well-understood and locally finite, e.g.:
- Modal algebras = Boolean algebras $+\diamond$,
- Heyting algebras $=$ Distributive lattices $+\rightarrow$,

Free algebra as colimit of a chain

- In many cases, a variety $\left(\mathbf{V}_{\mathcal{L}}\right)^{-}$of reducts is well-understood and locally finite, e.g.:
- Modal algebras = Boolean algebras + \diamond,
- Heyting algebras $=$ Distributive lattices $+\rightarrow$,
- Regard $F_{\mathbf{v}_{\mathcal{L}}}\left(x_{1}, \ldots, x_{n}\right)$ as colimit of a chain of finite algebras in the reduced signature, and add the additional operation(s) step-by-step:

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool

Free algebra step-by-step

Free
image-total functor

Application to KB

Free algebra as colimit of a chain

Free alg's via
functor on partial alg's

Dion Coumans and
Sam van Gool

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f

Free alg's via

Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- B_{n} : \mathcal{L}-equivalence classes of formulas in T_{n}

Free alg's via

Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- B_{n} : \mathcal{L}-equivalence classes of formulas in T_{n}

Free alg's via

Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- B_{n} : \mathcal{L}-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- $B_{n}: \mathcal{L}$-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- $B_{n}: \mathcal{L}$-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- $B_{n}: \mathcal{L}$-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- $B_{n}: \mathcal{L}$-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- $B_{n}: \mathcal{L}$-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

```
Free
```

image-total
functor

Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- $B_{n}: \mathcal{L}$-equivalence classes of formulas in T_{n}

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra step-by-step

Free

image-total
functor
Application to KB

Free algebra as colimit of a chain

- T_{n} : formulas in variables x_{1}, \ldots, x_{m} of rank $\leq n$ in operation f
- B_{n} : \mathcal{L}-equivalence classes of formulas in T_{n}

$$
F_{\mathbf{v}_{\mathcal{L}}}\left(x_{1}, \ldots, x_{m}\right)=\operatorname{colim}_{n \geq 0} B_{n}
$$

Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

Research Question

Can B_{n+1} be obtained from B_{n} by a uniform method?

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool

Free algebra step-by-step

Free

Research Question

Can B_{n+1} be obtained from B_{n} by a uniform method?

- Yes, if the variety is defined by pure rank 1 equations [N. Bezhanishvili, Kurz]

Research Question

Can B_{n+1} be obtained from B_{n} by a uniform method?

- Yes, if the variety is defined by pure rank 1 equations [N. Bezhanishvili, Kurz]
- Yes, in some particular cases outside this class: S4 modal algebras [Ghilardi], Heyting algebras [Ghilardi, N. Bezhanishvili \& Gehrke].

Research Question

Can B_{n+1} be obtained from B_{n} by a uniform method?

- Yes, if the variety is defined by pure rank 1 equations [N. Bezhanishvili, Kurz]
- Yes, in some particular cases outside this class: S4 modal algebras [Ghilardi], Heyting algebras [Ghilardi, N. Bezhanishvili \& Gehrke].
- Not always, since logics can be undecidable.

Research Question

Can B_{n+1} be obtained from B_{n} by a uniform method?

- Yes, if the variety is defined by pure rank 1 equations [N. Bezhanishvili, Kurz]
- Yes, in some particular cases outside this class: S4 modal algebras [Ghilardi], Heyting algebras [Ghilardi, N. Bezhanishvili \& Gehrke].
- Not always, since logics can be undecidable.
- We give general sufficient conditions under which this is possible (known cases follow as particular instances).

Free alg's via
functor on
partial alg's

Partial algebras

- In the chain, B_{n+1} is a partial algebra, where the domain of the operation f is B_{n}.

Free alg's via
functor on partial alg's Dion Coumans

Partial algebras

- In the chain, B_{n+1} is a partial algebra, where the domain of the operation f is B_{n}.
- The variety \mathbf{V} is contained in a category $\mathbf{p V}$ of partial algebras for the variety \mathbf{V}.

