On varieties generated by standard BL-algebras

Zuzana Haniková

Institute of Computer Science, AS CR
18207 Prague, Czech Republic
zuzana@cs.cas.cz
TACL2011 : July 27, 2011

Theorem

If \mathbb{V} is a subvariety of $\mathbb{B L}$ generated by a set of standard BL-algebras, then \mathbb{V} is also generated by a finite set of standard BL-algebras.

As a consequence:

- each such variety \mathbb{V} is finitely axiomatizable (because of the finite-class case [Esteva, Godo, Montagna 04, Galatos 04])
- the equational theory of \mathbb{V} is coNP-complete (because of the finite-class case [Baaz, Hájek, Montagna, Veith 02, Hanikova 02])

BL-algebras

BL-algebras form the equivalent algebraic semantics of the Basic Logic; both introduced in [Hájek 98]

Definition

A BL-algebra is an algebra $\mathbf{A}=\langle A, *, \rightarrow, \wedge, \vee, 0,1\rangle$ such that:
(1) $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded lattice
(2) $\langle A, *, 1\rangle$ is a commutative monoid
(3) for all $x, y, z \in A, z \leq(x \rightarrow y)$ iff $x * z \leq y$
(1) for all $x, y \in A, x \wedge y=x *(x \rightarrow y)$
(0) for all $x, y \in A,(x \rightarrow y) \vee(y \rightarrow x)=1$

BL-algebras form a variety $\mathbb{B L}$.
Each BL-algebra is a subdirect product of BL-chains, so the variety $\mathbb{B L}$ is generated by BL-chains.

Standard BL-algebras

A BL-algebra is standard iff its domain is the real unit interval $[0,1]$, and its lattice order is the usual order of reals.
Let \mathbf{A} be a standard BL-algebra. Then its monoidal operation $*$ is continuous w. r. t. the order topology, hence a continuous t-norm. Moreover, we have

$$
x \rightarrow^{\mathbf{A}} y=\max \left\{z \mid x *^{\mathbf{A}} z \leq y\right\}
$$

Thus \mathbf{A} is uniquely determined by $*^{\mathbf{A}}$; often, the notation is $[0,1]_{*}$.
Standard BL-algebras generate the variety $\mathbb{B L}$ [Hájek 98; Cignoli, Esteva, Godo and Torrens 00]

Examples of standard BL-algebras

t-norm	st. BL-alg.	$x * y$	$x \rightarrow y$ for $x>y$
tukasiewicz	$[0,1]_{\mathrm{L}}$	$\max (0, x+y-1)$	$1-x+y$
Gödel	$[0,1]_{\mathrm{G}}$	$\min (x, y)$	y
product	$[0,1]_{\Pi}$	$x \cdot y$	y / x

$x \in[0,1]$ is idempotent w. r. t. $*$ iff $x * x=x$.
For each standard BL-algebra $[0,1]_{*}$, its idempotent elements form a closed subset of $[0,1]$.

The complement of this set is a union of countably many disjoint open intervals; on the closure of each of these, $*$ is isomorphic to

- the Łukasiewicz t-norm $*_{\mathrm{E}}$ on $[0,1]$, or
- the product t -norm $*_{\mathrm{n}}$ on $[0,1]$.

[Mostert, Shields 57]

Ordinal sum of BL-chains

Definition

Let I be a linearly ordered set with minimum i_{0} and let $\left\{\mathbf{A}_{i}\right\}_{i \in I}$ be a family of BL-chains s. t. $\mathbf{A}_{i} \cap \mathbf{A}_{j}=1^{\mathbf{A}_{i}}=1^{\mathbf{A}_{j}}$ for $i \neq j \in I$.
The ordinal sum $\mathbf{A}=\bigoplus_{i \in I} \mathbf{A}_{i}$ of $\left\{\mathbf{A}_{i}\right\}_{i \in I}$ is as follows:
(1) the domain is $A=\bigcup_{i \in I} A_{i}$
(2) $0^{\mathbf{A}}=0^{\mathbf{A}_{i 0}}$ and $1^{\mathbf{A}}=1^{\mathbf{A}_{\text {io }}}$
(3) the ordering is $x \leq^{\boldsymbol{A}} y$ iff $\left\{x, y \in A_{i}\right.$ and $x \leq^{\mathbf{A}_{i}} y$

$$
\left\{x \in A_{i} \backslash\left\{1^{\mathbf{A}_{i}}\right\} \text { and } y \in A_{j} \text { and } i<j\right.
$$

