Prelude

A final Vietoris coalgebra beyond compact spaces and a generalized Jónsson-Tarski duality

Liang-Ting Chen

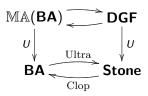
School of Computer Science, University of Birmingham

26 July 2011

Prelude Future Work

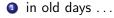
Jónsson-Tarski duality is ...

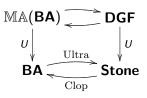
1 in old days ...

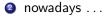


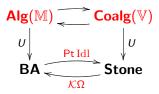
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Prelude	Duality	A Final V-coalgebra	Future Work
lónsson-Ta	rski duality is		





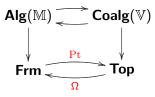




 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Is is true in general?
 Final V-coalgebra
 Final V-coalgebra

The main purpose of this talk:



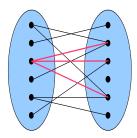
and an application, the final $\mathbb V\text{-}\mathsf{coalgebra}.$ Let's see how far we can go.

Prelude	Duality	A Final ∛-coalgebra	Future Work
●ooooooooo	00000000	000	
Kripke frames	are $\mathcal P$ -coalgebra	S	

Definition

A Kripke frame $\langle X, R \rangle$ consists of

- \bigcirc a set X and
- 2) a relation R of X



$$\xi_R : X o \mathcal{P}X$$

 $x \mapsto \{y : xRy\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Ooooooooooo
 Bounded morphisms are \mathcal{P} -coalgebra morphisms

Definition

A bounded morphism $f : \langle X, R \rangle \rightarrow \langle Y, S \rangle$ is a functional bisimulation.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

That is, f is a \mathcal{P} -coalgebra morphism.

 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Descriptive general frames are
 V-coalgebras

Definition

- A descriptive general frame is
 - **1** a Kripke frame $\langle X, \xi : X \to \mathcal{P}X \rangle$
 - **2** on a Stone space $\langle X, \mathcal{B} \rangle$

 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Descriptive general frames are
 V-coalgebras

Definition

- A descriptive general frame is
 - **1** a Kripke frame $\langle X, \xi : X \to \mathcal{P}X \rangle$
 - **2** on a Stone space $\langle X, \mathcal{B} \rangle$

 - ${\scriptstyle m 0}\; {\cal B}$ is closed under

 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Descriptive general frames are
 V-coalgebras

Definition

- A descriptive general frame is
 - **1** a Kripke frame $\langle X, \xi : X \to \mathcal{P}X \rangle$
 - **2** on a Stone space $\langle X, \mathcal{B} \rangle$

 - \mathcal{B} is closed under

•
$$\Box V = \{x : \xi(x) \subseteq V\}$$

• $\Diamond V = \{x : \xi(x) \cap V \neq \emptyset\}$

$$\xi_i: \langle X, \mathcal{B}_i \rangle \to \langle \mathcal{K}X, ? \rangle$$

What is the finest topology making every ξ_i continuous?

Prelude	Duality	A Final V-coalgebra	Future Work
000000000			

Definition

A Vietoris topology $\mathbb{V}X=\langle\mathcal{K}X,\tau\rangle$ of a Stone space X is a Stone space with τ generated by

Prelude	Duality	A Final V-coalgebra	Future Work
000000000			

Definition

A Vietoris topology $\mathbb{V}X = \langle \mathcal{K}X, \tau \rangle$ of a Stone space X is a Stone space with τ generated by

$$\mathcal{K}\Omega X \xrightarrow{\Box} \Omega \mathbb{V} X \xrightarrow{\xi^{-1}} \Omega X$$

$$\xi^{-1}(\Box V) = \{x : \xi(x) \in \Box V\}$$
$$= \{x : \xi(x) \subseteq V\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

similarly for $\xi^{-1}(\Diamond V)$.

 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Bounded morphisms are V-coalgebra morphisms

Definition

A morphism $f : \langle X, R, \mathcal{B} \rangle \to \langle Y, S, \mathcal{C} \rangle$ is a bounded morphism and also $f^{-1}(C) \in \mathcal{B}$ for any $C \in \mathcal{C}$ (continuity).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Fact

 $\mathbb{V}f(K) = f[K]$ is compact $\mathbb{V}f$ is continuous.

 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Bounded morphisms are V-coalgebra morphisms

Definition

A morphism $f : \langle X, R, \mathcal{B} \rangle \to \langle Y, S, \mathcal{C} \rangle$ is a bounded morphism and also $f^{-1}(C) \in \mathcal{B}$ for any $C \in \mathcal{C}$ (continuity).

