Continuous Metrics

Gonçalo Gutierres - CMUC/Universidade de Coimbra

 Joint work with Dirk Hofmann - CDIMA/Universidade de AveiroIn analogy to the situation for continuous lattices which were introduced by Dana Scott as precisely the injective T_{0} spaces via the (nowadays called) Scott topology, we study those metric spaces which correspond to injective T_{0} approach spaces and characterise them as precisely the continuous lattices equipped with an unitary and associative $[0, \infty]$-action. This result is achieved by a detailed analysis of the notion of cocompleteness for approach spaces.

Continuous Metric?

Continuous Lattice
ordered set

Continuous Metric?
metric space

Continuous Lattice
ordered set
(X, \leq)

Continuous Metric?
metric space

Continuous Lattice ordered set (X, \leq)

Continuous Metric?
metric space
(X, d)

Continuous Lattice ordered set
(X, \leq)

$$
x \leq x
$$

Continuous Metric?
metric space
(X, d)
Continuous Lattice
Continuous Metric?
metric space

$$
(X, d)
$$

Continuous Lattice
 ordered set
 $r: X \times X \rightarrow\{0,1\}$

Continuous Metric?
metric space

$$
d: X \times X \rightarrow[0, \infty]
$$

Continuous Lattice
ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$

Continuous Metric?
metric space

$$
\begin{gathered}
d: X \times X \rightarrow[0, \infty] \\
d(x, x)=0
\end{gathered}
$$

Continuous Lattice
ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$
$r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?
metric space

$$
d: X \times X \rightarrow[0, \infty]
$$

$$
d(x, x)=0
$$

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

Continuous Lattice
ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$
$r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?
metric space

$$
d: X \times X \rightarrow[0, \infty]
$$

$$
d(x, x)=0
$$

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

(injective) topological space

Continuous Lattice
ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$
$r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?
metric space

$$
d: X \times X \rightarrow[0, \infty]
$$

$$
d(x, x)=0
$$

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

(injective) topological space

$$
\overline{()}: P X \rightarrow P X
$$

Continuous Lattice
ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$
$r(x, y)+r(y, z) \leq r(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

Continuous Metric?
metric space
$d: X \times X \rightarrow[0, \infty]$
$d(x, x)=0$
$d(x, y)+d(y, z) \geq d(x, z)$

$$
\delta: P X \times X \rightarrow[0, \infty]
$$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$
$r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?
metric space
$d: X \times X \rightarrow[0, \infty]$
$d(x, x)=0$
$d(x, y)+d(y, z) \geq d(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$r(x,\{x\})=1$
$A \subseteq \bar{A}$

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0
\end{gathered}
$$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$ $r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?
metric space
$d: X \times X \rightarrow[0, \infty]$
$d(x, x)=0$
$d(x, y)+d(y, z) \geq d(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$r(x,\{x\})=1$
$r(x, \emptyset)=0$
$A \subseteq \bar{A}$
$\bar{\emptyset}=\emptyset$

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0 \\
\delta(x, \emptyset)=\infty
\end{gathered}
$$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$
$r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?

metric space
$d: X \times X \rightarrow[0, \infty]$
$d(x, x)=0$
$d(x, y)+d(y, z) \geq d(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$r(x,\{x\})=1$
$r(x, \emptyset)=0$
$A \subseteq \bar{A}$
$\bar{\emptyset}=\emptyset$
$r(x, A \cup B)=\max \{r(x, A), r(x, B)\}$ $\overline{A \cup B}=\bar{A} \cup \bar{B}$

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0 \\
\delta(x, \emptyset)=\infty
\end{gathered}
$$

$\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$ $r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?

metric space
$d: X \times X \rightarrow[0, \infty]$ $d(x, x)=0$
$d(x, y)+d(y, z) \geq d(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$r(x,\{x\})=1$
$r(x, \emptyset)=0$
$A \subseteq \bar{A}$
$\bar{\emptyset}=\emptyset$
$r(x, A \cup B)=\max \{r(x, A), r(x, B)\}$ $\overline{A \cup B}=\bar{A} \cup \bar{B}$
$r(x, A) \geq r(x, \bar{A})$
$\overline{\bar{A}}=\bar{A}$