(-) $x *^{\mathbf{A}} y=\left\{\begin{array}{l}x *^{\mathbf{A}_{i}} y \text { if } x, y \in A_{i} \\ \min ^{\mathbf{A}}(x, y) \text { otherwise }\end{array}\right.$

- $x \rightarrow^{\mathbf{A}} y= \begin{cases}1^{\mathbf{A}} & \text { if } x \leq \mathbf{A} y \\ x \rightarrow_{i} y & \text { if } x, y \in A_{i} \\ y & \text { otherwise }\end{cases}$

Standard BL-algebras as ordinal sums

Theorem

Each standard BL-algebra is an ordinal sum of a family of BL-algebras, each of whom is an isomorphic copy of either $[0,1]_{\mathrm{E}}$ or $[0,1]_{\mathrm{G}}$ or $[0,1]_{\mathrm{C}}$ or 2 (the two-element Boolean algebra).

The elements of the sum are called components; we have E -components (isomorphic to $[0,1]_{\mathrm{E}}$), G-components (isomorphic to $[0,1]_{\mathrm{G}}$),
Π-components (isomorphic to $[0,1]_{\Pi}$), and 2-components (isomorphic to $\left.\{0,1\}_{\text {Boole }}\right)$.

Gödel components are those maximal w. r. t. inclusion.
For a standard BL-algebra one can write $\mathbf{A}=\bigoplus_{i \in I} \mathbf{A}_{i}$, where the ordered set l, as well as the isomorphism type of each of the \mathbf{A}_{i} 's, are uniquely determined by \mathbf{A}.

Each class of isomorphism of standard BL-algebras is given by a corresponding ordinal sum of symbols out of $\mathrm{E}, \mathrm{G}, \Pi$ and 2 .

Remarks on partial embeddability

For each $c \in(0,1)$, the BL -algebra $[0,1]_{\mathrm{E}}$ is isomorphic to the cut product algebra $\left([c, 1], *_{c}, \rightarrow_{c}, c, 1\right)$ where

$$
\begin{aligned}
x *_{c} y & =\max (c, x * \Pi y) \\
x \rightarrow c y & =x \rightarrow \Pi y
\end{aligned}
$$

The element c is called the cut.
As a consequence, $[0,1]_{\Pi}$ is partially embeddable into $[0,1]_{\mathrm{L}} \oplus[0,1]_{\mathrm{E}}$.
Moreover, any standard BL-algebra without L -components is partially embeddable into any infinite sum of Π-components.

Standard BL-algebras generating BL

The class of all standard BL-algebras generates the variety $\mathbb{B L}$.
The same is true about particular examples of standard BL-algebras.

Theorem

A standard BL-algebra $\mathbf{A}=\bigoplus_{i \in 1} \mathbf{A}_{i}$ generates the variety $\mathbb{B L}$ iff $\mathbf{A}_{i_{0}}$ is an L-component and for infinitely many $i \in I, \mathbf{A}_{i}$ is an Ł-component.

This is a consequence of a theorem of [Aglianò, Montagna 03], which gives a characterization of BL-generic chains.

Standard BL-algebras generating SBL

The variety $\mathbb{S B L}$ is a subvariety of $\mathbb{B L}$ given by the identity

$$
(x \wedge(x \rightarrow 0)) \rightarrow 0=1
$$

A standard BL-algebra is an SBL-algebra iff the first component in its ordinal sum is not an $Ł$-component.

Theorem

A standard SBL-algebra $\mathbf{A}=\bigoplus_{i \in 1} \mathbf{A}_{i}$ generates the variety SBL iff $\mathbf{A}_{i_{0}}$ is not an L -component and for infinitely many $i \in I, i \neq i_{0}, \mathbf{A}_{i}$ is an L-component.