Partial algebras

- In the chain, B_{n+1} is a partial algebra, where the domain of the operation f is B_{n}.
- The variety \mathbf{V} is contained in a category $\mathbf{p V}$ of partial algebras for the variety \mathbf{V}.
- A homomorphism $h: A \rightarrow B$ of partial algebras is a function which preserves all total operations, and preserves the partial operation f whenever defined.

Partial algebras

- In the chain, B_{n+1} is a partial algebra, where the domain of the operation f is B_{n}.
- The variety \mathbf{V} is contained in a category $\mathbf{p V}$ of partial algebras for the variety \mathbf{V}.
- A homomorphism $h: A \rightarrow B$ of partial algebras is a function which preserves all total operations, and preserves the partial operation f whenever defined.
- A homomorphism $h: A \rightarrow B$ is image-total if the image of h is contained in the domain of f^{B}.

Free image-total functor

Definition

Definition

A functor $F: \mathbf{p V} \rightarrow \mathbf{p V}$ is free image-total if there is a component-wise image-total natural transformation $\eta: 1_{\mathrm{pv}} \rightarrow F$ such that, for all image-total $h: A \rightarrow B$, there exists a unique $\bar{h}: F A \rightarrow B$ making the following diagram commute:

Free image-total functor

Main theorem

Theorem
Let $\eta: 1 \rightarrow F$ be a free image-total functor and $A_{0} \in \mathbf{p V}$. Let A_{ω} be the partial algebra-colimit of the image-total chain $\left\{\eta_{F^{n}\left(A_{0}\right)}: F^{n}\left(A_{0}\right) \rightarrow F^{n+1}\left(A_{0}\right)\right\}_{n \geq 0}$. If A_{ω} is in \mathbf{V}, then A_{ω} is the free total \mathbf{V}-algebra over A_{0}.

Free image-total functor

Main theorem

Theorem
Let $\eta: 1 \rightarrow F$ be a free image-total functor and $A_{0} \in \mathbf{p V}$. Let A_{ω} be the partial algebra-colimit of the image-total chain $\left\{\eta_{F^{n}\left(A_{0}\right)}: F^{n}\left(A_{0}\right) \rightarrow F^{n+1}\left(A_{0}\right)\right\}_{n \geq 0}$. If A_{ω} is in \mathbf{V}, then A_{ω} is the free total \mathbf{V}-algebra over A_{0}.

Proof.
Category-theoretic arguments.

Free image-total functor

Main theorem

Theorem

Let $\eta: 1 \rightarrow F$ be a free image-total functor and $A_{0} \in \mathrm{pV}$. Let A_{ω} be the partial algebra-colimit of the image-total chain $\left\{\eta_{F^{n}\left(A_{0}\right)}: F^{n}\left(A_{0}\right) \rightarrow F^{n+1}\left(A_{0}\right)\right\}_{n \geq 0}$. If A_{ω} is in \mathbf{V}, then A_{ω} is the free total \mathbf{V}-algebra over A_{0}.

Proof.

Category-theoretic arguments.
Now, to apply this theorem:

Free image-total functor

Main theorem

Theorem

Let $\eta: 1 \rightarrow F$ be a free image-total functor and $A_{0} \in \mathbf{p V}$. Let A_{ω} be the partial algebra-colimit of the image-total chain
$\left\{\eta_{F^{n}\left(A_{0}\right)}: F^{n}\left(A_{0}\right) \rightarrow F^{n+1}\left(A_{0}\right)\right\}_{n \geq 0}$.
If A_{ω} is in V , then A_{ω} is the free total V -algebra over A_{0}.
Proof.
Category-theoretic arguments.
Now, to apply this theorem:

- We construct a free image-total functor for any set of quasi-equations,

Free image-total functor

Main theorem

Theorem

Let $\eta: 1 \rightarrow F$ be a free image-total functor and $A_{0} \in \mathbf{p V}$. Let A_{ω} be the partial algebra-colimit of the image-total chain
$\left\{\eta_{F^{n}\left(A_{0}\right)}: F^{n}\left(A_{0}\right) \rightarrow F^{n+1}\left(A_{0}\right)\right\}_{n \geq 0}$.
If A_{ω} is in \mathbf{V}, then A_{ω} is the free total \mathbf{V}-algebra over A_{0}.
Proof.
Category-theoretic arguments.
Now, to apply this theorem:

- We construct a free image-total functor for any set of quasi-equations,
- We give sufficient conditions under which $A_{\omega} \in \mathbf{V}$.
Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

Free image-total functor

and
Sam van Gool

Free algebra
step-by-step
Free
image-total functor

Application to KB

Construction

- Let \mathcal{E} be a set of quasi-equations (of rank at most 1) axiomatizing the variety \mathbf{V}.

Free alg's via
functor on partial alg's

Free image-total functor

Construction

- Let \mathcal{E} be a set of quasi-equations (of rank at most 1) axiomatizing the variety \mathbf{V}.
- For $A \in \mathbf{p V}$, define

$$
F_{\mathcal{E}}(A):=\left[A+F_{\mathbf{V}^{-}}(\mathbf{f} A)\right] / \theta_{A}
$$

Free alg's via
functor on partial alg's

Free image-total functor

Dion Coumans and
Sam van Gool

$$
F_{\mathcal{E}}(A):=\left[A+F_{\mathfrak{V}-}(\mathbf{f} A)\right] / \theta_{A}
$$

- \mathbf{V}^{-}: reduct of \mathbf{V} to the signature of total operations,

Free image-total functor

$$
F_{\mathcal{E}}(A):=\left[A+F_{\mathcal{V}^{-}}(\mathbf{f} A)\right] / \theta_{A}
$$

- \mathbf{V}^{-}: reduct of \mathbf{V} to the signature of total operations,
- $\mathbf{f} A$: formal elements $\{\mathbf{f} \boldsymbol{a}: a \in A\}$, yielding partial operation $a \mapsto \mathbf{f} a$ for $a \in A$,

Free image-total functor

$$
F_{\mathcal{E}}(A):=\left[A+F_{\mathfrak{V}-}(\mathbf{f} A)\right] / \theta_{A}
$$

- \mathbf{V}^{-}: reduct of \mathbf{V} to the signature of total operations,
- $\mathbf{f} A$: formal elements $\{\mathbf{f} a: a \in A\}$, yielding partial operation $a \mapsto f a$ for $a \in A$,
- θ_{A} : smallest $\mathbf{p V}$-congruence on $A+F_{\mathbf{V}^{-}}(\mathbf{f} A)$ containing $\left\langle f^{A} a, \mathbf{f a} a\right.$, for all $a \in \operatorname{dom}\left(f^{A}\right)$.

Free image-total functor

- Let \mathcal{E} be a set of quasi-equations (of rank at most 1) axiomatizing the variety \mathbf{V}.
- For $A \in \mathbf{p V}$, define

$$
F_{\mathcal{E}}(A):=\left[A+F_{\mathbf{V}^{-}}(\mathbf{f} A)\right] / \theta_{A}
$$

- \mathbf{V}^{-}: reduct of \mathbf{V} to the signature of total operations,
- $\mathbf{f} A$: formal elements $\{\mathbf{f} a: a \in A\}$, yielding partial operation $a \mapsto \mathbf{f a}$ for $a \in A$,
- θ_{A} : smallest $\mathbf{p V}$-congruence on $A+F_{\mathbf{V}^{-}}(\mathbf{f} A)$ containing $\left\langle f^{A} a, \mathbf{f a} a\right.$, for all $a \in \operatorname{dom}\left(f^{A}\right)$.
- η_{A} is the composite

$$
A \mapsto A+F_{\mathfrak{V}^{-}}(\mathbf{f} A) \rightarrow F_{\mathcal{E}}(A) .
$$

Free alg's via
functor on partial alg's

Dion Coumans and
Sam van Gool

Free image-total functor

Lemma

$F_{\mathcal{E}}$ is a free image-total functor with universal arrow η. Furthermore, if $A_{0} \in \mathbf{p V}$ is such that each component $\eta_{F_{\mathcal{E}}^{n}\left(A_{0}\right)}: F_{\mathcal{E}}^{n}\left(A_{0}\right) \rightarrow F_{\mathcal{E}}^{n+1}\left(A_{0}\right)$ is an embedding, then $A_{\omega} \in \mathbf{V}$.

