## On the transport of finiteness structures

Lionel Vaux, mainly based on joint work with Christine Tasson Institut de Mathématiques de Luminy, Marseille, France

TACL 2011, Marseille July 26-30 2011

## Sets and relations

Definition
The category Rel of sets and relations has sets as objects and relations as morphisms: $f \in \operatorname{Rel}(A, B) \Longleftrightarrow f \subseteq A \times B$.
Relational composition is given by:

$$
(\alpha, \gamma) \in g \circ f \Longleftrightarrow \exists \beta,(\alpha, \beta) \in f \wedge(\beta, \gamma) \in g .
$$

Rel as a model of linear logic

- compact closed: $\otimes=\times$ and $f^{\perp}={ }^{t} f$;
- cartesian and cocartesian: $\biguplus$ is a biproduct;
- exponential structure: given by the comonad ! $=\mathfrak{M}_{\mathrm{f}}$.


## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{!}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel' is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel' is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).
A key intuition

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel' is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).
A key intuition

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel ${ }^{!}$is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).
A key intuition

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel' is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).
A key intuition

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel' is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).
A key intuition

## The relational model of the $\lambda$-calculus

Apply the co-Kliesli construction
$\operatorname{Rel}^{\prime}(A, B)=\operatorname{Rel}(!A, B)$ with composition given by:
$g \circ!f=\left\{\left(\sum_{i=1}^{n} \bar{\alpha}_{i}, \gamma\right) ; \exists\left(\left[\beta_{1}, \ldots, \beta_{n}\right], \gamma\right) \in g \wedge \forall i,\left(\bar{\alpha}_{i}, \beta_{i}\right) \in f\right\}$
Rel' is cartesian closed with product $\uplus$.
Moreover it is cpo-enriched (for set inclusion).
A key intuition
Morphisms in Rel' are the support of power series.

## Quantitative semantics

## Idea (Girard, pre-LL)

Interpret a term $s$ as a linear combination: $(s)=\sum_{\alpha \in \llbracket s \rrbracket}(s)_{\alpha} \alpha$ so that application is given by:

$$
(s t)_{\beta}=\sum_{(\bar{\alpha}, \beta) \in \llbracket s \rrbracket}(s)_{(\bar{\alpha}, \beta)}(t)^{\bar{\alpha}}
$$

where $\left.\left.(t)^{\left[\alpha_{1}, \ldots, \alpha_{k}\right]}=(t)\right)_{\alpha_{1}} \cdots(t)\right)_{\alpha_{k}}$.

## Quantitative semantics

## Idea (Girard, pre-LL)

Interpret a term $s$ as a linear combination: $(s)=\sum_{\alpha \in \llbracket s \rrbracket}(s)_{\alpha} \alpha$ so that application is given by:

$$
(s t)_{\beta}=\sum_{(\bar{\alpha}, \beta) \in \llbracket s \rrbracket}(s)_{(\bar{\alpha}, \beta)}(t)^{\bar{\alpha}}
$$

where $\left.(t)^{\left[\alpha_{1}, \ldots, \alpha_{k}\right]}=(t)\right)_{\alpha_{1}} \cdots(t)_{\alpha_{k}}$.
We need some notion of convergence!

## Quantitative semantics

## Idea (Girard, pre-LL)

Interpret a term $s$ as a linear combination: $(s)=\sum_{\alpha \in[s s]}(s)_{\alpha} \alpha$ so that application is given by:

$$
(s t)_{\beta}=\sum_{(\bar{\alpha}, \beta) \in \llbracket s]}(s\rangle_{(\bar{\alpha}, \beta)}(t)^{\bar{\alpha}}
$$

where $\left.\left.(t)^{\left[\alpha_{1}, \ldots, \alpha_{k}\right]}=(t)\right)_{\alpha_{1}} \cdots(t)\right)_{\alpha_{k}}$.
We need some notion of convergence!
Such intuitions were at the core of the invention of linear logic.

