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In analogy to the situation for continuous lattices which were introduced by Dana Scott as

precisely the injective T0 spaces via the (nowadays called) Scott topology, we study those

metric spaces which correspond to injective T0 approach spaces and characterise them as

precisely the continuous lattices equipped with an unitary and associative [0,∞]-action.

This result is achieved by a detailed analysis of the notion of cocompleteness for approach

spaces.



Continuous Lattice Continuous Metric?

ordered set metric space

(X ,≤) (X , d)r : X × X → {0, 1} d : X × X → [0,∞]

x ≤ x d(x , x) = 0r(x , x) = 1

x ≤ y ≤ z ⇒ x ≤ z d(x , y) + d(y , z) ≥ d(x , z)r(x , y) + r(y , z) ≤ r(x , z)

(injective) topological space (injective) approach space

( ) : PX → PXr : X × PX → {0, 1} δ : PX × X → [0,∞]

r(x , {x}) = 1 A ⊆ A δ(x , {x}) = 0

r(x , ∅) = 0 ∅ = ∅ δ(x , ∅) =∞
r(x ,A ∪ B) = max{r(x ,A), r(x ,B)} δ(x ,A ∪ B) = min{δ(x ,A), δ(x ,B)}

A ∪ B = A ∪ B

r(x ,A) ≥ r(x ,A) A = A δ(x ,A) ≤ δ
(
x ,A(ε)

)
+ ε

A = {x | r(x ,A) = 1} A(ε) = {x | δ(x ,A) ≤ ε}
T0 (r(x , y) = r(y , x) = 0)⇒ x = y T0 (δ(x , y) = δ(y , x) = 0)⇒ x = y
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Approach space
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Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ DχD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ DχD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x

d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Ordered Set Metric space

down set ψ : X → [0,∞]

(x ≤ y ∈ D)→ x ∈ D

χD(x) ≥ χD(y) + r(x , y) ψ(x) ≤ ψ(y) + d(x , y)

supD ≤ x ⇔ D ⊆↑ x d(SupX (ψ), x) = sup
y∈X

(d(y , x)	 ψ(y))

every down-set has a supremum every “down-set” has a supremum

(co)complete order cocomplete metric

Proposition. For a metric space X , TFAE.

(i) X is injective (with respect to isometries).

(ii) yX : X → [0,∞]X
op

has a left inverse.

(iii) yX has a left adjoint.

(iv) X is cocomplete.



Tensored metric spaces

Definition. A metric space is tensored if it admits suprema of the

“down-sets” ψ = d(−, x) + u. These suprema are denoted by x + u.

Theorem. Let X = (X , d) be a metric space. Then the TFAE.

(i) X is cocomplete.

(ii) X has all (order theoretic) suprema, is tensored and, for every x ∈ X ,

the monotone map d(−, x) : Xp → [0,∞] preserves suprema.

Theorem.The category of cocomplete metric spaces is equivalent to the

category of Sup[0,∞] of [0,∞]-actions preserving supremum in both

variables.
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[0,∞]-actions

Definition. (X ,≤,+) ∈ Sup[0,∞] if + : X × [0,∞]→ X is a [0,∞]-action

in Sup:

1 x + 0 = x ;

2 x + (u + v) = (x + u) + v ; + is associative;

3 x + inf
i∈I

ui =
∧
i∈I

(x + ui );

4

∧
i∈I

xi + u =
∧
i∈I

(xi + u).

We recover the metric by taking

d(x , y) = inf{u ∈ [0,∞] | x ≤ y + u}
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Approach space – convergence definition

a : UX × X → [0,∞]

a(ẋ , x) = 0 ẋ - fixed ultrafilter on X

Ua(X, x) + a(x, x) > a(mX (X), x)

Ua(X, x) = sup
A∈X,A∈x

inf
a∈A,x∈A

a(a, x)

mX (X) = {A ⊂ X | X ∈ U2A}

f : (X , a)→ (Y , b) is in App if a(X, x) ≥ b(f (X), f (x)).
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Continuous Metrics

Definition. An approach space X is totally cocomplete if the Yoneda

embedding yX : X → [0,∞](UX )op has a left adjoint in App.

Theorem. Let X = (X , a) be an approach space. Then the TFAE.

(i) X is totally cocomplete.

(ii) X is injective (with respect to isometries).

Theorem.The category of totally cocomplete approach spaces is

equivalent to the category of ContLat[0,∞] of [0,∞]-actions preserving

directed suprema and infimum.
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The metric filter monad

The category of absolutely cocomplete approach T0 spaces and supremum

preserving approach maps is monadic over App, Met and Set.

P = ([0,∞]UX
op
, y ,m) with yX : X → PX = [0,∞](UX )op

Every absolutely cocomplete approach space is exponentiable in App and

the full subcategory of App defined by these spaces is Cartesian closed.
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