Fact

 $\mathbb{V}f(K) = f[K]$ is compact $\mathbb{V}f$ is continuous.

$$\begin{array}{cccc} X & \stackrel{\xi}{\longrightarrow} \mathcal{P}X & X & \stackrel{\xi}{\longrightarrow} \mathbb{V}X \\ f & & & & & & & & \\ Y & \stackrel{\eta}{\longrightarrow} \mathcal{P}Y & f & & & & & \\ Y & \stackrel{\eta}{\longrightarrow} \mathcal{P}Y & Y & \stackrel{\eta}{\longrightarrow} \mathbb{V}Y \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Prelude	Duality	A Final V-coalgebra	Future Work
○○○○○●○○○○	00000000	000	
Modal algebras	are M-algebras		

Definition

$\label{eq:model} \mbox{Modal algebra} = \mbox{Boolean algebra} + \mbox{unary operators } \Box, \Diamond \mbox{ subject to normal modal logic laws}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Prelude	Duality	A Final ∛-coalgebra	Future Work
○○○○●○○○○	00000000	000	

Modal algebras are M-algebras

Definition

 $\label{eq:model} \begin{array}{l} \mathsf{Modal} \ \mathsf{algebra} = \mathsf{Boolean} \ \mathsf{algebra} + \mathsf{unary} \ \mathsf{operators} \ \Box, \diamondsuit \ \mathsf{subject} \\ \mathsf{to} \ \mathsf{normal} \ \mathsf{modal} \ \mathsf{logic} \ \mathsf{laws} \end{array}$

Definition

A modal algebra construction $\mathbb{M}A$ of a Boolean algebra is

$$\mathbb{B}\mathbb{A}\langle \Diamond A \cup \Box A \mid \Box (a \land b) = \Box a \land \Box b$$
$$\Diamond (a \lor b) = \Diamond a \lor \Diamond b$$
$$\Diamond (a \land b) \ge \Diamond a \land \Box b$$
$$\Box (a \lor b) \le \Diamond a \lor \Box b \rangle$$

Prelude	Duality	A Final V-coalgebra	Future Work
000000000	00000000	000	

A \mathbb{M} -algebra is an interpretation:

$$\mathbb{M}A \xrightarrow[\alpha]{} A \mapsto \langle A, \Box, \Diamond \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

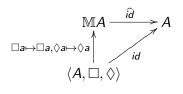
 $\Box a = \alpha(\Box a), \Diamond a = \alpha(\Diamond a).$

Prelude	Duality	A Final V-coalgebra	Future Work
000000000	00000000	000	

A \mathbb{M} -algebra is an interpretation:

$$\mathbb{M}A \xrightarrow[\alpha]{} A \mapsto \langle A, \Box, \Diamond \rangle$$

 $\Box a = \alpha(\Box a), \Diamond a = \alpha(\Diamond a)$. Conversely, we can obtain an interpretation by freeness:



 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Modal algebra morphisms are MI-algebra morphisms

Definition

A modal algebra morphism f is a Boolean algebra morphism and $f(\Box_A a) = \Box_B f(a)$, $f(\Diamond_A a) = \Diamond_B f(a)$ and relations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modal algebra morphisms are \mathbb{M} -algebras morphisms.

Prelude	Duality	A Final <i>V</i> -coalgebra	Future Work
0000000000			

Definition

Given $f : A \rightarrow B$, define

• $Mf(\Box a) = \Box f(a)$ and $Mf(\Diamond a) = \Diamond f(a)$

2 $\mathbb{M}f$ is a Boolean algebra homomorphism by freeness of $\mathbb{M}A$.

$$egin{aligned} f(\Box_{A} m{a}) &= (f \circ lpha) (\Box m{a}) \ &= eta (\Box f(m{a})) = \Box_{B} f(m{a}) \end{aligned}$$

Prelude	Duality	A Final V-coalgebra	Future Work
○○○○○○○●	00000000	000	
Short summary			

Fact

- **1** DGF \cong Coalg(\mathbb{V}) and $\mathbb{MA}(BA) \cong Alg(\mathbb{M})$
- **2** The classical Jónsson-Tarski duality: $DGF \cong MA(BA)^{op}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3 The (co)-algebra viewpoint: $\mathbf{Coalg}(\mathbb{V}) \cong \mathbf{Alg}(\mathbb{M})^{\mathrm{op}}$

Prelude	Duality	A Final V-coalgebra	Future Work
○○○○○○○●	00000000	000	
Short summary			

