On Reiterman Conversion

Jan Pavlík

Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic pavlik@fme.vutbr.cz

We study several kinds of categories of algebras over a general category C. Reiterman's (by himself unpublished) result, which enables to connect different approaches, is extended to see more connections between various descriptions of algebras.

Outline

Functor algebras and derived categories

2 Algebraic categories

3 Reiterman conversion

Overview of algebras over a general category

Outline

1 Functor algebras and derived categories

2 Algebraic categories

8 Reiterman conversion

Overview of algebras over a general category

Outline

- 1 Functor algebras and derived categories
- 2 Algebraic categories
- 3 Reiterman conversion
- Overview of algebras over a general category

Outline

- 1 Functor algebras and derived categories
- 2 Algebraic categories
- 3 Reiterman conversion
- Overview of algebras over a general category

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

- 1 Functor algebras and derived categories
- 2 Algebraic categories
- 3 Reiterman conversion
- Overview of algebras over a general category

Functor algebras

Definition (Algebra for a functor)

Let C be a category and $F : C \to C$ be a functor.

F-algebra: a pair (A, α) , where $\alpha : FA \to A$ is a morphism in C

a morphism of F-algebras $\phi : (A, \alpha) \to (B, \beta)$ is $\phi : A \to B$ in C such that the diagram commutes:

Alg *F*: the category of *F*-algebras and *F*-algebra morphisms. f-algebraic category: a category concretely isomorphic to **Alg** *F* for some *F*.

Functor algebras

Definition (Algebra for a functor)

Let C be a category and $F : C \to C$ be a functor.

F-algebra: a pair (A, α) , where $\alpha : FA \to A$ is a morphism in C

a morphism of F-algebras $\phi : (A, \alpha) \to (B, \beta)$ is $\phi : A \to B$ in C such that the diagram commutes:

Alg *F*: the category of *F*-algebras and *F*-algebra morphisms. f-algebraic category: a category concretely isomorphic to **Alg** *F* for some *F*.

Functor algebras

Definition (Algebra for a functor)

Let C be a category and $F : C \to C$ be a functor.

F-algebra: a pair (A, α) , where $\alpha : FA \to A$ is a morphism in C

a morphism of F-algebras $\phi : (A, \alpha) \to (B, \beta)$ is $\phi : A \to B$ in C such that the diagram commutes:

(日)

э

Alg *F*: the category of *F*-algebras and *F*-algebra morphisms. Falgebraic category: a category concretely isomorphic to **Alg** *F* for some *F*.
 Functor algebras and derived categories
 Algebraic categories
 Reiterman conversion
 Overview of algebras over a general category
 F

 •••••••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 •••

Functor algebras

Definition (Algebra for a functor)

Let C be a category and $F : C \to C$ be a functor.

F-algebra: a pair (A, α) , where $\alpha : FA \to A$ is a morphism in C

a morphism of F-algebras $\phi : (A, \alpha) \to (B, \beta)$ is $\phi : A \to B$ in C such that the diagram commutes:

Alg F: the category of F-algebras and F-algebra morphisms.
f-algebraic category: a category concretely isomorphic to Alg F for some F.

Monad algebras

Definition (Algebra for a monad)

Let C be a category and $\mathbf{M} = (M, \eta, \mu)$ be a monad on C.

M-algebra: an *M*-algebra (A, α) satisfying Eilenberg-Moore identities:

 $\alpha \circ \mu_{\mathcal{A}} = \alpha \circ M\alpha,$

 $\alpha \circ \eta_{\mathcal{A}} = \mathrm{id}_{\mathcal{A}}$

M-alg: the category of M-algebras and M-algebra morphisms (Eilenberg-Moore category for M).
 monadic category: category isomorphic to M-alg for some monad M

Monad algebras

Definition (Algebra for a monad)

Let C be a category and $\mathbf{M} = (M, \eta, \mu)$ be a monad on C.