Canonical BL-algebras

[Esteva, Godo, Montagna 04]

Definition

A standard BL-algebra is canonical iff its sum is either $\omega \mathrm{£}$ or $\Pi \oplus \omega \not$, or a finite sum of expressions from among $Ł, G, \Pi$ and $\omega \Pi$, where no G is preceded or followed by another G, and no $\omega \Pi$ is preceded or followed by a G, a Π or another $\omega \Pi$.

Theorem

For each standard BL-algebra, there is a canonical BL-algebra generating the same variety.

In particular, there are only countably many subvarieties of $\mathbb{B L}$ that are generated a single standard BL-algebra.

Canonical BL-algebras and subvarieties of $\mathbb{B L}$

Two canonical BL-algebras are isomorphic iff they are given by the same finite ordinal sum of symbols.

Non-isomorphic canonical BL-algebras generate distinct subvarieties of BL .

Hence, there is a 1-1 correspondence between
subvarieties of $\mathbb{B L}$ given by a single standard BL-algebra and
$\omega €, \Pi \oplus \omega €$, and finite sums out of the symbols $£, G, \Pi, \omega \Pi$.
The above words are called canonical BL-expressions.

Given a class \mathbb{C} of standard BL-algebras, find a finite class \mathbb{C}^{\prime} of standard BL-algebras s. t. $\operatorname{Var}(\mathbb{C})=\operatorname{Var}\left(\mathbb{C}^{\prime}\right)$.

Without loss of generality, we may assume:
(1) \mathbb{C} is a class of canonical BL-algebras
(2) the isomorphism classes in \mathbb{C} are represented by canonical BL-expressions
Therefore, we may assume \mathbb{C} (and \mathbb{C}^{\prime}) is a class of canonical BL-expressions.
We use the notation $\operatorname{Var}(\mathbb{C}), \ldots$ in the obvious sense.

A plan for the proof

Definition

For canonical $B L$-expressions \mathbf{A}, \mathbf{B}, let $\mathbf{A} \preceq \mathbf{B}$ iff $\operatorname{Var}(\mathbf{A}) \subseteq \operatorname{Var}(\mathbf{B})$.
\preceq is a partial order on canonical BL-expressions.
For any two canonical BL-expressions, we have

$$
\mathbf{A} \preceq \mathbf{B} \text { iff } \operatorname{Var}(\mathbf{A}) \subseteq \operatorname{Var}(\mathbf{B}) \text { iff } \operatorname{Var}(\{\mathbf{A}, \mathbf{B}\})=\operatorname{Var}(\mathbf{B}) .
$$

Theorem

Let \mathbb{K}, \mathbb{L} be two non-empty classes standard BL-algebras. Then the following are equivalent:

- $\operatorname{Var}(\mathbb{K}) \subseteq \operatorname{Var}(\mathbb{L})$;
- \mathbb{K} is partially embeddable to \mathbb{L}.
[Esteva, Godo, Montagna 04]

A partition on canonical BL-expressions

Let \mathbb{L} denote the class of canonical BL-expressions, \mathbb{L}_{L} the elements of \mathbb{L} starting with an L -component and $\mathbb{L}_{\overline{\mathrm{L}}}$ the elements of \mathbb{L} not starting with an L -component.

For each $i \in(\mathbb{N} \cup\{\omega\}) \backslash\{0\}$, denote
$\mathbb{L}_{\mathrm{L}}^{i}$ the class of canonical BL-expressions starting with an E -component and with exactly i Ł-components altogether.

For each $i \in \mathbb{N} \cup\{\omega\}$, denote
$\mathbb{L}_{\overline{\mathrm{L}}}^{i}$ the class of canonical BL-expressions not starting with an
Ł-component and with exactly i Ł-components

A partition on \mathbb{C}

We decompose the given class \mathbb{C} of canonical BL-expressions along these lines:
$\mathbb{C}_{\mathrm{E}}^{i}=\mathbb{C} \cap \mathbb{L}_{\mathrm{E}}^{i}$ and $\mathbb{C}_{\mathrm{E}}=\bigcup_{i \in(\mathbb{N} \cup\{\omega\}) \backslash\{0\}} \mathbb{C}_{\mathrm{E}}^{i}$
(all algebras in \mathbb{C} starting with an E -component).
Analogously for $\mathbb{C}_{\overline{\mathrm{E}}}$.
The classes \mathbb{C}_{E} and $\mathbb{C}_{\overline{\mathrm{E}}}$ will be addressed separately.
Clearly, \mathbb{C}_{E} generates $\mathbb{B L}$ or its subvariety and
$\mathbb{C}_{\overline{\mathrm{E}}}$ generates $\mathbb{S B L}$ or its subvariety.