Free alg's via
functor on partial alg's

Free image-total functor

Dion Coumans and
Sam van Gool

Lemma

$F_{\mathcal{E}}$ is a free image-total functor with universal arrow η. Furthermore, if $A_{0} \in \mathbf{p V}$ is such that each component $\eta_{F_{\mathcal{E}}^{n}\left(A_{0}\right)}: F_{\mathcal{E}}^{n}\left(A_{0}\right) \rightarrow F_{\mathcal{E}}^{n+1}\left(A_{0}\right)$ is an embedding, then $A_{\omega} \in \mathbf{V}$.

Proof.

Uses universal algebra for partial algebras.

Free image-total functor

Lemma

$F_{\mathcal{E}}$ is a free image-total functor with universal arrow η. Furthermore, if $A_{0} \in \mathbf{p V}$ is such that each component $\eta_{F_{\mathcal{E}}^{n}\left(A_{0}\right)}: F_{\mathcal{E}}^{n}\left(A_{0}\right) \rightarrow F_{\mathcal{E}}^{n+1}\left(A_{0}\right)$ is an embedding, then $A_{\omega} \in \mathbf{V}$.

Proof.

Uses universal algebra for partial algebras.
Corollary
If $A_{0} \in \mathbf{p V}$ is such that each component
$\eta_{F_{\varepsilon}^{n}\left(A_{0}\right)}: F_{\mathcal{E}}^{n}\left(A_{0}\right) \rightarrow F_{\mathcal{E}}^{n+1}\left(A_{0}\right)$ is an embedding, then A_{ω} is the free total V -algebra over A_{0}.
Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

The variety KB

Dion Coumans and
Sam van Gool

Free algebra
step-by-step
Free
image-total functor

Application to KB

- Signature $=\perp, \top, \vee, \wedge, \neg, \diamond$
Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

The variety KB

Dion Coumans and
Sam van Gool

Free algebra
step-by-step
Free
image-total functor

Application to

 KB- Signature $=\perp, \top, \vee, \wedge, \neg, \diamond$
- Axioms = Boolean algebras +

$$
\begin{aligned}
\diamond \perp & =\perp \\
\diamond(x \vee y) & =\diamond x \vee \diamond y \\
x \leq \neg \diamond y & \rightarrow y \leq \neg \diamond x .
\end{aligned}
$$

The variety KB

Dion Coumans and
Sam van Gool

Free algebra step-by-step
Free
image-total functor

- Signature $=\perp, \top, \vee, \wedge, \neg, \diamond$
- Axioms = Boolean algebras +

$$
\begin{aligned}
\diamond \perp & =\perp \\
\diamond(x \vee y) & =\diamond x \vee \diamond y \\
x \leq \neg \diamond y & \rightarrow y \leq \neg \diamond x .
\end{aligned}
$$

- (Finite) Duality theory:

The variety KB

Dion Coumans and
Sam van Gool

Free algebra step-by-step

Free
image-total functor

- Signature $=\perp, \top, \vee, \wedge, \neg, \diamond$
- Axioms = Boolean algebras +

$$
\begin{aligned}
\diamond \perp & =\perp \\
\diamond(x \vee y) & =\diamond x \vee \diamond y \\
x \leq \neg \diamond y & \rightarrow y \leq \neg \diamond x .
\end{aligned}
$$

- (Finite) Duality theory:
- KB algebras \leftrightarrow Sets with a symmetric relation