M-algebra: an *M*-algebra (A, α) satisfying Eilenberg-Moore identities:

$$\alpha \circ \mu_{\mathbf{A}} = \alpha \circ \mathbf{M}\alpha,$$

$$\alpha \circ \eta_{\mathcal{A}} = \mathrm{id}_{\mathcal{A}}$$

M-alg: the category of M-algebras and M-algebra morphisms (Eilenberg-Moore category for M).

monadic category: category isomorphic to **M**-alg for some monad **M**

Monad algebras

Definition (Algebra for a monad)

Let C be a category and $\mathbf{M} = (M, \eta, \mu)$ be a monad on C.

M-algebra: an *M*-algebra (A, α) satisfying Eilenberg-Moore identities:

$$\alpha \circ \mu_{A} = \alpha \circ M\alpha,$$

$$\alpha \circ \eta_{\mathcal{A}} = \mathrm{id}_{\mathcal{A}}$$

M-alg: the category of M-algebras and *M*-algebra morphisms (Eilenberg-Moore category for M).

monadic category: category isomorphic to $\mathbf{M}-\mathbf{alg}$ for some monad \mathbf{M}

Polymeric categories [J.P. 2009]

Polymer of an algebra

A *n*-polymer of an *F*-algebra (A, α) is a morphism $\alpha^{(n)} : F^n(A) \to A$ in \mathcal{C} defined recursively:

$$\alpha^{(0)} = \mathrm{id}_{\mathcal{A}}, \quad \alpha^{(n+1)} = \alpha \circ F \alpha^{(n)}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

$\alpha^{(1)}$: $FA \stackrel{\alpha}{\to} A$,

 $\alpha^{(2)} \colon F^2 A \xrightarrow{F\alpha} FA \xrightarrow{\alpha} A,$

 $\alpha^{(3)}: F^3A \xrightarrow{F^2\alpha} F^2A \xrightarrow{F\alpha} FA \xrightarrow{\alpha} A.$

etc.

Polymeric categories [J.P. 2009]

Polymer of an algebra

A *n*-polymer of an *F*-algebra (A, α) is a morphism $\alpha^{(n)} : F^n(A) \to A$ in \mathcal{C} defined recursively:

$$\alpha^{(0)} = \mathrm{id}_{\mathcal{A}}, \quad \alpha^{(n+1)} = \alpha \circ F \alpha^{(n)}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- $\alpha^{(1)}$: $FA \xrightarrow{\alpha} A$,
- $\alpha^{(2)}: F^2A \xrightarrow{F\alpha} FA \xrightarrow{\alpha} A,$

 $\alpha^{(3)} \colon F^3 A \xrightarrow{F^2 \alpha} F^2 A \xrightarrow{F \alpha} FA \xrightarrow{\alpha} A.$

etc.

Polymeric categories [J.P. 2009]

Polymer of an algebra

A *n*-polymer of an *F*-algebra (A, α) is a morphism $\alpha^{(n)} : F^n(A) \to A$ in \mathcal{C} defined recursively:

$$\alpha^{(0)} = \mathrm{id}_{\mathcal{A}}, \quad \alpha^{(n+1)} = \alpha \circ F \alpha^{(n)}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

$\alpha^{(1)}: FA \xrightarrow{\alpha} A,$ $\alpha^{(2)}: F^{2}A \xrightarrow{F\alpha} FA \xrightarrow{\alpha} A,$ $\alpha^{(3)}: F^{3}A \xrightarrow{F^{2}\alpha} F^{2}A \xrightarrow{F\alpha} FA \xrightarrow{\alpha} A.$

Polymeric categories [J.P. 2009]

Polymer of an algebra

A *n*-polymer of an *F*-algebra (A, α) is a morphism $\alpha^{(n)} : F^n(A) \to A$ in \mathcal{C} defined recursively:

$$\alpha^{(0)} = \mathrm{id}_{\mathcal{A}}, \quad \alpha^{(n+1)} = \alpha \circ F \alpha^{(n)}.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

$\begin{array}{ll} \alpha^{(1)} \colon \ \textit{FA} \xrightarrow{\alpha} \textit{A}, \\ \alpha^{(2)} \colon \ \textit{F}^{2}\textit{A} \xrightarrow{\textit{F}\alpha} \textit{FA} \xrightarrow{\alpha} \textit{A}, \\ \alpha^{(3)} \colon \ \textit{F}^{3}\textit{A} \xrightarrow{\textit{F}^{2}\alpha} \textit{F}^{2}\textit{A} \xrightarrow{\textit{F}\alpha} \textit{FA} \xrightarrow{\alpha} \textit{A}. \\ & \text{etc.} \end{array}$