Substituting the generators of a variety

Lemma

Let $\mathbb{K}=\bigcup_{i \in I} \mathbb{K}_{i}, \mathbb{L}=\bigcup_{i \in I} \mathbb{L}_{i}$ be classes of algebras in the same language. Assume $\operatorname{Var}\left(\mathbb{K}_{i}\right)=\operatorname{Var}\left(\mathbb{L}_{i}\right)$ for each $i \in I$. Then $\operatorname{Var}(\mathbb{K})=\operatorname{Var}(\mathbb{L})$.

Proof:
$\operatorname{HSP}(\mathbb{K})=\operatorname{HSP}\left(\bigcup_{i \in I} \mathbb{K}_{i}\right)=\operatorname{HSP}\left(\bigcup_{i \in I} \operatorname{HSP}\left(\mathbb{K}_{i}\right)\right)==$
$\operatorname{HSP}\left(\bigcup_{i \in I} \operatorname{HSP}\left(\mathbb{L}_{i}\right)\right)=\operatorname{HSP}\left(\bigcup_{i \in I} \mathbb{L}_{i}\right)=\operatorname{HSP}(\mathbb{L})$.

Classes generating $\mathbb{B L}$

Lemma

Whenever $\left\{k \in \mathbb{N} \mid \mathbb{C}_{\mathrm{L}}^{k}\right.$ is nonempty $\}$ is infinite or $\mathbb{C}_{\mathrm{L}}^{\omega}$ is nonempty, we have $\operatorname{Var}\left(\mathbb{C}_{\mathrm{E}}\right)=\mathbb{B L}$.

Then we have $\operatorname{Var}\left(\mathbb{C}_{\mathrm{E}}\right)=\operatorname{Var}(\omega \mathrm{E})=\mathbb{B} \mathbb{L}$.
If the above conditions are not satisfied, then there is a $k_{0} \in \mathbb{N}$ such that each expression in \mathbb{C}_{E} has at most k_{0} E-components.
Then \mathbb{C}_{E} generates a proper subvariety of $\mathbb{B L}$.

Classes generating SBL

Lemma

Whenever $\left\{k \in \mathbb{N} \mid \mathbb{C}_{\overline{\mathrm{L}}}^{k}\right.$ is nonempty $\}$ is infinite or $\mathbb{C}_{\overline{\mathrm{L}}}^{\omega}$ is nonempty, we have $\operatorname{Var}\left(\mathbb{C}_{\overline{\mathrm{L}}}\right)=\mathbb{S} \mathbb{B L}$.

Then we have $\operatorname{Var}\left(\mathbb{C}_{\overline{\mathrm{E}}}\right)=\operatorname{Var}(\Pi \oplus \omega \mathrm{E})=\mathbb{S} \mathbb{B} L$.
If the above conditions are not satisfied, then there is a $k_{0} \in \mathbb{N}$ such that each expression in $\mathbb{C}_{\overline{\mathrm{E}}}$ has at most k_{0} L-components.
Then \mathbb{C}_{E} generates a proper subvariety of $\mathbb{S B L}$.

Bounded number of L -components

Consider the classes \mathbb{C}_{E} and $\mathbb{C}_{\overline{\mathrm{E}}}$ separately. The case when the number of t -components in elements of each of the classes is unbounded has been addressed.

It remains to find a method of solution for the case when there is an upper bound $k_{0} \in \mathbb{N}$ on the number of t -components of each element of $\mathbb{C}_{\mathrm{E}}\left(\mathbb{C}_{\overline{\mathrm{E}}}\right)$.