## Quantitative semantics

## Idea (Girard, pre-LL)

Interpret a term $s$ as a linear combination: $(s)=\sum_{\alpha \in[s s]}(s)_{\alpha} \alpha$ so that application is given by:

$$
(s t)_{\beta}=\sum_{(\bar{\alpha}, \beta) \in \llbracket s]}(s)_{(\bar{\alpha}, \beta)}(t)^{\bar{\alpha}}
$$

where $\left.\left.(t)^{\left[\alpha_{1}, \ldots, \alpha_{k}\right]}=(t)\right)_{\alpha_{1}} \cdots(t)\right)_{\alpha_{k}}$.
We need some notion of convergence!
Such intuitions were at the core of the invention of linear logic.
Finiteness spaces (Ehrhard, 2000's)
In a typed setting, the sum is always finite.
Led to the introduction of the differential $\lambda$-calculus
(Ehrhard-Regnier, 2004):
differentiation as a natural transformation $A \otimes!A \multimap!A$.

## Finiteness spaces

## Short version

The category Fin of finiteness spaces is the tight orthogonality category (in the sense of Hyland-Schalk, 2003) obtained from Rel by setting:

$$
a \perp_{A} a^{\prime} \Longleftrightarrow a \cap a^{\prime} \in \mathfrak{P}_{\mathrm{f}}(A)
$$

## Finiteness spaces

## Short version

The category Fin of finiteness spaces is the tight orthogonality category (in the sense of Hyland-Schalk, 2003) obtained from Rel by setting:

$$
a \perp_{A} a^{\prime} \Longleftrightarrow a \cap a^{\prime} \in \mathfrak{P}_{\mathrm{f}}(A)
$$

More explicitly

- A finiteness space is a pair $(|\mathcal{A}|, \mathfrak{F}(\mathcal{A}))$ s.t. $|\mathcal{A}|$ is a set and $\mathfrak{F}(\mathcal{A})=\mathfrak{F}(\mathcal{A})^{\perp \perp} \subseteq \mathfrak{P}(|\mathcal{A}|)$.
- A finitary relation $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B})$ is a relation $f \in \operatorname{Rel}(|\mathcal{A}|,|\mathcal{B}|)$ s.t.:
- $a \in \mathfrak{F}(\mathcal{A})$ implies $f \cdot a \in \mathfrak{F}(\mathcal{B})$;
- $b^{\prime} \in \mathfrak{F}\left(\mathcal{B}^{\perp}\right)$ implies ${ }^{t} f \cdot b^{\prime} \in \mathfrak{F}\left(\mathcal{A}^{\perp}\right)$.


## Finiteness spaces as a model of linear logic

## Short version

All the constructions for multiplicative, additive and exponential structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor


## Finiteness spaces as a model of linear logic

## Short version

All the constructions for multiplicative, additive and exponential structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor


In other words
The relational interpretation of linear logic (or typed $\lambda$-calculus) is always finitary.

## Finiteness spaces as a model of linear logic

## Short version

All the constructions for multiplicative, additive and exponential structure work out as described by Hyland and Schalk.

Moreover, all this structure is preserved by the forgetful functor


In other words
The relational interpretation of linear logic (or typed $\lambda$-calculus) is always finitary.

## But. . .

One must prove that these constructions do provide the necessary structure "by hand".

For instance, the associativity of $\otimes$ follows from the fact that

$$
\{a \times b ; a \in \mathfrak{F}(\mathcal{A}), b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}=\left\{c \subseteq|\mathcal{A} \otimes \mathcal{B}| ; c_{1} \in \mathfrak{F}(\mathcal{A}), c_{2} \in \mathfrak{F}(\mathcal{B})\right\}
$$

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that

$$
f \cdot \alpha \in \mathfrak{F}(\mathcal{B}) \text { for all } \alpha \in A .
$$

Then

$$
\mathfrak{F}=\{a \subseteq A ; f \cdot a \in \mathfrak{F}(\mathcal{B})\}
$$

is a finiteness structure on $A$.

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that

$$
f \cdot \alpha \in \mathfrak{F}(\mathcal{B}) \text { for all } \alpha \in A \text {. }
$$

Then

$$
\mathfrak{F}=\{a \subseteq A ; f \cdot a \in \mathfrak{F}(\mathcal{B})\}
$$

is a finiteness structure on $A$.

## Remark

This means $f$ maps finite subsets to finitary subsets, which is necessary for $\mathfrak{F}$ to contain all finite subsets of $A$.