Polymeric category

polymeric term - natural transformation $\phi : G \to F^m$ for some domain functor $G : C \to C$ and arity $m \in Ord$

polymeric identity - a pair $(\phi,\psi)_p$ of polymeric terms with the same domain

satisfaction of polymeric identity $(\phi, \psi)_p$ by an *F*-algebra (A, α) for $\phi : G \to F^m$, $\psi : G \to F^n$:

 $(A, \alpha) \models (\phi, \psi)_{P}$ iff $\alpha^{(m)} \circ \phi_{A} = \alpha^{(n)} \circ \psi_{A}$

category of *F*-algebras determined by satisfaction of polymeric identities

Polymeric category

polymeric term - natural transformation $\phi : G \to F^m$ for some domain functor $G : C \to C$ and arity $m \in Ord$

polymeric identity - a pair $(\phi, \psi)_p$ of polymeric terms with the same domain

satisfaction of polymeric identity $(\phi, \psi)_p$ by an *F*-algebra (A, α) for $\phi : G \to F^m$, $\psi : G \to F^n$:

 $(A, \alpha) \models (\phi, \psi)_{\rho} \text{ iff } \alpha^{(m)} \circ \phi_{A} = \alpha^{(n)} \circ \psi_{A}$

category of *F*-algebras determined by isfaction of polymeric identities

Polymeric category

polymeric term - natural transformation $\phi : G \to F^m$ for some domain functor $G : C \to C$ and arity $m \in Ord$

polymeric identity - a pair $(\phi, \psi)_p$ of polymeric terms with the same domain

satisfaction of polymeric identity $(\phi, \psi)_p$ by an *F*-algebra (A, α) for $\phi : G \to F^m$, $\psi : G \to F^n$: $(A, \alpha) \models (\phi, \psi)_p$ iff $\alpha^{(m)} \circ \phi_A = \alpha^{(n)} \circ \psi_A$

satisfaction of polymeric identities

Polymeric category

polymeric term - natural transformation $\phi : G \to F^m$ for some domain functor $G : C \to C$ and arity $m \in Ord$

polymeric identity - a pair $(\phi, \psi)_p$ of polymeric terms with the same domain

satisfaction of polymeric identity $(\phi, \psi)_p$ by an *F*-algebra (A, α) for $\phi : G \to F^m$, $\psi : G \to F^n$:

 $(A,\alpha) \models (\phi,\psi)_{p} \text{ iff } \alpha^{(m)} \circ \phi_{A} = \alpha^{(n)} \circ \psi_{A}$

satisfaction of polymeric identities

variety

Polymeric category

polymeric term - natural transformation $\phi : G \to F^m$ for some domain functor $G : C \to C$ and arity $m \in Ord$

polymeric identity - a pair $(\phi, \psi)_p$ of polymeric terms with the same domain

satisfaction of polymeric identity $(\phi, \psi)_p$ by an *F*-algebra (A, α) for $\phi : G \to F^m$, $\psi : G \to F^n$:

$$\begin{array}{c} \mathsf{A}, \alpha) \models (\phi, \psi)_{p} \text{ iff } \alpha^{(m)} \circ \phi_{A} = \alpha^{(n)} \circ \psi_{A} \\ \text{i.e.} \quad \mathsf{GA} \xrightarrow{\phi_{A}} \mathsf{F}^{m} \mathsf{A} \quad \text{commutes.} \\ & \downarrow^{\psi_{A}} \qquad \qquad \downarrow^{\alpha^{(m)}} \\ \mathsf{F}^{n} \mathsf{A} \xrightarrow{\alpha^{(n)}} \mathsf{A} \end{array}$$

polymeric variety category of *F*-algebras determined by satisfaction of polymeric identities

()

polymeric category category concretely isomorphic to a polymeric variety

Polymeric category

polymeric term - natural transformation $\phi : G \to F^m$ for some domain functor $G : C \to C$ and arity $m \in Ord$

polymeric identity - a pair $(\phi, \psi)_p$ of polymeric terms with the same domain

satisfaction of polymeric identity $(\phi, \psi)_p$ by an *F*-algebra (A, α) for $\phi : G \to F^m$, $\psi : G \to F^n$:

 $(A, \alpha) \models (\phi, \psi)_{p} \text{ iff } \alpha^{(m)} \circ \phi_{A} = \alpha^{(n)} \circ \psi_{A}$ i.e. $GA \xrightarrow{\phi_{A}} F^{m}A$ commutes. $\downarrow^{\psi_{A}} \qquad \qquad \downarrow^{\alpha^{(m)}} A$

polymeric variety category of *F*-algebras determined by satisfaction of polymeric identities

polymeric category category concretely isomorphic to a polymeric variety

L-algebraic categories [J.P. 2010 thesis]

Limits of concrete categories

The metacategory **Con** C of concrete categories and concrete functors over some base category C is complete (even some large limits exist).

Definition

A limit of a concrete diagram whose objects are f-algebraic categories is called an *l-algebraic category*

Observation

Every polymeric category is l-algebraic.

L-algebraic categories [J.P. 2010 thesis]

Limits of concrete categories

The metacategory **Con** C of concrete categories and concrete functors over some base category C is complete (even some large limits exist).

Definition

A limit of a concrete diagram whose objects are f-algebraic categories is called an *l-algebraic category*

Observation

Every polymeric category is l-algebraic.

L-algebraic categories [J.P. 2010 thesis]

Limits of concrete categories

The metacategory **Con** C of concrete categories and concrete functors over some base category C is complete (even some large limits exist).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A limit of a concrete diagram whose objects are f-algebraic categories is called an *l-algebraic category*

Observation

Every polymeric category is l-algebraic.

Example

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category M-alg for a monad
 M = (M, η, μ) is a polymeric variety of M-algebras induced by (η, id_{Id})_p, (μ, id_{M²})_p. Hence, every monadic category is polymeric, thus I-algebraic.
- Expression of the monoids as a polymeric category.

Associationly is not polymeric identity so we need a university functor. We can use the monadicity of category of monoids, namely the word monad $M = \{M, \eta, mu\}$ gained from generating a free monoid, $\eta_A : A \rightarrow A^*$ is inclusion of generators and $\mu_A : \{A^*\}^* \rightarrow A^*$ is the concatenation of components of a chain. Then *Monoids* = M—alg, which is monadic \Rightarrow polymeric.

Example

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M}-\mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category.

functor. We can use the monadicity of category of monoids namely the word monad $M = (M, \eta, mu)$ gained from generating a free monoid, $\eta_A : A \rightarrow A^n$ is inclusion of generators and $\mu_A : (A^n)^n \rightarrow A^n$ is the concatenation of components of a chain. Then *Monoids* = M-alg, which is monadic \Rightarrow polymeric.

Example

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M} \mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category.

Associativity is not polymeric identity so we need a different functor. We can use the monadicity of category of monoids, namely the word monad $\mathbf{M} = (M, \eta, mu)$ gained from generating a free monoid, $\eta_A : A \to A^*$ is inclusion of generators and $\mu_A : (A^*)^* \to A^*$ is the concatenation of components of a chain. Then *Monoids* = $\mathbf{M} - \mathbf{alg}$, which is monadic \Rightarrow polymeric.

Example

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M} \mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category.

Associativity is not polymeric identity so we need a different functor. We can use the monadicity of category of monoids, namely the word monad $\mathbf{M} = (M, \eta, mu)$ gained from generating a free monoid, $\eta_A : A \to A^*$ is inclusion of generators and $\mu_A : (A^*)^* \to A^*$ is the concatenation of components of a chain. Then *Monoids* = \mathbf{M} -alg, which is monadic \Rightarrow polymeric.

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M} \mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category. Associativity is not polymeric identity so we need a different functor. We can use the monadicity of category of monoids, namely the word monad M = (M, η, mu) gained from generating a free monoid, η_A: A → A^{*} is inclusion of generators and μ_A: (A^{*})^{*} → A^{*} is the concatenation of components of a chain. Then Monoids = M − alg, which is monadic ⇒ polymeric.