Recall the partition: for $1 \leq k \leq k_{0}$, we have

$$
\mathbb{C}_{\mathrm{E}}^{k}=\left\{\mathbf{A} \in \mathbb{C}_{\mathrm{E}} \mid \mathbf{A} \text { has exactly } k \text { E-components }\right\}
$$

and analogously for $\mathbb{C}_{\overline{\mathrm{L}}}$ and the partition $\mathbb{C}_{\overline{\mathrm{E}}}^{k}, k \leq k_{0}$.

Ordinal sums in \mathbb{L}^{k}

The class \mathbb{L}^{k} consist of all canonical BL-expressions with exactly k L -components. The class \mathbb{L}^{0} has no E -components.
For a canonical BL-expression $\mathbf{A} \in \mathbb{L}^{k}$, we may write

$$
\mathbf{A}=\mathbf{A}_{0} \oplus \mathrm{~L} \oplus \mathbf{A}_{1} \oplus \cdots \oplus \mathbf{A}_{k-1} \oplus \mathrm{~L} \oplus \mathbf{A}_{k}
$$

where each $\mathbf{A}_{j}, j \leq k$ is either the empty sum \emptyset, or a finite ordinal sum of G's and Π 's, or $\infty \Pi$.
In particular, each expression \mathbf{A}_{j} is an element of \mathbb{L}^{0}.
(We consider \emptyset as an element of \mathbb{L}^{0}.)

\preceq on $\mathbb{L}_{\mathrm{L}}^{k}$ and $\mathbb{L}_{\hat{\mathrm{L}}}^{k}$

Fix a $k \in \mathbb{N}$.

Theorem

Let A, B be two canonical BL-expressions in $\mathbb{L} \frac{k}{\mathrm{~L}}$, where
$\mathbf{A}=\mathbf{A}_{0} \oplus \mathrm{~L} \oplus \mathbf{A}_{1} \oplus \cdots \oplus \mathbf{A}_{k-1} \oplus \mathrm{~L} \oplus \mathbf{A}_{k}$ and
$\mathbf{B}=\mathbf{B}_{0} \oplus \mathrm{~L} \oplus \mathbf{B}_{1} \oplus \cdots \oplus \mathbf{B}_{k-1} \oplus \mathrm{~L} \oplus \mathbf{B}_{k}$.
Then $\mathbf{A} \preceq \mathbf{B}$ iff for each $j \leq k, \mathbf{A}_{j} \preceq \mathbf{B}_{j}$.
In other words, \preceq on $\mathbb{L} \frac{k}{\mathrm{E}}$ is the product order of $k+1$ factors (each being \mathbb{L}^{0} ordered by \preceq).

Analogously for $\mathbb{L}_{\mathrm{L}}^{k}$.

The elements of \mathbb{L}^{0} are the following expressions: the empty sum \emptyset, finite ordinal sums of G - and Π-components, and the expression $\omega \Pi$.
We define $\emptyset \preceq \mathbf{A}$ for any BL-expression \mathbf{A}, and $\emptyset \preceq \emptyset$.
Properties of \preceq on \mathbb{L}^{0} :

- $\infty \Pi$ is the top element of \mathbb{L}^{0} and \emptyset is the bottom element;
- if $\mathbf{A}, \mathbf{B} \in \mathbb{L}^{0}$ are finite sums of G 's and Π 's, then $\mathbf{A} \preceq \mathbf{B}$ iff \mathbf{A} is a subsum of \mathbf{B}.

Theorem

\preceq on \mathbb{L}^{0} is a w. q.o.

\preceq on $\mathbb{L}_{\mathrm{L}}^{k}$ and $\mathbb{L}_{\frac{\mathrm{L}}{}}^{k}$ revisited

It is well known that if $\left(L_{1}, \leq_{1}\right),\left(L_{2}, \leq_{2}\right)$ are w.q.o.'s, then so is their product $\left(L_{1}, \leq_{1}\right) \times\left(L_{2}, \leq_{2}\right)$.

Theorem

\preceq is a w. q. o. on $\mathbb{L}_{\mathrm{L}}^{k}$ and on $\mathbb{L} \frac{k}{\mathrm{E}}$.
In particular, there are no infinite \preceq-antichains.