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that

$$
f \cdot \alpha \in \mathfrak{F}(\mathcal{B}) \text { for all } \alpha \in A \text {. }
$$

Then

$$
\mathfrak{F}=\{a \subseteq A ; f \cdot a \in \mathfrak{F}(\mathcal{B})\}
$$

is a finiteness structure on $A$.
More precisely:

$$
\mathfrak{F}=\{f \backslash b ; b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp} .
$$

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that

$$
f \cdot \alpha \in \mathfrak{F}(\mathcal{B}) \text { for all } \alpha \in A \text {. }
$$

Then

$$
\mathfrak{F}=\{a \subseteq A ; f \cdot a \in \mathfrak{F}(\mathcal{B})\}
$$

is a finiteness structure on $A$.
More precisely:

$$
\mathfrak{F}=\{f \backslash b ; b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp} .
$$

Definition

$$
f \backslash b=\bigcup\{a \subseteq A ; f \cdot a \subseteq b\}
$$

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that

$$
f \cdot \alpha \in \mathfrak{F}(\mathcal{B}) \text { for all } \alpha \in A .
$$

Then

$$
\mathfrak{F}=\{a \subseteq A ; f \cdot a \in \mathfrak{F}(\mathcal{B})\}
$$

is a finiteness structure on $A$.
More precisely:

$$
\mathfrak{F}=\{f \backslash b ; b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp} .
$$

Example
Consider the set $\mathfrak{M}_{\mathrm{f}}(|\mathcal{B}|)$ and the support relation $\sigma$.
Then $\sigma \cdot \bar{b}=\operatorname{supp}(\bar{b}), f \backslash b=b^{!}=\mathfrak{M}_{\mathrm{f}}(b)$ and

$$
\mathfrak{F}(!\mathcal{B})=\left\{b^{\prime} ; b \in \mathfrak{F}(\mathcal{B})\right\}^{\perp \perp}=\{\bar{b} \subseteq|!B| ; \operatorname{supp}(\bar{b}) \in \mathfrak{F}(\mathcal{B})\}
$$

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that

$$
f \cdot \alpha \in \mathfrak{F}(\mathcal{B}) \text { for all } \alpha \in A .
$$

Then

$$
\mathfrak{F}=\{a \subseteq A ; f \cdot a \in \mathfrak{F}(\mathcal{B})\}
$$

is a finiteness structure on $A$.
More precisely:

$$
\mathfrak{F}=\{f \backslash b ; b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp} .
$$

Sketch of proof.
Take $a \in\{f \backslash b ; b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}$ and $b^{\prime} \in \mathfrak{F}\left(\mathcal{B}^{\perp}\right)$, and find (using AC) $a^{\prime} \subseteq_{\mathrm{f}} A$ s.t. $f \cdot a \cap b^{\prime} \subseteq f \cdot a^{\prime}$.
(Very similar to the characterization of ! $\mathcal{A}$ in Ehrhard's paper.)

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f_{i}$ be a relation from $A$ to $\left|\mathcal{B}_{i}\right|$ such that

$$
f_{i} \cdot \alpha \in \mathfrak{F}\left(\mathcal{B}_{i}\right) \text { for all } \alpha \in A .
$$

Then

$$
\mathfrak{F}=\left\{a \subseteq A ; f_{i} \cdot a \in \mathfrak{F}\left(\mathcal{B}_{i}\right), \forall i \in I\right\}
$$

is a finiteness structure on $A$.
More precisely:

$$
\mathfrak{F}=\left\{\bigcap_{i \in I} f \backslash b_{i} ; b_{i} \in \mathfrak{F}\left(\mathcal{B}_{i}\right), \forall i \in I\right\}^{\perp \perp} .
$$

## Transporting a finiteness structure

Theorem (Transport [Tasson-V. 2011])
Let $f_{i}$ be a relation from $A$ to $\left|\mathcal{B}_{i}\right|$ such that

$$
f_{i} \cdot \alpha \in \mathfrak{F}\left(\mathcal{B}_{i}\right) \text { for all } \alpha \in A .
$$