Fact

- **1** DGF \cong Coalg(\mathbb{V}) and $\mathbb{MA}(BA) \cong Alg(\mathbb{M})$
- **2** The classical Jónsson-Tarski duality: $DGF \cong MA(BA)^{op}$
- **3** The (co)-algebra viewpoint: $\mathbf{Coalg}(\mathbb{V}) \cong \mathbf{Alg}(\mathbb{M})^{\mathrm{op}}$

Question

- ${\rm \textcircled{O}}$ What is the relationship between ${\mathbb M}$ and ${\mathbb V}?$
- **2** An extension of \mathbb{M} and \mathbb{V} ?

$$\begin{array}{c} \mathbf{BA} \xrightarrow{\mathbb{M}} \mathbf{BA} & \mathbf{Stone} \xrightarrow{\mathbb{V}} \mathbf{Stone} \\ \text{Idl} & & & \downarrow \text{Idl} & J \\ \mathbf{Frm} \xrightarrow{\mathbb{M}_{F}} \mathbf{Frm} & \mathbf{Top} \xrightarrow{\mathbb{V}'} \mathbf{Top} \end{array}$$

Fact

$Coalg(T)^{op} \equiv Alg(T^{op})$

where

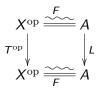
$$egin{aligned} T^{\mathrm{op}} &\colon X^{\mathrm{op}} o X^{\mathrm{op}} \ & x \mapsto x \ & f^{\mathrm{op}} \mapsto (\mathit{T}f)^{\mathrm{op}} \end{aligned}$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

-

Prelude	Duality	A Final V-coalgebra	Future Work
000000000	00000000	000	
Dual functors			

T is *dual* to L if



i.e. $LF \cong FT$.

Fact

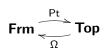
$$\mathbf{Coalg}(\mathcal{T})^{\mathrm{op}} \cong \mathbf{Alg}(\mathcal{T}^{\mathrm{op}}) \cong \mathbf{Alg}(\mathcal{L})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

if $X^{\mathrm{op}} \cong A$ and $LF \cong FT$.

Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	○○●○○○○○○	000	
Topological	spaces and Fra	mes	

A dual adjunction ...



 ΩX = the complete lattice of open sets with

$$\bigvee S \land a = \bigvee_{s \in S} (s \land a)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	00000000	000	
Topological	spaces and Fra	mes	

A dual adjunction ...

 $\mathbf{Frm}\underbrace{\overset{\mathsf{Pt}}{\overbrace{\Omega}}}_{\Omega}\mathbf{Top}$

 ΩX = the complete lattice of open sets with

$$\bigvee S \land a = \bigvee_{s \in S} (s \land a)$$

Pt A = the space of frame homomorphisms $f : A \rightarrow 2$ with open sets

$$U_{a} = \{ \varphi \in \mathsf{Pt} \, A : \varphi(a) = \top \}$$

or, neighbourhoods systems.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Definition

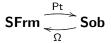
A frame A is spatial if the unit is an iso. A space X is sober if the unit is an iso.
 Prelude
 Duality
 A Final V-coalgebra
 Future Work

 Sober spaces and spatial frames
 Final V-coalgebra
 Final V-coalgebra

Definition

A frame A is spatial if the unit is an iso. A space X is sober if the unit is an iso.

A cheat dual equivalence ...



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Prelude	Duality	A Final V-coalgebra	Future Work
0000000000	○○○○●○○○○	000	

Definition

A modal algebra construction $\mathbb{M}_F A$ of a frame A is

Frm $\langle \Box A \cup \Diamond A |$ normal modal logic laws with the following \rangle

for any directed $S \subseteq A$

$$(\bigvee S) = \bigvee_{s \in S} \Box s$$

$$(\bigvee S) = \bigvee_{s \in S} \Diamond s$$

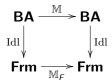
Prelude	Duality	A Final V-coalgebra	Future Work
000000000	○○○○●○○○○	000	

Definition

A modal algebra construction $\mathbb{M}_F A$ of a frame A is

Frm $\langle \Box A \cup \Diamond A |$ normal modal logic laws with the following \rangle

for any directed $S \subseteq A$ a $\Box(\bigvee S) = \bigvee_{s \in S} \Box s$ b $\Diamond(\bigvee S) = \bigvee_{s \in S} \Diamond s$



 \mathbb{M}_{F} is an extension of \mathbb{M} along Idl.

