On varieties generated by standard BL-algebras

Zuzana Haniková

Institute of Computer Science, AS CR 182 07 Prague, Czech Republic zuzana@cs.cas.cz

TACL2011 : July 27, 2011

Zuzana Haniková On varieties generated by standard BL-algebras

3.5 3

Theorem

If \mathbb{V} is a subvariety of \mathbb{BL} generated by a set of standard BL-algebras, then \mathbb{V} is also generated by a finite set of standard BL-algebras.

As a consequence:

- each such variety V is finitely axiomatizable (because of the finite-class case
 [Esteva, Godo, Montagna 04, Galatos 04])
- the equational theory of V is coNP-complete (because of the finite-class case [Baaz, Hájek, Montagna, Veith 02, Hanikova 02])

BL-algebras form the equivalent algebraic semantics of the Basic Logic; both introduced in $[{\sf H}\acute{a}jek~98]$

Definition

A BL-algebra is an algebra ${\bm A}=\langle {A},*,\rightarrow,\wedge,\vee,0,1\rangle$ such that:

•
$$\langle A, \wedge, \lor, 0, 1
angle$$
 is a bounded lattice

2
$$\langle A, *, 1 \rangle$$
 is a commutative monoid

3 for all
$$x, y, z \in A$$
, $z \leq (x \rightarrow y)$ iff $x * z \leq y$

• for all
$$x, y \in A$$
, $x \wedge y = x * (x \rightarrow y)$

5 for all
$$x, y \in A$$
, $(x \to y) \lor (y \to x) = 1$

BL-algebras form a variety \mathbb{BL} .

Each BL-algebra is a subdirect product of BL-chains, so the variety \mathbb{BL} is generated by BL-chains.

向下 イヨト イヨト 三日

A BL-algebra is standard iff its domain is the real unit interval [0, 1], and its lattice order is the usual order of reals.

Let ${\bf A}$ be a standard BL-algebra. Then its monoidal operation * is continuous w. r. t. the order topology, hence a continuous t-norm. Moreover, we have

$$x \to^{\mathbf{A}} y = \max\{z \,|\, x \ast^{\mathbf{A}} z \leq y\}.$$

Thus **A** is uniquely determined by $*^{\mathbf{A}}$; often, the notation is $[0,1]_{*}$.

Standard BL-algebras generate the variety **BL** [Hájek 98; Cignoli, Esteva, Godo and Torrens 00]

- ∢ ≣ →

t-norm	st. BL-alg.	x * y	$x \rightarrow y$ for $x > y$
Łukasiewicz	$[0,1]_{ m L}$	$\max(0, x + y - 1)$	1 - x + y
Gödel	$[0,1]_{ m G}$	$\min(x, y)$	У
product	[0, 1] _П	x · y	y/x

 $x \in [0, 1]$ is *idempotent* w. r. t. * iff x * x = x.

For each standard BL-algebra $[0,1]_*$, its idempotent elements form a closed subset of [0,1].

The complement of this set is a union of countably many disjoint open intervals; on the closure of each of these, * is isomorphic to

- \bullet the Łukasiewicz t-norm $*_L$ on [0,1], or
- the product t-norm $*_{\Pi}$ on [0, 1].

[Mostert, Shields 57]

Definition

Let I be a linearly ordered set with minimum i_0 and let $\{\mathbf{A}_i\}_{i \in I}$ be a family of BL-chains s. t. $\mathbf{A}_i \cap \mathbf{A}_i = 1^{\mathbf{A}_i} = 1^{\mathbf{A}_j}$ for $i \neq j \in I$. The ordinal sum $\mathbf{A} = \bigoplus_{i \in I} \mathbf{A}_i$ of $\{\mathbf{A}_i\}_{i \in I}$ is as follows: • the domain is $A = \bigcup_{i \in I} A_i$ **2** $0^{\mathbf{A}} = 0^{\mathbf{A}_{i_0}}$ and $1^{\mathbf{A}} = 1^{\mathbf{A}_{i_0}}$ • the ordering is $x \leq^{\mathbf{A}} y$ iff $\begin{cases} x, y \in A_i \text{ and } x \leq^{\mathbf{A}_i} y \\ x \in A_i \setminus \{\mathbf{1}^{\mathbf{A}_i}\} \text{ and } y \in A_i \text{ and } i < j \end{cases}$ • $x *^{\mathbf{A}} y = \begin{cases} x *^{\mathbf{A}_i} y \text{ if } x, y \in A_i \\ \min^{\mathbf{A}}(x, y) \text{ otherwise} \end{cases}$ $x \to^{\mathbf{A}} y = \begin{cases} 1^{\mathbf{A}} & \text{if } x \leq^{\mathbf{A}} y \\ x \to_{i} y & \text{if } x, y \in A_{i} \\ y & \text{otherwise} \end{cases}$