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0 \\
\delta(x, \emptyset)=\infty
\end{gathered}
$$

$$
\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}
$$

$$
\delta(x, A) \leq \delta\left(x, A^{(\varepsilon)}\right)+\varepsilon
$$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$ $r(x, y)+r(y, z) \leq r(x, z)$

Continuous Metric?

metric space

$$
\begin{gathered}
d: X \times X \rightarrow[0, \infty] \\
d(x, x)=0 \\
d(x, y)+d(y, z) \geq d(x, z)
\end{gathered}
$$

(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$r(x,\{x\})=1$
$r(x, \emptyset)=0$
$A \subseteq \bar{A}$
$\bar{\emptyset}=\emptyset$
$r(x, A \cup B)=\max \{r(x, A), r(x, B)\}$ $\overline{A \cup B}=\bar{A} \cup \bar{B}$

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0 \\
\delta(x, \emptyset)=\infty
\end{gathered}
$$

$\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}$

$$
\begin{gathered}
\delta(x, A) \leq \delta\left(x, A^{(\varepsilon)}\right)+\varepsilon \\
A^{(\varepsilon)}=\{x \mid \delta(x, A) \leq \varepsilon\}
\end{gathered}
$$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$ $r(x, y)+r(y, z) \leq r(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$$
r(x,\{x\})=1
$$

$$
A \subseteq \bar{A}
$$

$$
r(x, \emptyset)=0
$$

$$
\bar{\emptyset}=\emptyset
$$

$$
r(x, A \cup B)=\max \{r(x, A), r(x, B)\}
$$

$$
\overline{A \cup B}=\bar{A} \cup \bar{B}
$$

$$
r(x, A) \geq r(x, \bar{A}) \quad \overline{\bar{A}}=\bar{A}
$$

$$
\bar{A}=\{x \mid r(x, A)=1\}
$$

Continuous Metric?

metric space

$$
d: X \times X \rightarrow[0, \infty]
$$

$$
d(x, x)=0
$$

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

(injective) approach space

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0 \\
\delta(x, \emptyset)=\infty
\end{gathered}
$$

$\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}$

$$
\begin{gathered}
\delta(x, A) \leq \delta\left(x, A^{(\varepsilon)}\right)+\varepsilon \\
A^{(\varepsilon)}=\{x \mid \delta(x, A) \leq \varepsilon\}
\end{gathered}
$$

Continuous Lattice

ordered set
$r: X \times X \rightarrow\{0,1\}$
$r(x, x)=1$ $r(x, y)+r(y, z) \leq r(x, z)$
(injective) topological space

$$
r: X \times P X \rightarrow\{0,1\}
$$

$$
r(x,\{x\})=1
$$

$r(x, \emptyset)=0$ $A \subseteq \bar{A}$
$r(x, A \cup B)=\max \{r(x, A), r(x, B)\}$

$$
\overline{A \cup B}=\bar{A} \cup \bar{B}
$$

$r(x, A) \geq r(x, \bar{A}) \quad \overline{\bar{A}}=\bar{A}$

$$
\bar{A}=\{x \mid r(x, A)=1\}
$$

$T_{0}(r(x, y)=r(y, x)=0) \Rightarrow x=y$

Continuous Metric?

metric space

$$
\begin{gathered}
d: X \times X \rightarrow[0, \infty] \\
d(x, x)=0
\end{gathered}
$$

$$
d(x, y)+d(y, z) \geq d(x, z)
$$

(injective) approach space

$$
\begin{gathered}
\delta: P X \times X \rightarrow[0, \infty] \\
\delta(x,\{x\})=0 \\
\delta(x, \emptyset)=\infty
\end{gathered}
$$

$\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}$

$$
\begin{gathered}
\delta(x, A) \leq \delta\left(x, A^{(\varepsilon)}\right)+\varepsilon \\
A^{(\varepsilon)}=\{x \mid \delta(x, A) \leq \varepsilon\}
\end{gathered}
$$

