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We study several kinds of categories of algebras over a general
category C. Reiterman’s (by himself unpublished) result, which
enables to connect different approaches, is extended to see more
connections between various descriptions of algebras.
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Functor algebras

Definition (Algebra for a functor)

Let C be a category and F : C — C be a functor.
F-algebra: a pair (A, «), where o : FA — A is a morphism in C
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| L
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Alg F: the category of F-algebras and F-algebra morphisms.




Functor algebras and derived categories

Functor algebras

Definition (Algebra for a functor)

Let C be a category and F : C — C be a functor.

F-algebra: a pair (A, «), where o : FA — A is a morphism in C

a morphism of F-algebras ¢ : (A,a) — (B,B)is¢: A— BinC
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P

A—— B

Alg F: the category of F-algebras and F-algebra morphisms.

f-algebraic category: a category concretely isomorphic to Alg F for
some F.
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Monad algebras

Definition (Algebra for a monad)

Let C be a category and M = (M, 7, 1) be a monad on C.

M-algebra: an M-algebra (A, «) satisfying Eilenberg-Moore
identities:
o pa = ao Ma,

aona=ida

M —alg: the category of M-algebras and M-algebra
morphisms (Eilenberg-Moore category for M).

monadic category: category isomorphic to M—alg for some monad
M
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Polymeric categories [J.P. 2009]

Polymer of an algebra

A n-polymer of an F-algebra (A, «) is a morphism
ol" : FP(A) — A in C defined recursively:

@ =ids, o™ =0 Fal.

oM FAS A,
a®: F2afy pa o
a®. F3a 8 p2p Foy pp o

etc.
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Polymeric category

polymeric term - natural transformation ¢ : G — F™ for some
domain functor G :C — C and arity m € Ord

polymeric identity - a pair (¢,1), of polymeric terms with the
same domain

satisfaction of polymeric identity (¢,v), by an F-algebra (A, )
forg:G— F™ :G— F"

(A,@) E (6,9)p iff ™ 0 g4 = ol 09y

i.e. GAﬂ>F”’A commutes.

ld)A la("’)
(n)

FNA L) A
polymeric variety category of F-algebras determined by
satisfaction of polymeric identities

polymeric category category concretely isomorphic to a polymeric
variety
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L-algebraic categories [J.P. 2010 thesis]

Limits of concrete categories

The metacategory Con C of concrete categories and concrete
functors over some base category C is complete (even some large

limits exist).
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L-algebraic categories [J.P. 2010 thesis]

Limits of concrete categories

The metacategory Con C of concrete categories and concrete
functors over some base category C is complete (even some large
limits exist).

| A\

Definition
A limit of a concrete diagram whose objects are f-algebraic
categories is called an [-algebraic category




Functor algebras and derived categories
[ ]

L-algebraic categories [J.P. 2010 thesis]

Limits of concrete categories

The metacategory Con C of concrete categories and concrete
functors over some base category C is complete (even some large
limits exist).

Definition

| A\

A limit of a concrete diagram whose objects are f-algebraic
categories is called an [-algebraic category

Observation
Every polymeric category is |-algebraic.
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Example

@ A polymeric term in Alg 7 for a signature 7 corresponds to a
T-tree having all branches, which have the variables in leaves,
of the same length. Hence commutative groupoids form a
polymeric variety while semigroups do not.

@ An Eilenberg-Moore category M —alg for a monad
M = (M,n, ) is a polymeric variety of M-algebras induced by
(n,1d14)p, (1, idps2)p. Hence, every monadic category is
polymeric, thus |-algebraic.

@ Expression of the monoids as a polymeric category.
Associativity is not polymeric identity so we need a different
functor. We can use the monadicity of category of monoids,
namely the word monad M = (M, n, mu) gained from
generating a free monoid, 74 : A — A* is inclusion of
generators and pip : (A*)* — A* is the concatenation of
components of a chain. Then Monoids = M —alg, which is
monadic = polymeric.




Functor algebras and derived categories
o] ]

Expression of the monoids as an l-algebraic category.



Functor algebras and derived categories
o] ]

Example

Expression of the monoids as an l-algebraic category.
The assignment (A, a) — (A, ol") induces a functor
P, : Alg M — Alg M" for every finite n.



Functor algebras and derived categories
o] ]

Example

Expression of the monoids as an l-algebraic category.

The assignment (A, a) — (A, ol") induces a functor

P, : Alg M — Alg M" for every finite n. The assignment Alg — is
a contravariant functor EndSet — Con Set



Functor algebras and derived categories
o] ]

Example

Expression of the monoids as an l-algebraic category.

The assignment (A, a) — (A, ol") induces a functor

P, : Alg M — Alg M" for every finite n. The assignment Alg — is
a contravariant functor EndSet — Con Set hence there are
functors Alg 7 : Alg M — AlgId and Alg 1 : Alg M — Alg M?.
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Example

Expression of the monoids as an l-algebraic category.