Theorem

Each standard BL-algebra is an ordinal sum of a family of BL-algebras, each of whom is an isomorphic copy of either $[0,1]_{\rm L}$ or $[0,1]_{\rm G}$ or $[0,1]_{\Pi}$ or 2 (the two-element Boolean algebra).

The elements of the sum are called components; we have L-components (isomorphic to $[0,1]_{\rm L}$), G-components (isomorphic to $[0,1]_{\rm G}$), Π -components (isomorphic to $[0,1]_{\Pi}$), and 2-components (isomorphic to $\{0,1\}_{\rm Boole}$).

Gödel components are those maximal w. r. t. inclusion.

For a standard BL-algebra one can write $\mathbf{A} = \bigoplus_{i \in I} \mathbf{A}_i$, where the ordered set *I*, as well as the isomorphism type of each of the \mathbf{A}_i 's, are uniquely determined by \mathbf{A} .

Each class of isomorphism of standard BL-algebras is given by a corresponding ordinal sum of symbols out of $\rm L,~G,~\Pi$ and 2.

For each $c \in (0, 1)$, the BL-algebra $[0, 1]_L$ is isomorphic to the *cut* product algebra $([c, 1], *_c, \rightarrow_c, c, 1)$ where

 $x *_{c} y = \max(c, x *_{\Pi} y)$ $x \to_{c} y = x \to_{\Pi} y$

The element c is called the *cut*.

As a consequence, $[0,1]_\Pi$ is partially embeddable into $[0,1]_L\oplus [0,1]_L.$

Moreover, any standard BL-algebra without L-components is partially embeddable into any infinite sum of Π -components.

The class of all standard BL-algebras generates the variety $\mathbb{B}\mathbb{L}.$

The same is true about particular examples of standard BL-algebras.

Theorem

A standard BL-algebra $\mathbf{A} = \bigoplus_{i \in I} \mathbf{A}_i$ generates the variety \mathbb{BL} iff \mathbf{A}_{i_0} is an L-component and for infinitely many $i \in I$, \mathbf{A}_i is an L-component.

This is a consequence of a theorem of [Aglianò, Montagna 03], which gives a characterization of BL-generic chains.

The variety \mathbb{SBL} is a subvariety of \mathbb{BL} given by the identity

$$(x \land (x \rightarrow 0)) \rightarrow 0 = 1$$

A standard BL-algebra is an SBL-algebra iff the first component in its ordinal sum is *not* an Ł-component.

Theorem

A standard SBL-algebra $\mathbf{A} = \bigoplus_{i \in I} \mathbf{A}_i$ generates the variety SBL iff \mathbf{A}_{i_0} is not an L-component and for infinitely many $i \in I$, $i \neq i_0$, \mathbf{A}_i is an L-component.

[Esteva, Godo, Montagna 04]

Definition

A standard BL-algebra is *canonical* iff its sum is either ωL or $\Pi \oplus \omega L$, or a finite sum of expressions from among L, G, Π and $\omega \Pi$, where no G is preceded or followed by another G, and no $\omega \Pi$ is preceded or followed by a G, a Π or another $\omega \Pi$.

Theorem

For each standard BL-algebra, there is a canonical BL-algebra generating the same variety.

In particular, there are only countably many subvarieties of \mathbb{BL} that are generated a single standard BL-algebra.

Two canonical BL-algebras are isomorphic iff they are given by the same finite ordinal sum of symbols.

Non-isomorphic canonical BL-algebras generate distinct subvarieties of $\mathbb{B}\mathbb{L}.$

Hence, there is a 1-1 correspondence between

subvarieties of \mathbb{BL} given by a single standard BL-algebra and $\omega L,\ \Pi \oplus \omega L$, and finite sums out of the symbols L, G, $\Pi,\ \omega \Pi$.

The above words are called *canonical BL-expressions*.