$T_{0}(\delta(x, y)=\delta(y, x)=0) \Rightarrow x=y$

Approach space

$$
\delta: X \times P X \rightarrow[0, \infty]
$$

Approach space

$$
\delta: X \times P X \rightarrow[0, \infty]
$$

- $\delta(x,\{x\})=0$
- $\delta(x, \emptyset)=\infty$
- $\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}$
- $\delta(x, A) \leq \delta\left(x, A^{(\varepsilon)}\right)+\varepsilon$ with

$$
A^{(\varepsilon)}=\{x \mid \delta(x, A) \leq \varepsilon\}
$$

Approach space

$$
\delta: X \times P X \rightarrow[0, \infty]
$$

- $\delta(x,\{x\})=0$
- $\delta(x, \emptyset)=\infty$
- $\delta(x, A \cup B)=\min \{\delta(x, A), \delta(x, B)\}$
- $\delta(x, A) \leq \delta\left(x, A^{(\varepsilon)}\right)+\varepsilon$ with

$$
A^{(\varepsilon)}=\{x \mid \delta(x, A) \leq \varepsilon\}
$$

$f:\left(X, \delta_{X}\right) \rightarrow\left(Y, \delta_{Y}\right)$ is in App if $\delta_{X}(x, A) \geq \delta_{Y}(f(x), f(A))$.

Ordered Set

Metric space

Ordered Set

 down setMetric space
$\psi: X \rightarrow[0, \infty]$
Metric space
down set
$\psi: X \rightarrow[0, \infty]$

$$
(x \leq y \in D) \rightarrow x \in D
$$

Ordered Set	Metric space
down set	$\psi: X \rightarrow[0, \infty]$
$\chi_{D}(x) \geq \chi_{D}(y)+r(x, y)$	$\psi(x) \leq \psi(y)+d(x, y)$
$\sup D \leq x \Leftrightarrow D \subseteq \uparrow x$	

Ordered Set

 down set$\chi_{D}(x) \geq \chi_{D}(y)+r(x, y)$
$\sup D \leq x \Leftrightarrow D \subseteq \uparrow x$

Metric space

$$
\begin{gathered}
\psi: X \rightarrow[0, \infty] \\
\psi(x) \leq \psi(y)+d(x, y)
\end{gathered}
$$

$$
d\left(\operatorname{Sup}_{X}(\psi), x\right)=\sup _{y \in X}(d(y, x) \ominus \psi(y))
$$

Ordered Set	Metric space
down set	$\psi: X \rightarrow[0, \infty]$
$\chi_{D}(x) \geq \chi_{D}(y)+r(x, y)$	$\psi(x) \leq \psi(y)+d(x, y)$
$\sup D \leq x \Leftrightarrow D \subseteq \uparrow x$	$d\left(\operatorname{Sup}_{x}(\psi), x\right)=\sup _{y \in X}(d(y, x) \ominus \psi(y))$
every down-set has a supremum	every "down-set" has a supremum

Ordered Set	Metric space
down set	$\psi: X \rightarrow[0, \infty]$
$\chi_{D}(x) \geq \chi_{D}(y)+r(x, y)$	$\psi(x) \leq \psi(y)+d(x, y)$
$\sup D \leq x \Leftrightarrow D \subseteq \uparrow x$	$d\left(\operatorname{Sup}_{X}(\psi), x\right)=\sup _{y \in X}(d(y, x) \ominus \psi(y))$
every down-set has a supremum	every "down-set" has a supremum
(co)complete order	cocomplete metric

$$
\chi_{D}(x) \geq \chi_{D}(y)+r(x, y)
$$

$$
\sup D \leq x \Leftrightarrow D \subseteq \uparrow x
$$

every down-set has a supremum (co)complete order

Metric space

$\psi: X \rightarrow[0, \infty]$
$\psi(x) \leq \psi(y)+d(x, y)$
$d\left(\operatorname{Sup}_{X}(\psi), x\right)=\sup _{y \in X}(d(y, x) \ominus \psi(y))$
every "down-set" has a supremum
cocomplete metric

Tensored metric spaces

Definition. A metric space is tensored if it admits suprema of the "down-sets" $\psi=d(-, x)+u$. These suprema are denoted by $x+u$.

Tensored metric spaces

Definition. A metric space is tensored if it admits suprema of the "down-sets" $\psi=d(-, x)+u$. These suprema are denoted by $x+u$.

Theorem. Let $X=(X, d)$ be a metric space. Then the TFAE.
(i) X is cocomplete.
(ii) X has all (order theoretic) suprema, is tensored and, for every $x \in X$, the monotone map $d(-, x): X_{p} \rightarrow[0, \infty]$ preserves suprema.

Tensored metric spaces

Definition. A metric space is tensored if it admits suprema of the "down-sets" $\psi=d(-, x)+u$. These suprema are denoted by $x+u$.

Theorem. Let $X=(X, d)$ be a metric space. Then the TFAE.
(i) X is cocomplete.
(ii) X has all (order theoretic) suprema, is tensored and, for every $x \in X$, the monotone map $d(-, x): X_{p} \rightarrow[0, \infty]$ preserves suprema.

Theorem. The category of cocomplete metric spaces is equivalent to the category of Sup ${ }^{[0, \infty]}$ of $[0, \infty]$-actions preserving supremum in both variables.

$[0, \infty]$-actions

Definition. $(X, \leq,+) \in \operatorname{Sup}^{[0, \infty]}$ if $+: X \times[0, \infty] \rightarrow X$ is a $[0, \infty]$-action in Sup:

$[0, \infty]$-actions

Definition. $(X, \leq,+) \in \operatorname{Sup}^{[0, \infty]}$ if $+: X \times[0, \infty] \rightarrow X$ is a $[0, \infty]$-action in Sup:
(1) $x+0=x$;

$[0, \infty]$-actions

Definition. $(X, \leq,+) \in \operatorname{Sup}^{[0, \infty]}$ if $+: X \times[0, \infty] \rightarrow X$ is a $[0, \infty]$-action in Sup:
(1) $x+0=x$;
(2) $x+(u+v)=(x+u)+v$;

+ is associative;

$[0, \infty]$-actions

Definition. $(X, \leq,+) \in \operatorname{Sup}^{[0, \infty]}$ if $+: X \times[0, \infty] \rightarrow X$ is a $[0, \infty]$-action in Sup:
(1) $x+0=x$;
(2) $x+(u+v)=(x+u)+v$;

+ is associative;
(3) $x+\inf _{i \in I} u_{i}=\bigwedge_{i \in I}\left(x+u_{i}\right)$;

$[0, \infty]$-actions

Definition. $(X, \leq,+) \in \operatorname{Sup}^{[0, \infty]}$ if $+: X \times[0, \infty] \rightarrow X$ is a $[0, \infty]$-action in Sup:
(1) $x+0=x$;
(2) $x+(u+v)=(x+u)+v$;

+ is associative;
(3) $x+\inf _{i \in I} u_{i}=\bigwedge_{i \in I}\left(x+u_{i}\right)$;
(1) $\bigwedge_{i \in I} x_{i}+u=\bigwedge_{i \in I}\left(x_{i}+u\right)$.

$[0, \infty]$-actions

Definition. $(X, \leq,+) \in \operatorname{Sup}^{[0, \infty]}$ if $+: X \times[0, \infty] \rightarrow X$ is a $[0, \infty]$-action in Sup:
(1) $x+0=x$;
(2) $x+(u+v)=(x+u)+v$;

+ is associative;
(3) $x+\inf _{i \in I} u_{i}=\bigwedge_{i \in I}\left(x+u_{i}\right)$;
(9) $\bigwedge_{i \in I} x_{i}+u=\bigwedge_{i \in I}\left(x_{i}+u\right)$.

We recover the metric by taking

$$
d(x, y)=\inf \{u \in[0, \infty] \mid x \leq y+u\}
$$

Approach space - convergence definition

$$
a: U X \times X \rightarrow[0, \infty]
$$

Approach space - convergence definition

$$
a: U X \times X \rightarrow[0, \infty]
$$

- $a(\dot{x}, x)=0$
\dot{x} - fixed ultrafilter on X
- $\operatorname{Ua}(\mathfrak{X}, \mathfrak{x})+a(\mathfrak{x}, x) \geqslant a\left(m_{X}(\mathfrak{X}), x\right)$

Approach space - convergence definition

$$
a: U X \times X \rightarrow[0, \infty]
$$

- $a(\dot{x}, x)=0$
\dot{x} - fixed ultrafilter on X
- $\operatorname{Ua}(\mathfrak{X}, \mathfrak{x})+a(\mathfrak{x}, x) \geqslant a\left(m_{X}(\mathfrak{X}), x\right)$
$U a(\mathfrak{X}, \mathfrak{x})=\sup _{\mathcal{A} \in \mathfrak{X}, A \in \mathfrak{x}} \inf _{\mathfrak{a} \in \mathcal{A}, x \in A} a(\mathfrak{a}, x)$ $m_{X}(\mathfrak{X})=\left\{A \subset X \mid \mathfrak{X} \in U^{2} A\right\}$

Approach space - convergence definition

$$
a: U X \times X \rightarrow[0, \infty]
$$

- $a(\dot{x}, x)=0$
\dot{x} - fixed ultrafilter on X
- $\operatorname{Ua}(\mathfrak{X}, \mathfrak{x})+a(\mathfrak{x}, x) \geqslant a\left(m_{X}(\mathfrak{X}), x\right)$
$U a(\mathfrak{X}, \mathfrak{x})=\sup _{\mathcal{A} \in \mathfrak{X}, A \in \mathfrak{x}} \inf _{\mathfrak{a} \in \mathcal{A}, x \in A} a(\mathfrak{a}, x)$
$m_{X}(\mathfrak{X})=\left\{A \subset X \mid \mathfrak{X} \in U^{2} A\right\}$
$f:(X, a) \rightarrow(Y, b)$ is in App if $a(\mathfrak{X}, x) \geq b(f(\mathfrak{X}), f(x))$.

Continuous Metrics

Definition. An approach space X is totally cocomplete if the Yoneda embedding $y_{X}: X \rightarrow[0, \infty]^{(U X)^{\mathrm{op}}}$ has a left adjoint in App.

Continuous Metrics

Definition. An approach space X is totally cocomplete if the Yoneda embedding $y_{X}: X \rightarrow[0, \infty]^{(U X)^{\text {op }}}$ has a left adjoint in App.

Theorem. Let $X=(X, a)$ be an approach space. Then the TFAE.
(i) X is totally cocomplete.
(ii) X is injective (with respect to isometries).

Continuous Metrics

Definition. An approach space X is totally cocomplete if the Yoneda embedding $y_{X}: X \rightarrow[0, \infty]^{(U X)^{\mathrm{op}}}$ has a left adjoint in App.

Theorem. Let $X=(X, a)$ be an approach space. Then the TFAE.
(i) X is totally cocomplete.
(ii) X is injective (with respect to isometries).

Theorem. The category of totally cocomplete approach spaces is equivalent to the category of ContLat ${ }^{[0, \infty]}$ of $[0, \infty]$-actions preserving directed suprema and infimum.

The metric filter monad

The category of absolutely cocomplete approach T0 spaces and supremum preserving approach maps is monadic over App, Met and Set.

The metric filter monad

The category of absolutely cocomplete approach T0 spaces and supremum preserving approach maps is monadic over App, Met and Set.
$\mathbb{P}=\left([0, \infty]^{U X^{\mathrm{op}}}, y, m\right)$ with $y_{X}: X \rightarrow P X=[0, \infty]^{(U X)^{\mathrm{op}}}$

The metric filter monad

The category of absolutely cocomplete approach T0 spaces and supremum preserving approach maps is monadic over App, Met and Set.
$\mathbb{P}=\left([0, \infty]^{U X^{\mathrm{op}}}, y, m\right)$ with $y_{X}: X \rightarrow P X=[0, \infty]^{(U X)^{\mathrm{op}}}$

Every absolutely cocomplete approach space is exponentiable in App and the full subcategory of App defined by these spaces is Cartesian closed.