Stably locally	compact frames		
Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	○○○○○●○○○	000	

Unfortunately, **SFrm** is not closed under \mathbb{M}_F . Stably locally compact frames (locales) are closed under \mathbb{M}_F , i.e. \mathbb{M}_F : **SLCFrm** \rightarrow **SLCFrm**.

Definition

A stably locally compact frame is

a continuous domain

$$and x \ll y_2 \Rightarrow x \ll y_1 \land y_2$$

Stably locally	compact frames		
Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	○○○○○●○○○	000	

Unfortunately, **SFrm** is not closed under \mathbb{M}_F . Stably locally compact frames (locales) are closed under \mathbb{M}_F , i.e. \mathbb{M}_F : **SLCFrm** \rightarrow **SLCFrm**.

・ロット 全部 マート・ キャー

ъ

Definition

A stably locally compact frame is

- a continuous domain
- $x \ll y_1 \text{ and } x \ll y_2 \Rightarrow x \ll y_1 \land y_2$

Example

- the ideal completion of Boolean algebras
- the ideal completion of distributive lattices
- Scompact regular frames
 -)...

Prelude	Duality	A Final V-coalgebra	Future Work
000000000	○○○○○●○○	000	
Stably locally	y compact spaces		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

By dual equivalence, **SLCFrm** \cong **SLCSp**^{op}:

Definition

A space X is stably locally compact if $X \in \mathbf{Sob}$ and $\Omega X \in \mathbf{SLCFrm}$.

Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	○○○○○○●○○	000	
Stably locall	y compact spaces		

By dual equivalence, **SLCFrm** \cong **SLCSp**^{op}:

A space X is stably locally compact if $X \in \mathbf{Sob}$ and $\Omega X \in \mathbf{SLCFrm}$.

Example

- Stone spaces
- Ocherent spaces, i.e. Priestly spaces
- Output Compact Hausdorff spaces
- **④** ...

|▲□▶ ▲圖▶ ▲園▶ ▲園▶ | 園|| 釣�?

ls Mr dual to	any functor?		
Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	○○○○○○○●○	000	

Definition

$$\mathbb{V}': \mathbf{Top} o \mathbf{Top} \ \mathbb{V}'X = \langle \mathcal{KL}X, \tau
angle$$
 where

• $\mathcal{L}X$ = the set of intersections of open and closed sets

$$2 \ \tau = \Box U \lor \Diamond U$$

$$\Box U = \{L : L \subseteq U\}, \Diamond U = \{L : L \cap U \neq \emptyset\}$$

where $U \in \Omega X$.

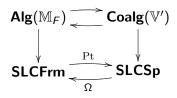
$$\begin{array}{c|c} \mathbf{SLCFrm} \xrightarrow{\mathsf{Pt}} \mathbf{SLCSp} \\ \mathbb{M}_{F} \\ \downarrow & \qquad \qquad \downarrow \mathbb{V}' \\ \mathbf{SLCFrm} \xrightarrow{\mathsf{Pt}} \mathbf{SLCSp} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Prelude Duality A Final V-coalgebra Future Work 000000000 000 000

A generalized modal duality

Finally ...



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Prelude Duality A Final V-coalgebra Future Work

A canonical Kripke structure

Fact

A descriptive general Kripke frame $\langle X, R, B \rangle$ is canonical if and only if $\xi_R : X \to \mathbb{V}X$ is a final \mathbb{V} -coalgebra.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Prelude Duality A Final V-coalgebra Future Work

A canonical Kripke structure

Fact

A descriptive general Kripke frame $\langle X, R, B \rangle$ is canonical if and only if $\xi_R : X \to \mathbb{V}X$ is a final \mathbb{V} -coalgebra.

Now, turn to our setting: How to find a V'-coalgebra?

Fact

A final \mathbb{V}' -coalgebra corresponds to an initial \mathbb{M}_F -algebra.

Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	00000000	●○○	
\mathbb{M}_{F} -initial se	equence		

Base case (the initial object in **Frm**):

2 - -

Inductive case:

$$\rightarrow \mathbb{M}_{F}^{n}2 \rightarrow \mathbb{M}_{F}^{n+1}2 \rightarrow$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

and transfinitely by colimits.

Prelude	Duality	A Final V-coalgebra	Future Work
000000000	00000000	●००	
\mathbb{M}_F -initial sec	quence		

Base case (the initial object in **Frm**):

2 - - > · · ·

Inductive case:

$$\rightarrow \mathbb{M}_{F}^{n}2 \rightarrow \mathbb{M}_{F}^{n+1}2 \rightarrow$$

and transfinitely by colimits.