Given a class \mathbb{C} of standard BL-algebras, find a finite class \mathbb{C}' of standard BL-algebras s. t. $Var(\mathbb{C}) = Var(\mathbb{C}')$.

Without loss of generality, we may assume:

- ${\small \bullet \hspace{-.5em}\bullet \hspace{-.5em}\bullet \hspace{-.5em}} {\small C} \hspace{0.5em} \text{is a class of canonical BL-algebras}$
- the isomorphism classes in C are represented by canonical BL-expressions

Therefore, we may assume $\mathbb C$ (and $\mathbb C')$ is a class of canonical BL-expressions.

We use the notation $Var(\mathbb{C})$, ... in the obvious sense.

Definition

For canonical BL-expressions **A**, **B**, let $\mathbf{A} \leq \mathbf{B}$ iff $Var(\mathbf{A}) \subseteq Var(\mathbf{B})$.

 \leq is a partial order on canonical BL-expressions.

For any two canonical BL-expressions, we have

 $A \leq B$ iff $Var(A) \subseteq Var(B)$ iff $Var(\{A, B\}) = Var(B)$.

Theorem

Let \mathbb{K} , \mathbb{L} be two non-empty classes standard BL-algebras. Then the following are equivalent:

- $Var(\mathbb{K}) \subseteq Var(\mathbb{L});$
- K is partially embeddable to L.

[Esteva, Godo, Montagna 04]

Let $\mathbb L$ denote the class of canonical BL-expressions, $\mathbb L_L$ the elements of $\mathbb L$ starting with an L-component and $\mathbb L_{\overline L}$ the elements of $\mathbb L$ not starting with an L-component.

For each $i \in (\mathbb{N} \cup \{\omega\}) \setminus \{0\}$, denote \mathbb{L}^{i}_{L} the class of canonical BL-expressions starting with an L-component and with exactly *i* L-components altogether.

For each $i \in \mathbb{N} \cup \{\omega\}$, denote $\mathbb{L}^{i}_{\overline{L}}$ the class of canonical BL-expressions *not* starting with an L-component and with exactly *i* L-components

We decompose the given class $\ensuremath{\mathbb{C}}$ of canonical BL-expressions along these lines:

$$\begin{split} \mathbb{C}^i_{\mathrm{L}} &= \mathbb{C} \cap \mathbb{L}^i_{\mathrm{L}} \text{and } \mathbb{C}_{\mathrm{L}} = \bigcup_{i \in (\mathbb{N} \cup \{\omega\}) \setminus \{0\}} \mathbb{C}^i_{\mathrm{L}} \\ \text{(all algebras in } \mathbb{C} \text{ starting with an } \mathrm{L}\text{-component}\text{).} \\ \text{Analogously for } \mathbb{C}_{\overline{\mathrm{L}}}. \end{split}$$

```
The classes \mathbb{C}_{L} and \mathbb{C}_{\overline{L}} will be addressed separately.
Clearly, \mathbb{C}_{L} generates \mathbb{B}\mathbb{L} or its subvariety and \mathbb{C}_{\overline{L}} generates \mathbb{S}\mathbb{B}\mathbb{L} or its subvariety.
```

Let $\mathbb{K} = \bigcup_{i \in I} \mathbb{K}_i$, $\mathbb{L} = \bigcup_{i \in I} \mathbb{L}_i$ be classes of algebras in the same language. Assume $Var(\mathbb{K}_i) = Var(\mathbb{L}_i)$ for each $i \in I$. Then $Var(\mathbb{K}) = Var(\mathbb{L})$.

Proof: $HSP(\mathbb{K}) = HSP(\bigcup_{i \in I} \mathbb{K}_i) = HSP(\bigcup_{i \in I} HSP(\mathbb{K}_i)) ==$ $HSP(\bigcup_{i \in I} HSP(\mathbb{L}_i)) = HSP(\bigcup_{i \in I} \mathbb{L}_i) = HSP(\mathbb{L}).$

★ ∃ ▶ ★ ∃ ▶ 3 € √ Q ()

Whenever $\{k \in \mathbb{N} \mid \mathbb{C}_{L}^{k} \text{ is nonempty}\}$ is infinite or \mathbb{C}_{L}^{ω} is nonempty, we have $\operatorname{Var}(\mathbb{C}_{L}) = \mathbb{BL}$.

Then we have $Var(\mathbb{C}_{L}) = Var(\omega L) = \mathbb{B}L$.