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M}-\mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category. Associativity is not polymeric identity so we need a different functor. We can use the monadicity of category of monoids, namely the word monad M = (M, η, mu) gained from generating a free monoid, η_A : A → A* is inclusion of generators and μ_A : (A*)* → A* is the concatenation of components of a chain. Then Monoids = M-alg, which is monadic ⇒ polymeric.

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M} \mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category. Associativity is not polymeric identity so we need a different functor. We can use the monadicity of category of monoids, namely the word monad M = (M, η, mu) gained from generating a free monoid, η_A: A → A* is inclusion of generators and μ_A: (A*)* → A* is the concatenation of components of a chain. Then Monoids = M-alg, which is monadic ⇒ polymeric.

- A polymeric term in Alg τ for a signature τ corresponds to a τ-tree having all branches, which have the variables in leaves, of the same length. Hence commutative groupoids form a polymeric variety while semigroups do not.
- An Eilenberg-Moore category $\mathbf{M}-\mathbf{alg}$ for a monad $\mathbf{M} = (M, \eta, \mu)$ is a polymeric variety of *M*-algebras induced by $(\eta, \mathrm{id}_{\mathrm{Id}})_p, (\mu, \mathrm{id}_{M^2})_p$. Hence, every monadic category is polymeric, thus l-algebraic.
- Expression of the monoids as a polymeric category. Associativity is not polymeric identity so we need a different functor. We can use the monadicity of category of monoids, namely the word monad M = (M, η, mu) gained from generating a free monoid, η_A : A → A* is inclusion of generators and μ_A : (A*)* → A* is the concatenation of components of a chain. Then Monoids = M-alg, which is monadic ⇒ polymeric.

Example

Expression of the monoids as an I-algebraic category.

The assignment $(A, \alpha) \mapsto (A, \alpha^{(n)})$ induces a functor P_n : Alg $M \to \text{Alg } M^n$ for every finite n. The assignment Alg – is a contravariant functor EndSet \to Con Set hence there are functors Alg η : Alg $M \to \text{Alg Id}$ and Alg μ : Alg $M \to \text{Alg } M^2$. Then category of monoids can be expressed as the concrete limit of

ヘロト ヘ部ト ヘヨト ヘヨト

Example

Expression of the monoids as an I-algebraic category. The assignment $(A, \alpha) \mapsto (A, \alpha^{(n)})$ induces a functor P_n : Alg $M \to Alg M^n$ for every finite n. The assignment Alg – is

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Example

Expression of the monoids as an I-algebraic category. The assignment $(A, \alpha) \mapsto (A, \alpha^{(n)})$ induces a functor P_n : Alg $M \to Alg M^n$ for every finite n. The assignment Alg – is a contravariant functor $EndSet \rightarrow Con Set$ hence there are

・ロト・西ト・山田・山田・山下・

Example

Expression of the monoids as an I-algebraic category. The assignment $(A, \alpha) \mapsto (A, \alpha^{(n)})$ induces a functor P_n : Alg $M \to Alg M^n$ for every finite n. The assignment Alg – is a contravariant functor $EndSet \rightarrow Con Set$ hence there are functors Alg η : Alg $M \to$ Alg Id and Alg μ : Alg $M \to$ Alg M^2 .

Example

Expression of the monoids as an I-algebraic category. The assignment $(A, \alpha) \mapsto (A, \alpha^{(n)})$ induces a functor $P_n : \operatorname{Alg} M \to \operatorname{Alg} M^n$ for every finite *n*. The assignment $\operatorname{Alg} -$ is a contravariant functor $\operatorname{End} Set \to \operatorname{Con} Set$ hence there are functors $\operatorname{Alg} \eta : \operatorname{Alg} M \to \operatorname{Alg} \operatorname{Id}$ and $\operatorname{Alg} \mu : \operatorname{Alg} M \to \operatorname{Alg} M^2$. Then category of monoids can be expressed as the concrete limit of

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Algebras for a type [Rosický 1977], [Linton 1969]

Let \mathcal{C} be a general category. Let Ω be a class of *operation symbols*.