The assignment (A, a) — (A, ol") induces a functor

P, : Alg M — Alg M" for every finite n. The assignment Alg — is
a contravariant functor EndSet — Con Set hence there are
functors Alg 7 : Alg M — AlgId and Alg 1 : Alg M — Alg M?.
Then category of monoids can be expressed as the concrete limit of

Alg M

0

Alg M? Alg Id
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Let C be a general category. Let € be a class of operation symbols.

type: on C with the domain - a mapping t : Q — (ObC)?,
and we write t(o) = (to(0), t1(0)) for o € Q.
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Let C be a general category. Let € be a class of operation symbols.

type: on C with the domain - a mapping t : Q — (ObC)?,
and we write t(o) = (to(0), t1(0)) for o € Q.
t-algebra: a pair (A, S) made up of a C-object A and a mapping
S :Q — MorSet such that
S(¢) : hom(tg(o), A) — hom(t1(0), A) Vo € Q
t-algebra morphism f : (A,S) — (B, T) - a morphism f : A— B
such that Vo € Q the diagram commutes

hom(ty(0), A) hom(t;(0), A)

5(o)
lhom(to(a),f) lhom(tl(a)vf)
hom(to(c), B) hom(t; (), B)

t—alg: the (meta)category of t-algebras and their morphisms

7(0)

ot
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Equational theories [Rosicky 1977]

Terms of type t

@ o is the term of arity-pair t(o) for every o € Q.

o there is a term f of (Y, X) (morphism-constant) for every
f:X—=Y

@ composition p - g is a term of arity-pair (Z, X) if g, p are
terms of arity-pairs (Z, Y) and (Y, X), respectively.

@ f-g =gof for every pair of composable morphisms g, f.

T (t) - the class of all terms of type t

t-equation - a pair of t-terms of the same arity-pair

Evaluation of terms on an algebra

For every t-algebra (A, S) there is an evaluation of terms on (A, S)
given by term-extension S : 7 (t) — MorSet of the mapping S.
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l-algebraic.
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Let (A, S) be a t-algebra and (p, g) be a t-equation.

satisfaction of the equation (p, q) by a t-algebra (A, S) -
(A,5) = (p, q) iff S(p) = 5(q)

equational theory over C - pair (t,£) where t is a the type, £ is a
class of t-equations

(t,&)—alg: the full subcategory of t—alg corresponding to the
class of all algebras satisfying all equations (p, g) in
some class £.

algebraic category: a category concretely isomorphic to (t,£)—alg
for some equational theory (t, &)

Observation

| A\

Every algebraic category over cocomplete base category is
l-algebraic.

\
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Reiterman theory

Given a functor F : C — C, let Q contain symbols ox of arity-pair
(X, FX) for every object X in C and Z be the closure of a class of
equations

(Ff -ox,0y - f)

labeled by all morphisms f : Y — X in C. We have obtained the
Reiterman theory (t,Z). Given X € ObC, F-algebra (A,«a) and a
morphism h: X — A we set

Ra(ox)(h) = aco Fh.
The assignment R : Alg F — (t,Z)—alg given by

(A, a) — (A, Ry) is an isomorphism.




Reiterman conversion

Reiterman conversion

We want a connection between functor presentation and type
presentation of algebras.

Reiterman theory

Given a functor F : C — C, let Q contain symbols ox of arity-pair
(X, FX) for every object X in C and Z be the closure of a class of
equations

(Ff -ox,0y - f)

labeled by all morphisms f : Y — X in C. We have obtained the
Reiterman theory (t,Z). Given X € ObC, F-algebra (A,«a) and a
morphism h: X — A we set

Ra(ox)(h) = aco Fh.
The assignment R : Alg F — (t,Z)—alg given by

(A, a) — (A, Ry) is an isomorphism.




Reiterman conversion

Reiterman conversion

Theorem (Reiterman)

Every f-algebraic category is algebraic.




Reiterman conversion

Reiterman conversion

Theorem (Reiterman)

Every f-algebraic category is algebraic.

Reiterman isomorphism can be restricted so that for any polymeric
variety Alg (F,P) there is an extension of the Reiterman theory 7'
such that

Alg (F,P) = (t,7')—alg

Theorem (J.P.)

Every polymeric category is algebraic.

As a (rather far) consequence we get that every variety is algebraic.
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Inclusions for a general base category C:

Beck

/

Algebraic L — algebraic

T

Algebraic N L — algebraic

\/

Polymeric

/

Monadic

T

FMonadic.

— algebraic

\/
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Inclusions for a cocomplete base category:
Beck

/

) L — algebraic

\

Algebraic
=?
Varieties
=2
Polymeric
/
Monadic F — algebraic

o~

FMonadic.
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