Free alg's via
functor on partial alg's

Free algebra

```
step-by-step
```

Free

The variety KB

Dion Coumans

- Signature $=\perp, \top, \vee, \wedge, \neg, \diamond$
- Axioms = Boolean algebras +

$$
\begin{aligned}
\diamond \perp & =\perp \\
\diamond(x \vee y) & =\diamond x \vee \diamond y \\
x \leq \neg \diamond y & \rightarrow y \leq \neg \diamond x .
\end{aligned}
$$

- (Finite) Duality theory:
- KB algebras \leftrightarrow Sets with a symmetric relation
- Partial KB algebras \leftrightarrow Sets with an equivalence relation ~ and a quasi-symmetric relation R satisfying $R \circ \sim \subseteq R$
Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

The functor $F_{\text {KB }}$

- By definition, for a partial KB algebra A,

$$
F_{\mathrm{KB}}(A)=\left[A+F_{\mathrm{BA}}(\diamond A)\right] / \theta_{A} .
$$

KB

Free alg's via
functor on partial alg's

Dion Coumans and
Sam van Gool

Free algebra
step-by-step
Free
image-total functor

```
Application to
```

```
Application to
```


The functor $F_{\text {KB }}$

- By definition, for a partial KB algebra A,

$$
F_{\mathrm{KB}}(A)=\left[A+F_{\mathrm{BA}}(\diamond A)\right] / \theta_{A} .
$$

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool
Free algebra
step-by-step
Free
image-total functor
Application to
Application to
KB

- By definition, for a partial KB algebra A,

$$
F_{\mathrm{KB}}(A)=\left[A+F_{\mathrm{BA}}(\diamond A)\right] / \theta_{A} .
$$

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool

Free algebra
step-by-step
Free
image-total functor

- By definition, for a partial KB algebra A,

$$
F_{\mathrm{KB}}(A)=\left[A+F_{\mathrm{BA}}(\diamond A)\right] / \theta_{\mathrm{A}} .
$$

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool

The functor $F_{\text {KB }}$

- By definition, for a partial KB algebra A,

$$
F_{\mathrm{KB}}(A)=\left[A+F_{\mathrm{BA}}(\diamond A)\right] / \theta_{\mathrm{A}} .
$$

- Using correspondence theory, one can explicitly calculate a first-order definition of the points in $G_{K B}(X, R, \sim)$

Free alg's via
functor on partial alg's

The functor $F_{\text {KB }}$

- By definition, for a partial KB algebra A,

$$
F_{\mathrm{KB}}(A)=\left[A+F_{\mathrm{BA}}(\diamond A)\right] / \theta_{A} .
$$

- Using correspondence theory, one can explicitly calculate a first-order definition of the points in $G_{K B}(X, R, \sim)$
- These points are normal forms for KB.
Free alg's via
functor on
partial alg's
Dion Coumans
and
Sam van Gool
Free algebra
step-by-step
Free
image-total
functor
Application to
KB

The chain for KB

First steps

Free alg's via
functor on partial alg's Dion Coumans and Sam van Gool

Free alg's via
functor on
partial alg's
Dion Coumans and Sam van Gool

Free algebra step-by-step

```
Free
```

image-total
functor

The chain for KB

(part of) $G_{K B}^{2}\left(X_{0}\right)$

Free alg's via functor on partial alg's

Dion Coumans
and
Sam van Gool

Free algebra
step-by-step
Free
image-total functor

```
Application to
```

KB

The chain for S4

First steps
KB

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool

Free algebra step-by-step
Free
image-total functor

```
Application to
```

```
Application to
```


The chain for S4

First steps

Free alg's via
functor on
partial alg's
Dion Coumans and
Sam van Gool

Free algebra step-by-step
Free
image-total functor

```
Application to
```

KB

The chain for S4

First steps

Free alg's via
functor on partial alg's

Dion Coumans and
Sam van Gool

Free algebra step-by-step

Free

Free algebras via a functor on partial algebras

Dion Coumans and Sam van Gool

Topology, Algebra and Categories in Logic (TACL)
26 - 30 July 2011
Marseilles, France