Fact

If the sequence converges, i.e. $\alpha: \mathbb{M}_F{}^\kappa 2 \cong \mathbb{M}_F \mathbb{M}_F^\kappa 2$ for some κ , then

$$\alpha^{-1}: \mathbb{M}_F \mathbb{M}_F^{\kappa} 2 \to \mathbb{M}_F^{\kappa} 2$$

is an initial M_F -algebra.

Prelude	Duality	A Final V-coalgebra	Future Work
		000	

 \bigvee is infinitary, so it is not clear whether \mathbb{M}_F converges.

Fact

 $\bigcirc 2 = Idl2$

2 \mathbb{M}_F preserves coherences, i.e.

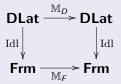


Image M_D is the same as M_F but it is a free distributive construction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

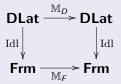
Prelude	Duality	A Final V-coalgebra	Future Work
		000	

 \bigvee is infinitary, so it is not clear whether \mathbb{M}_F converges.

Fact

 $\bigcirc 2 = Idl2$

2 \mathbb{M}_F preserves coherences, i.e.



- Image M_D is the same as M_F but it is a free distributive construction.
- **DLat** is finitary, so \mathbb{M}_D converges at ω .

000000000 00000000 000	Prelude	Duality	A Final <i>V</i> -coalgebra	Future Work
			000	

$$2 - \twoheadrightarrow \mathbb{M}_D 2 \longrightarrow \mathbb{M}_D^2 2 \longrightarrow \cdots \longrightarrow \mathbb{M}_D^{\omega} 2 \cong \mathbb{M}_D \mathbb{M}_D^{\omega} 2$$

(ロ)、(型)、(E)、(E)、 E) の(の)

 \mathbb{M}_D^{ω} is a colimit.

Prelude	Duality	A Final <i>V</i> -coalgebra	Future Work
		000	

$$2 - - \operatorname{sm}_D 2 \longrightarrow \mathbb{M}_D^2 2 \longrightarrow \cdots \longrightarrow \mathbb{M}_D^{\omega} 2 \cong \mathbb{M}_D \mathbb{M}_D^{\omega} 2$$

 \mathbb{M}_{D}^{ω} is a colimit. \mathbb{M}_{F} -initial sequence converges at ω :

 $M_{F}\mathbb{M}_{F}^{\omega}2 \cong M_{F}Idl\mathbb{M}_{D}^{\omega}2$ $\cong Idl\mathbb{M}_{D}^{\omega}\mathbb{M}_{D}^{\omega}2$ $\cong Idl\mathbb{M}_{D}^{\omega}2$ $\cong \mathbb{M}_{F}^{\omega}2$

 $\{ Idl \text{ preserves colimits} \} \\ \{ \mathbb{M}_F \text{ preserves coherence} \} \\ \{ \mathbb{M}_D \text{ converges at } \omega \} \\ \{ Idl \text{ preserves colimits} \}$

・ロット 本語 と 本語 と 本語 や キロ と

Prelude	Duality	A Final <i></i> V-coalgebra	Future Work

Future work

3

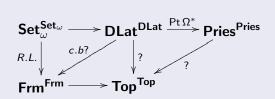
- M_F: Frm → Frm can be obtained by P_ω via relation lifting.
 See Y. Venema's Generalized Powerlocales via Relation Lifting.

$\operatorname{Set}_{\omega}^{\operatorname{Set}_{\omega}} \xrightarrow{R.L.} \operatorname{Poset}_{\omega}^{\operatorname{Poset}_{\omega}} \longrightarrow \operatorname{DLat}^{\operatorname{DLat}}$

Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	00000000	000	

Put things together

1 A big picture:

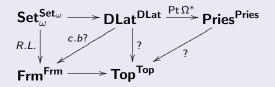


where *c.b.* is the change of base from **Poset** to **DCPO**.

Prelude	Duality	A Final V-coalgebra	Future Work
000000000	00000000	000	

Put things together

A big picture:



where *c.b.* is the change of base from **Poset** to **DCPO**.

2 A description of $\mathsf{Pt} \circ \mathbb{M}_{\mathcal{T}} \circ \Omega$ where $\mathcal{T} : \mathbf{Set}_{\omega} \to \mathbf{Set}_{\omega}$?

Prelude	Duality	A Final ∛-coalgebra	Future Work
000000000	00000000	000	

Thank you for your attention!

For details, please see my extended abstract, Vietoris locales by P. Johnstone, and Stone coalgebras by C. Kupke.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?