If the above conditions are not satisfied, then there is a $k_0 \in \mathbb{N}$ such that each expression in \mathbb{C}_{L} has at most k_0 L-components. Then \mathbb{C}_{L} generates a proper subvariety of \mathbb{BL} .

Whenever $\{k \in \mathbb{N} \mid \mathbb{C}_{\overline{L}}^k \text{ is nonempty}\}$ is infinite or $\mathbb{C}_{\overline{L}}^{\omega}$ is nonempty, we have $\operatorname{Var}(\mathbb{C}_{\overline{L}}) = \mathbb{SBL}$.

Then we have $\operatorname{Var}(\mathbb{C}_{\overline{L}}) = \operatorname{Var}(\Pi \oplus \omega \mathbb{L}) = \mathbb{SBL}$.

If the above conditions are not satisfied, then there is a $k_0 \in \mathbb{N}$ such that each expression in $\mathbb{C}_{\overline{L}}$ has at most k_0 L-components. Then \mathbb{C}_L generates a proper subvariety of SBL.

Consider the classes \mathbb{C}_L and $\mathbb{C}_{\overline{L}}$ separately. The case when the number of Ł-components in elements of each of the classes is unbounded has been addressed.

It remains to find a method of solution for the case when there is an upper bound $k_0 \in \mathbb{N}$ on the number of Ł-components of each element of \mathbb{C}_L ($\mathbb{C}_{\overline{L}}$).

Recall the partition: for $1 \le k \le k_0$, we have

 $\mathbb{C}_{\mathrm{L}}^{k} = \{ \mathbf{A} \in \mathbb{C}_{\mathrm{L}} \, | \, \mathbf{A} \text{ has exactly } k \text{ L-components} \}$

and analogously for $\mathbb{C}_{\overline{L}}$ and the partition $\mathbb{C}_{\overline{L}}^k$, $k \leq k_0$.

The class \mathbb{L}^k consist of all canonical BL-expressions with exactly k L-components. The class \mathbb{L}^0 has no L-components.

For a canonical BL-expression $\mathbf{A} \in \mathbb{L}^k$, we may write

$$\mathbf{A} = \mathbf{A}_0 \oplus \mathrm{L} \oplus \mathbf{A}_1 \oplus \cdots \oplus \mathbf{A}_{k-1} \oplus \mathrm{L} \oplus \mathbf{A}_k$$

where each \mathbf{A}_j , $j \leq k$ is either the empty sum \emptyset , or a finite ordinal sum of G's and Π 's, or $\infty \Pi$.

In particular, each expression \mathbf{A}_j is an element of \mathbb{L}^0 .

(We consider \emptyset as an element of \mathbb{L}^0 .)

Fix a $k \in \mathbb{N}$.

Theorem

Let \mathbf{A} , \mathbf{B} be two canonical BL-expressions in $\mathbb{L}_{\mathbf{L}}^k$, where $\mathbf{A} = \mathbf{A}_0 \oplus \mathbf{L} \oplus \mathbf{A}_1 \oplus \cdots \oplus \mathbf{A}_{k-1} \oplus \mathbf{L} \oplus \mathbf{A}_k$ and $\mathbf{B} = \mathbf{B}_0 \oplus \mathbf{L} \oplus \mathbf{B}_1 \oplus \cdots \oplus \mathbf{B}_{k-1} \oplus \mathbf{L} \oplus \mathbf{B}_k$. Then $\mathbf{A} \preceq \mathbf{B}$ iff for each $j \leq k$, $\mathbf{A}_j \preceq \mathbf{B}_j$.

In other words, \leq on $\mathbb{L}_{\overline{L}}^{k}$ is the product order of k + 1 factors (each being \mathbb{L}^{0} ordered by \leq).

Analogously for $\mathbb{L}^k_{\mathrm{L}}$.

→ < Ξ → ...</p>

The elements of \mathbb{L}^0 are the following expressions: the empty sum \emptyset , finite ordinal sums of G- and Π -components, and the expression $\omega \Pi$. We define $\emptyset \leq \mathbf{A}$ for any BL-expression \mathbf{A} , and $\emptyset \leq \emptyset$.

Properties of \leq on \mathbb{L}^0 :

- $\infty \Pi$ is the top element of \mathbb{L}^0 and \emptyset is the bottom element;
- if $A, B \in \mathbb{L}^0$ are finite sums of G's and Π 's, then $A \preceq B$ iff A is a subsum of B.