Definition

type: on C with the domain Ω - a mapping $t : \Omega \to (ObC)^2$, and we write $t(\sigma) = (t_0(\sigma), t_1(\sigma))$ for $\sigma \in \Omega$.

t-algebra: a pair (A, S) made up of a *C*-object *A* and a mapping $S : \Omega \to \operatorname{Mor}Set$ such that $S(\sigma) : \operatorname{hom}(t_0(\sigma), A) \to \operatorname{hom}(t_1(\sigma), A) \ \forall \sigma \in \Omega$ *t*-algebra morphism $f : (A, S) \to (B, T)$ - a morphism $f : A \to B$ such that $\forall \sigma \in \Omega$ the diagram commutes $\operatorname{hom}(t_0(\sigma), A) \xrightarrow{\quad S(\sigma) \quad } \operatorname{hom}(t_1(\sigma), A)$ $\downarrow \operatorname{hom}(t_0(\sigma), f) \quad \downarrow \operatorname{hom}(t_1(\sigma), f)$ $\operatorname{hom}(t_0(\sigma), B) \xrightarrow{\quad T(\sigma) \quad } \operatorname{hom}(t_1(\sigma), B)$

t-alg: the (meta)category of t-algebras and their morphisms

Algebras for a type [Rosický 1977], [Linton 1969]

Let \mathcal{C} be a general category. Let Ω be a class of *operation symbols*.

Definition

type: on C with the domain Ω - a mapping $t : \Omega \to (ObC)^2$, and we write $t(\sigma) = (t_0(\sigma), t_1(\sigma))$ for $\sigma \in \Omega$.

t-algebra: a pair (A, S) made up of a *C*-object *A* and a mapping $S : \Omega \to \operatorname{Mor} Set$ such that $S(\sigma) : \operatorname{hom}(t_0(\sigma), A) \to \operatorname{hom}(t_1(\sigma), A) \ \forall \sigma \in \Omega$

Algebras for a type [Rosický 1977], [Linton 1969]

Let \mathcal{C} be a general category. Let Ω be a class of *operation symbols*.

Definition

type: on C with the domain Ω - a mapping $t : \Omega \to (ObC)^2$, and we write $t(\sigma) = (t_0(\sigma), t_1(\sigma))$ for $\sigma \in \Omega$.

t-algebra: a pair (A, S) made up of a *C*-object *A* and a mapping $S: \Omega \to \operatorname{Mor}Set$ such that

$$S(\sigma): \hom(t_0(\sigma), A) \to \hom(t_1(\sigma), A) \ \forall \sigma \in \Omega$$

$$\hom(t_0(\sigma), B) \xrightarrow{T(\sigma)} \hom(t_1(\sigma), B)$$

t-alg: the (meta)category of t-algebras and their morphisms

Algebras for a type [Rosický 1977], [Linton 1969]

Let ${\mathcal C}$ be a general category. Let Ω be a class of operation symbols.

Definition

type: on
$$C$$
 with the domain Ω - a mapping $t : \Omega \to (ObC)^2$,
and we write $t(\sigma) = (t_0(\sigma), t_1(\sigma))$ for $\sigma \in \Omega$.

t-algebra: a pair
$$(A, S)$$
 made up of a *C*-object *A* and a mapping $S: \Omega \to \operatorname{Mor}Set$ such that

$$S(\sigma): \hom(t_0(\sigma), A)
ightarrow \hom(t_1(\sigma), A) \ \forall \sigma \in \Omega$$

t-algebra morphism
$$f : (A, S) \to (B, T)$$
 - a morphism $f : A \to B$
such that $\forall \sigma \in \Omega$ the diagram commutes
 $\hom(t_0(\sigma), A) \xrightarrow{S(\sigma)} \hom(t_1(\sigma), A)$
 $\bom(t_0(\sigma), f) \qquad \qquad \bom(t_1(\sigma), f)$

$$\hom(t_0(\sigma), B) \xrightarrow{T(\sigma)} \hom(t_1(\sigma), B)$$

t-alg: the (meta)category of t-algebras and their morphisms

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

 $\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

 $\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

$\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

$\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

$\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

 $\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

 $\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every *t*-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} Set$ of the mapping S.

Equational theories [Rosický 1977]

Terms of type t

- σ is the term of arity-pair $t(\sigma)$ for every $\sigma \in \Omega$.
- there is a term \overline{f} of (Y, X) (morphism-constant) for every $f: X \to Y$
- composition p · q is a term of arity-pair (Z, X) if q, p are terms of arity-pairs (Z, Y) and (Y, X), respectively.
- $\overline{f} \cdot \overline{g} = \overline{g \circ f}$ for every pair of composable morphisms g, f.