Theorem

Let $\left\{\mathbf{A}_{i}\right\}_{i \in I}$ be a \preceq-chain in $\mathbb{L}_{\mathrm{L}}^{k}$. Then there is a $\sup \left(\left\{\mathbf{A}_{i}\right\}_{i \in I}\right)$ in $\mathbb{L}_{\mathrm{L}}^{k}$, and $\operatorname{Var}\left(\left\{\mathbf{A}_{i}\right\}_{i \in I}\right)=\operatorname{Var}\left(\sup \left(\left\{\mathbf{A}_{i}\right\}_{i \in 1}\right)\right)$. Analogously for $\mathbb{L}_{\underline{E}}$.

Let $\left\{\mathbf{A}_{i}\right\}_{i \in I}$ be a \preceq-chain in \mathbb{C}. We say that $\left\{\mathbf{A}_{i}\right\}_{i \in I}$ is maximal in \mathbb{C} iff no element of \mathbb{C} can be added on top. Clearly, each $\mathbf{A} \in \mathbb{C}$ belongs to some maximal chain.

\preceq-chains

Lemma

Let $\mathbb{C} \subseteq \mathbb{L}_{\mathrm{L}}^{k}$. Let $\left\{\mathbf{A}_{i}\right\}_{i \in I},\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}$ be two maximal \preceq-chains in \mathbb{K}. If $\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}$ has a top element in \mathbb{K}, then $\sup \left(\left\{\mathbf{A}_{i}\right\}_{i \in I}\right) \nprec \sup \left(\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}\right)$.

Corollary

Let $\mathbb{C} \subseteq \mathbb{L}_{\mathrm{L}}^{k}$. Let $\left\{\mathbf{A}_{i}\right\}_{i \in I},\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}$ be two maximal \preceq-chains in \mathbb{K}. If $\sup \left(\left\{\mathbf{A}_{i}\right\}_{i \in I}\right) \prec \sup \left(\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}\right)$, then $\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}$ has no top element in \mathbb{K}, and there is a $j \in\{1, \ldots, k\}$ such that for each $i^{\prime} \in I^{\prime},\left(\mathbf{B}_{i^{\prime}}\right)_{j}$ is a finite sum, whereas $\left(\sup \left(\left\{\mathbf{B}_{i^{\prime}}\right\}_{i^{\prime} \in I^{\prime}}\right)\right)_{j}=\omega \Pi$.

Analogously for $\mathbb{C} \subseteq \mathbb{L} \frac{k}{\bar{E}}$).

Iterating the suprema construction

Assume $\mathbb{C}_{\mathrm{L}}^{k}$ is a given class of canonical BL-expressions in $\mathbb{L}_{\mathrm{L}}^{k}$. Let us denote $\mathbb{C}_{0}=\mathbb{C}_{\mathrm{L}}^{k}$.
For $n \in \mathbb{N}$, define

$$
\mathbb{C}_{n+1}=\left\{\mathbf{A} \mid \mathbf{A}=\sup \left(\left\{\mathbf{A}_{i}\right\}_{i \in I}\right) \text { for some maximal chain }\left\{\mathbf{A}_{i}\right\}_{i \in I} \text { in } \mathbb{C}_{n}\right\}
$$

Theorem

- $\operatorname{Var}\left(\mathbb{C}_{n}\right)=\operatorname{Var}\left(\mathbb{C}_{n+1}\right)$ for each $n \in \mathbb{N}$
- There is an $n \leq k+2$ such that
(1) $\mathbb{C}_{n}=\mathbb{C}_{n+1}$
(2) \mathbb{C}_{n} is finite

Conclusion

Given a class \mathbb{C} of canonical BL-expressions, we can find a finite class \mathbb{C}^{\prime} of canonical BL-expressions such that $\operatorname{Var}(\mathbb{C})=\operatorname{Var}\left(\mathbb{C}^{\prime}\right)$.
Therefore, the logic of any class of standard BL-algebras is
(1) axiomatic extension of BL
(2) finitely axiomatizable
(0) coNP-complete