Theorem

 \leq on \mathbb{L}^0 is a w. q. o.

()

It is well known that if (L_1, \leq_1) , (L_2, \leq_2) are w.q.o.'s, then so is their product $(L_1, \leq_1) \times (L_2, \leq_2)$.

Theorem

 \leq is a w. q. o. on $\mathbb{L}^k_{\mathrm{L}}$ and on $\mathbb{L}^k_{\overline{\mathrm{L}}}$.

In particular, there are no infinite \preceq -antichains.

문에 세종에 다

Theorem

Let $\{\mathbf{A}_i\}_{i \in I}$ be a \leq -chain in $\mathbb{L}_{\mathrm{L}}^k$. Then there is a $\sup(\{\mathbf{A}_i\}_{i \in I})$ in $\mathbb{L}_{\mathrm{L}}^k$, and $\operatorname{Var}(\{\mathbf{A}_i\}_{i \in I}) = \operatorname{Var}(\sup(\{\mathbf{A}_i\}_{i \in I}))$. Analogously for $\mathbb{L}_{\overline{\mathrm{L}}}^k$.

Let $\{\mathbf{A}_i\}_{i \in I}$ be a \leq -chain in \mathbb{C} . We say that $\{\mathbf{A}_i\}_{i \in I}$ is maximal in \mathbb{C} iff no element of \mathbb{C} can be added on top. Clearly, each $\mathbf{A} \in \mathbb{C}$ belongs to some maximal chain.

Let $\mathbb{C} \subseteq \mathbb{L}_{\mathrm{L}}^k$. Let $\{\mathbf{A}_i\}_{i \in I}$, $\{\mathbf{B}_{i'}\}_{i' \in I'}$ be two maximal \preceq -chains in \mathbb{K} . If $\{\mathbf{B}_{i'}\}_{i' \in I'}$ has a top element in \mathbb{K} , then $\sup(\{\mathbf{A}_i\}_{i \in I}) \not\prec \sup(\{\mathbf{B}_{i'}\}_{i' \in I'})$.

Corollary

Let $\mathbb{C} \subseteq \mathbb{L}_{\mathrm{L}}^{k}$. Let $\{\mathbf{A}_{i}\}_{i \in I}$, $\{\mathbf{B}_{i'}\}_{i' \in I'}$ be two maximal \preceq -chains in \mathbb{K} . If $\sup(\{\mathbf{A}_{i}\}_{i \in I}) \prec \sup(\{\mathbf{B}_{i'}\}_{i' \in I'})$, then $\{\mathbf{B}_{i'}\}_{i' \in I'}$ has no top element in \mathbb{K} , and there is a $j \in \{1, \ldots, k\}$ such that for each $i' \in I'$, $(\mathbf{B}_{i'})_{j}$ is a finite sum, whereas $(\sup(\{\mathbf{B}_{i'}\}_{i' \in I'}))_{j} = \omega \Pi$.

Analogously for $\mathbb{C} \subseteq \mathbb{L}^{k}_{\overline{L}}$).

Assume \mathbb{C}_{L}^{k} is a given class of canonical BL-expressions in \mathbb{L}_{L}^{k} . Let us denote $\mathbb{C}_{0} = \mathbb{C}_{L}^{k}$. For $n \in \mathbb{N}$, define

 $\mathbb{C}_{n+1} = \{ \mathbf{A} | \mathbf{A} = \sup(\{\mathbf{A}_i\}_{i \in I}) \text{ for some maximal chain } \{\mathbf{A}_i\}_{i \in I} \text{ in } \mathbb{C}_n \}$

Theorem

- $Var(\mathbb{C}_n) = Var(\mathbb{C}_{n+1})$ for each $n \in \mathbb{N}$
- There is an $n \le k+2$ such that

$$C_n = \mathbb{C}_{n+1}$$

$$C_n \text{ is finite}$$

문어 귀엽어 ?

Given a class \mathbb{C} of canonical BL-expressions, we can find a finite class \mathbb{C}' of canonical BL-expressions such that $Var(\mathbb{C}) = Var(\mathbb{C}')$.

Therefore, the logic of any class of standard BL-algebras is

- axiomatic extension of BL
- Initely axiomatizable
- oNP-complete

- ∢ ≣ →