 $\mathcal{T}(t)$ - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every t-algebra (A, S) there is an *evaluation of terms* on (A, S) given by term-extension $\overline{S} : \mathcal{T}(t) \to \operatorname{Mor} \mathcal{S}et$ of the mapping S.

Equational theories

Let (A, S) be a *t*-algebra and (p, q) be a *t*-equation. satisfaction of the equation (p, q) by a *t*-algebra $(A, S) - (A, S) \models (p, q)$ iff $\overline{S}(p) = \overline{S}(q)$ equational theory over C - pair (t, \mathcal{E}) where *t* is a the type, \mathcal{E} is a class of *t*-equations (t, \mathcal{E}) -alg: the full subcategory of *t*-alg corresponding to the class of all algebras satisfying all equations (p, q) in some class \mathcal{E} .

algebraic category: a category concretely isomorphic to (t, \mathcal{E}) -alg for some equational theory (t, \mathcal{E})

Observation

Equational theories

Let (A, S) be a *t*-algebra and (p, q) be a *t*-equation.

satisfaction of the equation
$$(p,q)$$
 by a *t*-algebra (A,S) -
 $(A,S) \models (p,q)$ iff $\overline{S}(p) = \overline{S}(q)$

equational theory over C - pair (t, \mathcal{E}) where t is a the type, \mathcal{E} is a class of t-equations

 (t, \mathcal{E}) -alg: the full subcategory of t-alg corresponding to the class of all algebras satisfying all equations (p, q) in some class \mathcal{E} .

algebraic category: a category concretely isomorphic to (t, \mathcal{E}) -alg for some equational theory (t, \mathcal{E})

Observation

Equational theories

Let (A, S) be a *t*-algebra and (p, q) be a *t*-equation.

satisfaction of the equation
$$(p,q)$$
 by a *t*-algebra (A,S) -
 $(A,S) \models (p,q)$ iff $\overline{S}(p) = \overline{S}(q)$

equational theory over C - pair (t, \mathcal{E}) where t is a the type, \mathcal{E} is a class of t-equations

 (t, \mathcal{E}) -alg: the full subcategory of t-alg corresponding to the class of all algebras satisfying all equations (p, q) in some class \mathcal{E} .

algebraic category: a category concretely isomorphic to (t, \mathcal{E}) -alg for some equational theory (t, \mathcal{E})

Observation

Equational theories

Let (A, S) be a *t*-algebra and (p, q) be a *t*-equation.

satisfaction of the equation
$$(p,q)$$
 by a *t*-algebra (A,S) -
 $(A,S) \models (p,q)$ iff $\overline{S}(p) = \overline{S}(q)$

equational theory over C - pair (t, \mathcal{E}) where t is a the type, \mathcal{E} is a class of t-equations

 (t, \mathcal{E}) -alg: the full subcategory of t-alg corresponding to the class of all algebras satisfying all equations (p, q) in some class \mathcal{E} .

algebraic category: a category concretely isomorphic to (t, \mathcal{E}) -alg for some equational theory (t, \mathcal{E})

Observation

Reiterman conversion

We want a connection between functor presentation and type presentation of algebras.

Reiterman theory

Given a functor $F : \mathcal{C} \to \mathcal{C}$, let Ω contain symbols σ_X of arity-pair (X, FX) for every object X in C and \mathcal{I} be the closure of a class of equations

$$(\overline{Ff} \cdot \sigma_X, \sigma_Y \cdot \overline{f})$$

labeled by all morphisms $f : Y \to X$ in \mathcal{C} . We have obtained the *Reiterman theory* (t, \mathcal{I}) . Given $X \in Ob\mathcal{C}$, *F*-algebra (A, α) and a morphism $h : X \to A$ we set

 $R_{\alpha}(\sigma_X)(h) = \alpha \circ Fh.$

The assignment R : **Alg** $F \to (t, \mathcal{I})$ -**alg** given by $(A, \alpha) \mapsto (A, R_{\alpha})$ is an isomorphism.