Then

$$
\mathfrak{F}=\left\{a \subseteq A ; f_{i} \cdot a \in \mathfrak{F}\left(\mathcal{B}_{i}\right), \forall i \in I\right\}
$$

is a finiteness structure on $A$.
More precisely:

$$
\mathfrak{F}=\left\{\bigcap_{i \in I} f \backslash b_{i} ; b_{i} \in \mathfrak{F}\left(\mathcal{B}_{i}\right), \forall i \in I\right\}^{\perp \perp} .
$$

Example
Consider the set $|\mathcal{A}| \times|\mathcal{B}|$ and the projection relations. Then
$\{a \times b ; a \in \mathfrak{F}(\mathcal{A}), b \in \mathfrak{F}(\mathcal{B})\}^{\perp \perp}=\left\{c \subseteq|\mathcal{A} \otimes \mathcal{B}| ; c_{1} \in \mathfrak{F}(\mathcal{A}), c_{2} \in \mathfrak{F}(\mathcal{B})\right\}$.

## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow$ Rel is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}: \mathbf{F i n} \rightarrow \mathbf{F i n}$ with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T} \mathcal{A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T} \mathcal{A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.


## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}:$ Fin $\rightarrow$ Fin with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.

Definition
$\phi: T \Rightarrow U$ is lax natural if $\phi_{B} \circ T f \subseteq U f \circ \phi_{A}$
Example
The support relation $\sigma: \mathfrak{M}_{\mathrm{f}} \Rightarrow 1_{\text {Rel }}$.

## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}:$ Fin $\rightarrow$ Fin with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.


## Definition

$f: A \rightarrow B$ is almost-functional if $\alpha \cdot \in \mathfrak{P}_{\mathrm{f}}(B)$ for all $\alpha \in A$. In other words: $f$ preserves finite sets.

## Remark

This ensures the transport theorem always applies.

## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}:$ Fin $\rightarrow$ Fin with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.


## Remark

Preservation of identities and composition is trivially deduced from that of $T$.

## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}: \mathbf{F i n} \rightarrow \mathbf{F i n}$ with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.

Sketch of proof.
It only remains to prove $T f \in \operatorname{Fin}(\mathcal{T} \mathcal{A}, \mathcal{T B})$, i.e.:

- $\bar{a} \in \mathfrak{F}(\mathcal{T A})$ implies $T f \cdot \bar{a} \in \mathfrak{F}(\mathcal{T B})$ : by lax naturality;
- $\bar{b} \in \mathfrak{F}(\mathcal{T B})^{\perp}$ implies ${ }^{t}(T f) \cdot \bar{b} \in \mathfrak{F}(\mathcal{T A})^{\perp}$ :


## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}: \mathbf{F i n} \rightarrow \mathbf{F i n}$ with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.

Sketch of proof.
It only remains to prove $T f \in \operatorname{Fin}(\mathcal{T} \mathcal{A}, \mathcal{T B})$, i.e.:

- $\bar{a} \in \mathfrak{F}(\mathcal{T A})$ implies $T f \cdot \bar{a} \in \mathfrak{F}(\mathcal{T B})$ : by lax naturality;
- $\bar{b} \in \mathfrak{F}(\mathcal{T B})^{\perp}$ implies ${ }^{t}(T f) \cdot \bar{b} \in \mathfrak{F}(\mathcal{T A})^{\perp}:$ ???


## Transport is functorial

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a functor on relations, and
$\phi: T \Rightarrow 1_{\text {Rel }}$ is an almost-functional lax natural transformation.
Then the following defines a functor $\mathcal{T}:$ Fin $\rightarrow$ Fin with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.

Counter-example The functor $-\infty$ of streams, equipped with the obvious support relation, does not preserve finitary relations!
E.g. the total endorelation is finitary on $\mathbf{2}$, but not on $\mathbf{2}^{\boldsymbol{\infty}}$.

Theorem (Transport functors [Tasson-V. 2011])
Assume $T: \mathbf{R e l} \rightarrow \mathbf{R e l}$ is a symmetric functor on relations, and $\phi: T \Rightarrow 1_{\mathbf{R e l}}$ is an almost-functional lax natural transformation.
Assume moreover that there exists a shape relation on $(T, \phi)$.
Then the following defines a functor $\mathcal{T}: \mathbf{F i n} \rightarrow \mathbf{F i n}$ with web $T$ :

- for all $\mathcal{A} \in \mathbf{F i n},|\mathcal{T} \mathcal{A}|=T|\mathcal{A}|$ and $\mathfrak{F}(\mathcal{T} \mathcal{A})$ is transported from $\mathfrak{F}(\mathcal{A})$ along $\phi_{|\mathcal{A}|}$;
- for all $f \in \operatorname{Fin}(\mathcal{A}, \mathcal{B}), \mathcal{T} f=T f$.


## Definition

A shape relation on $(T, \phi)$ is an almost-functional lax natural transformation $\mu$ from $T$ to a constant functor $Z$ such that:
for all $\bar{a} \subseteq T A, \bar{a}$ is finite as soon as $\phi_{A} \cdot \bar{a}$ and $\mu_{A} \cdot \bar{a}$ are.
$T$ is symmetric if $T^{t} f={ }^{t} T f$.

## What is transport good for?

## Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary $\mathcal{A}$-support and finitary $\mathcal{B}$-support.

## What is transport good for?

## Constructing finiteness spaces

e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary $\mathcal{A}$-support and finitary $\mathcal{B}$-support.
... functorially
i.e. datatypes.

## What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary $\mathcal{A}$-support and finitary $\mathcal{B}$-support.
... functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors among which those for algebraic datatypes.

## What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary $\mathcal{A}$-support and finitary $\mathcal{B}$-support.
... functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors among which those for algebraic datatypes.
Provided a finitary semantics of typed recursion [Tasson-V., 2011]

## What is transport good for?

Constructing finiteness spaces
e.g., the finiteness space of binary trees with nodes in $|\mathcal{A}|$ and leaves in $|\mathcal{B}|$, with finitess structure given by bounded height, finitary $\mathcal{A}$-support and finitary $\mathcal{B}$-support.
... functorially
i.e. datatypes.

Characterize the least fixpoints of a large class of functors among which those for algebraic datatypes.
Provided a finitary semantics of typed recursion [Tasson-V., 2011]
Higher order linear logic?

## Transport of other structures

Coherence spaces
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that $f \cdot \alpha \in \mathfrak{C}(\mathcal{B})$ for all $\alpha \in A$. Then

$$
\mathfrak{C}=\{a \subseteq A ; f \cdot a \in \mathfrak{C}(\mathcal{B})\}
$$

is a coherence on $A$.
More precisely: $\mathfrak{C}=\{f \backslash b ; b \in \mathcal{C}(\mathcal{B})\}^{\perp \perp}$.

## Transport of other structures

Coherence spaces
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that $f \cdot \alpha \in \mathfrak{C}(\mathcal{B})$ for all $\alpha \in A$. Then

$$
\mathfrak{C}=\{a \subseteq A ; f \cdot a \in \mathfrak{C}(\mathcal{B})\}
$$

is a coherence on $A$.
More precisely: $\mathfrak{C}=\{f \backslash b ; b \in \mathcal{C}(\mathcal{B})\}^{\perp \perp}$.
Very easy.

## Transport of other structures

Coherence spaces
Let $f$ be a relation from $A$ to $|\mathcal{B}|$ such that $f \cdot \alpha \in \mathfrak{C}(\mathcal{B})$ for all $\alpha \in A$. Then

$$
\mathfrak{C}=\{a \subseteq A ; f \cdot a \in \mathfrak{C}(\mathcal{B})\}
$$

is a coherence on $A$.
More precisely: $\mathfrak{C}=\{f \backslash b ; b \in \mathcal{C}(\mathcal{B})\}^{\perp \perp}$.
Very easy.
Totality spaces
Fail ???

## Transport and orthogonality

They play complementary roles:

- orthogonality provides the generic structure and axioms;
- transport provides a simple characterization and allows to prove the axioms.


## Transport and orthogonality

They play complementary roles:

- orthogonality provides the generic structure and axioms;
- transport provides a simple characterization and allows to prove the axioms.

Towards a more general notion of transport?

- on top of orthogonality;
- restricted to webbed models (Rel) or in an enriched setting.

Fin