Reiterman conversion

We want a connection between functor presentation and type presentation of algebras.

Reiterman theory

Given a functor $F : \mathcal{C} \to \mathcal{C}$, let Ω contain symbols σ_X of arity-pair (X, FX) for every object X in \mathcal{C} and \mathcal{I} be the closure of a class of equations

$$(\overline{Ff} \cdot \sigma_X, \sigma_Y \cdot \overline{f})$$

labeled by all morphisms $f: Y \to X$ in \mathcal{C} . We have obtained the *Reiterman theory* (t, \mathcal{I}) . Given $X \in Ob\mathcal{C}$, *F*-algebra (A, α) and a morphism $h: X \to A$ we set

$$R_{\alpha}(\sigma_X)(h) = \alpha \circ Fh.$$

The assignment $R : \operatorname{Alg} F \to (t, \mathcal{I}) - \operatorname{alg}$ given by $(A, \alpha) \mapsto (A, R_{\alpha})$ is an isomorphism.

Reiterman conversion

We want a connection between functor presentation and type presentation of algebras.

Reiterman theory

Given a functor $F : \mathcal{C} \to \mathcal{C}$, let Ω contain symbols σ_X of arity-pair (X, FX) for every object X in \mathcal{C} and \mathcal{I} be the closure of a class of equations

$$(\overline{Ff} \cdot \sigma_X, \sigma_Y \cdot \overline{f})$$

labeled by all morphisms $f: Y \to X$ in \mathcal{C} . We have obtained the *Reiterman theory* (t, \mathcal{I}) . Given $X \in Ob\mathcal{C}$, *F*-algebra (A, α) and a morphism $h: X \to A$ we set

$$R_{\alpha}(\sigma_X)(h) = \alpha \circ Fh.$$

The assignment $R : \operatorname{Alg} F \to (t, \mathcal{I}) - \operatorname{alg}$ given by $(A, \alpha) \mapsto (A, R_{\alpha})$ is an isomorphism.

Reiterman conversion

Theorem (Reiterman)

Every f-algebraic category is algebraic.

Reiterman isomorphism can be restricted so that for any polymeric variety $\operatorname{Alg}(F, \mathcal{P})$ there is an extension of the Reiterman theory \mathcal{I}' such that

 $\mathsf{Alg}(F,\mathcal{P})\cong_{\mathcal{C}} (t,\mathcal{I}')-\mathsf{alg}$

Theorem (J.P.)

Every polymeric category is algebraic.

As a (rather far) consequence we get that every variety is algebraic.

(日) (四) (日) (日) (日) (日)

Reiterman conversion

Theorem (Reiterman)

Every f-algebraic category is algebraic.

Reiterman isomorphism can be restricted so that for any polymeric variety $\operatorname{Alg}(F, \mathcal{P})$ there is an extension of the Reiterman theory \mathcal{I}' such that

$$\mathsf{Alg}(F, \mathcal{P}) \cong_{\mathcal{C}} (t, \mathcal{I}') - \mathsf{alg}$$

Theorem (J.P.)

Every polymeric category is algebraic.

As a (rather far) consequence we get that every variety is algebraic.

Inclusions for a general base category C:

Inclusions for a cocomplete base category:

- J. Adámek, H. Porst: *From Varieties of Algebras to Covarieties of Coalgebras*, Electronic Notes in Theoretical Computer Science (2001)
- A. Kurz, J. Rosický: Modal Predicates and Coequations, Electronic Notes in Theoretical Computer Science, Vol. 65, 156-175 (2002)
- F.E.J. Linton: *An outline of functorial semantics*, Lecture Notes in Math. 80, Springer (1969), 7-52.
- J. Pavlík: Free Algebras in Varieties, Arch. Mathemat. (2010)
- J. Pavlík: On Categories of Algebras, Dis. Thesis (2010)
- J. Pavlík: Varieties defined without colimits, 7th Panhellenic Logic Symposium proceedings (2009)
- J. Pavlík: Kan Extensions in Context of Concreteness, arXiv:1104.3542v1 [math.CT] (2011)
- J. Rosický: *On algebraic categories*, Colloquia Mathematica Societatis János Bolai(1977)

Thank you for your attention.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @