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I Categorical logic is an appropriate mathematical language for
providing semantics of proofs

(*-Autonomous categories / Multiplicative linear logic

CCC / Intuitionistic logic)

I Classical Logic – a notoriously difficult problem

Heyting Algebras : CCC

Boolean Algebras : ???



Before mid 2000’s:

I Joyal’s paradox

I Parigot, Selinger, Ong – λµ−calculus, Control categories

I Girard – LC, Coherence spaces

————————
Double negation not isomorphic to an object, non-symmetric,
connectives are not bifunctors, semantics is not a category



Last 6-7 years:

I Došen, Petrić

I Robinson, Führman, Pym

I Belin, Hyland, Robinson, Urban

I Lamarche, Strassburger

————————
Different axiomatiozations of ”the Boolean category”



Concrete denotational semantics [Novaković, Lamarche - SD09, CT10] – Posets
and Bimodules / Comparisons

I Objects: Posets

I Maps: (M,≤)
f−→ (N,≤) is a relation f ⊆ M × N s.t.:

m f n, m′ ≤ m implies m′ f n (down-closed to the left)
m f n, m ≤ n′ implies m f n′ (and up-closed to the right).

I Composition: Ordinary relational

I Identity: IdM = { (m, m′) | m ≤ m′ }



MLL:

I 1 and ⊥ ; {∗}
I a ; poset a;

I A⊗ B ; A× B, (bi)functorial,

I A⊥ ; Aop, contravariant functor,

I A O B = (A⊥ ⊗ B⊥)⊥ ; (Aop × Bop)op = A× B = A⊗ B.

I Natural bijeciton:

• Objects: Posets

• Maps: (M,≤)
f−→ (N,≤) is a relation f ⊆M×N s.t.:

m f n, m′ ≤ m implies m′ f n (down-closed to the left)
m f n, m ≤ n′ implies m f n′ (and up-closed to the right).

• Composition: Ordinary relational

• Identity: IdM = { (m,m′) | m ≤ m′ }

• 1 and ⊥ ; {∗}
• a ; poset a;

• A⊗ B ; A×B, (bi)functorial,

• A⊥ ; Aop, contravariant functor,

• AOB = (A⊥ ⊗ B⊥)⊥ ; (Aop ×Bop)op = A×B = A⊗B.
•

A⊗B → C

A→ B⊥ O C.

` a⊥, a  Ida = {(x, y) ∈ a× a | x ≤ y}

` Γ,A,B

` Γ,A O B
O  do nothing

` Γ,A ` B,Σ

` Γ,A⊗ B,Σ
⊗  given f for Γ×A and g for B × Σ, take f × g

for Γ×A×B × Σ

` Γ,A ` A⊥,Σ
` Γ,Σ

Cut  given f for Γ×A and g for A⊥ × Σ, take
{(γ, δ) | ∃x ∈ A : (γ, x) ∈ f, (x, δ) ∈ g} for Γ× Σ

` Γ ` Σ
` Γ,Σ

Mix  given f for Γ and g for Σ, take f × g
for Γ× Σ.

This work originated as an investigation in the denotational semantics of
classical logic [?], furthering the work in [?]. As it often happens here, it involved
the construction of bialgebras, in this particular case in the category of posets
and bimodules. The fact that these bialgebras were actually Frobenius algebras
was noticed, but it took some time for the extreme interest of this property to
sink in.

Definition 1 (Frobenius algebra) Let (C,⊗,1) be a SMC, and A an object of it.
A Frobenius algebra is a sextuple

(A,∆,Π,∇,q)
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1.1. The general framework

– the reader should check that we do indeed have the standard (natural) bijection

A⊗B → C

A→ B⊥ O C.

which defines an adjunction. Going down this “invertible rule” is called currying, and
going up uncurrying. Readers who are knowledgeable about this know we have shown
that Cmp is a ∗-autonomous category [Bar79].

Remark 1.1.1. Naturally a proof of a formula A is interpreted by a map 1 → A, which
is a certain subset of {∗} × A. But it is only natural to drop the first factor, and simply
think of the denotation of a proof as an up-closed subset of A. We will do this all the
time. Notice that in this view, a proof of A⊥ O B is just an up-close subset of Aop × B,
which is the same as a map A→ B according to our definition.

Let us use these definitions to interpret the one-sided sequent calculus for multiplicative
linear logic (as a matter of fact we also need the Mix rule). Everything in what follows
is dictated by the definitions we just gave, provided that we think of a map A→ B as a
proof of ` A⊥,B.

` a⊥, a  Ida = {(x, y) ∈ a× a | x ≤ y}

` Γ,A,B

` Γ,A O B
O  do nothing

` Γ,A ` B,Σ

` Γ,A⊗ B,Σ
⊗  given f for Γ× A and g for B × Σ, take f × g

for Γ× A×B × Σ

` Γ,A ` A⊥,Σ
` Γ,Σ

Cut  given f for Γ× A and g for A⊥ × Σ, take
{(γ, δ) | ∃x ∈ A : (γ, x) ∈ f, (x, δ) ∈ g} for Γ× Σ

` Γ ` Σ
` Γ,Σ

Mix  given f for Γ and g for Σ, take f × g
for Γ× Σ.

Notice that in the definition for Cut, the variable x is seen as belonging both to the poset
a and its opposite aop, and the same goes for the Axiom rule. Also notice that the Mix
rule would be presented in the style of the previous section as a map A ⊗ B → A O B.
Naturally since here the tensor coincides with the par, it is just identity for us.

Some remarks : We will work under the implicit assumption of associativity of car-
tesian product, i.e., we will not distinguish between things like (x, (y, z)) and ((x, y), z),
even though the corresponding types would actually differ. Consequently, the associati-
vity of the connectives and of the comma in sequents is implicit. Also, the permutations
of the formulas within a sequent, sometimes made explicit through the Exchange rule of
the calculus will not be subject of our concern. The reason is the fact that we always
have at our disposal the obvious natural isomorphism that permutes formulas within a
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Going classical:
————————

Equip each object A with a commutative monoid ∇,q and a
cocomutative comonoid ∆,Π.

i) ∇A : A⊗ A→ A

ii) qA : 1→ A

iii) ∆A : A→ A⊗ A

iv) ΠA : A→ 1.



Chapitre 1. Prelude : On Concrete Interpretations of Classical Proofs

should keep in mind our convention to identify the proofs with up-closed subsets) :

` Γ
` Γ,A

Weak  given f for Γ take
{(γ1, . . . , γn, ε) | (γ1, . . . , γn) ∈ f and ε ∈ qA} for Γ× A

` Γ,A,A

` Γ,A
Contr  

given f for Γ× A× A, take
{(γ, x) | ∃x1, x2 ∈ A : (γ, x1, x2) ∈ f and (x1, x2) ∇A x}
for Γ× A

Diagrammatically, the defined maps for Contraction and Weakening can be seen as com-
positions

1
f // Γ

∼ // Γ× ⊥ IdΓ×qA// Γ× A and 1
f // Γ× A× A IdΓ×∇A// Γ× A.

Before we state the following, easy to prove proposition, notice that the interpretation for
the Cut rule we gave before corresponds to the composite

1
f×g // Γ× A× A⊥ × Σ

IdΓ×CA×IdΣ // Γ× Σ

where CA : A ⊗ A⊥ →⊥ is the map {(x, y, ∗) | x ≤ y} which is dual to the identity
1→ A⊥ O A.

Proposition 1.1.3. Let X be a formula and {a1, . . . , an} = At(X). Then the following
diagrams commute :

X1 ×X2
∇X // (a3

1 × · · · × a3
n) = X

(a1
1 × · · · × a1

n)× (a2
1 × · · · × a2

n)
∼ // (a1

1 × a2
1)× · · · × (a1

n × a2
n).

∇a1×···×∇an
OO

Γ×X ×X × Σ
CX // Γ× Σ

Γ× (a1 × · · · × an)× (a1 × · · · × an)× Σ ∼ // Γ× (a1 × a1)× · · · × (an × an)× Σ.

Ca1×···×Can

OO

Notice that the last diagram commutes modulo obvious isomorphisms that we choose
to omit.

Look at the following derivation :

` a, a ` a, a

` a, a, a, a
Mix

` a, a
2× Cont.

Seen as a map, and using the equality of tensor and par, this derivation is the composite
∇a ◦∆a. It is rather easy to construct semantics for which this map is identity, but much
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 given f : 1→ Γ, take

f ⊗q

for 1
∼−→ 1⊗ 1→ Γ,A;

Chapitre 1. Prelude : On Concrete Interpretations of Classical Proofs
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 given f : 1→ Γ,A,A take

Γ⊗∇ ◦ f

for 1→ Γ,A,A→ Γ,A;



Z :

(j , k)∇a i iff j + k ≤ i + C ; ∗qa i iff C ≤ i .
i∆a(j , k) iff i ≤ j + k; iΠa∗ iff i ≤ 0;

(1)

I ’Weird’ Church numerals

I Curry-Howard correspondence does not hold

I ...

I The assigned bialgebra structure on an object is a Frobenius
algebra!



Definition (Frobenius algebra)
Let (C,⊗, 1) be a SMC, and A an object of it.
A Frobenius algebra is a sextuple

(A, ∆, Π,∇,q)

where (A,∇,q) is a commutative monoid, (A, ∆, Π) a co-commutative comonoid,
where the following diagram commutes:

A⊗ A

∆⊗Id
��

A⊗ A

∇
��

A⊗ A

Id⊗∆
��

A⊗ A⊗ A

Id⊗∇
��

A

∆
��

A⊗ A⊗ A

∇⊗Id
��

A⊗ A A⊗ A A⊗ A

• •

• •

• •

• •

• •

• •

Figure: A diagram version of Frobenius equations



A Frobenius algebra is thin if for every k ≥ 0, the 1 // 1 map

Π ◦ ∇ ◦∆ ◦ · · · ◦ ∇ ◦∆| {z }
k

◦q

is the identity.

.

.

.

Figure: A diagram version of the Thinness axiom equations



A Frobenius algebra is thin if for every k ≥ 0, the 1 // 1 map

Π ◦ ∇ ◦∆ ◦ · · · ◦ ∇ ◦∆| {z }
k

◦q

is the identity.

.

.

.

Figure: A diagram version of the Thinness axiom equations



The following is well-known.

Proposition
The tensor of two Frobenius algebras is also a Frobenius algebra, where the
monoid and comonoid operations are defined as usual in an SMC. It is thin if both
factors are.

A

A

A

A

B

B

B

B

A

A

A

A

B

B

B

B

Figure: Diagrams of (one of) Frobenius equations for a composite type



Definition
A Frobenius category C:

I a symmetrical monoidal category

I every object A is equipped with a thin Frobenius algebra
structure (A,∇A,ΠA,∆A,q)

I the algebra on the tensor of two objects is the usual tensor
algebra.



Frobenius algebras have gained a lot of attention

I closely related to 2-dimensional Topologica Quantum Field
Theories (TQFTs) [Dij89, Koc04], and can be stated as follows.



Theorem
The free Frobenius category F on one object generator is equivalent
to the two following categories.

1. The category of bounded Riemann surfaces up to a
homeomorphism

Objects: finite disjoint unions of m circles
Maps: A map m→ n is a Riemann surface (with boundary) whose

boundary is the disjoint sum m + n,
Two surfaces are identified modulo homeomorphism.

Composition: gluing, forgetting the boundaries in the middle
Thin: every connected component has a nonempty boundary



2. The category of finitary graphs (the node set is finite), up to a
homology

Objects: finite sets [m] = {0, 1, . . . , m − 1}, seen as discrete topological
spaces

Maps: [m]→ [n] is a topological graph G (i.e. a CW-complex of
dimension one), with an injective function [m + n]→ G
Two graphs are identified if they are equivalent modulo homology

Composition: also gluing.
Thin: every connected components of G is in the image of the injective

function [m + n]→ G



I A free Frobenius category is defined only up to equivalence of categories,
with the standard universal property associated to that situation

I The two characterizations in Theorem 3 happen to be skeletal categories and
are isomorphic

I Our nonstandard notion of Frobenius category requires thinness; maps in the
standard, non-thin free Frobenius category can contain several ”floating”
components that do not touch the border.



Since homology is much more technical than homotopy, we prefer to
replace the second result above with:

2’. The category of finitary graphs, up to a *homotopy*

Objects: finite sets [m] = {0, 1, . . . , m − 1}, seen as discrete topological
spaces

Maps: [m]→ [n] is a topological graph G (i.e. a CW-complex of
dimension one), with an injective function [m + n]→ G
Two graphs are identified if they are equivalent modulo
*homotopy* in (m + n)/Top, where homotopies are defined to be
constant on [m + n].

Composition: gluing.
Thin: every connected components of G is in the image of the injective

function [m + n]→ G

•

•

•

•

•



Every map in F can be represented by a graph G of the following
form, where every connected component is a “star” whose central
node has n loops attached to it, with n > 0.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

.

.

.
r

.

.

.
s
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•
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•

•

•

•

1

2

3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2

1

 

•

•

•

•

•

•

3 + 1+1

1 + 2 + 2

•

•

•

•

•

•

•

•

•

•

Fig. 2. Composition.

Proposition
The category F is compact-closed, the dual of an object being the object itself.

More generally, any Frobenius category is compact-closed.



Definition (Linking)
We define a linking to be a triple

P = (P, CompP ,GenP)

where

I P is a finite set

I CompP is the set of classes of a partition of the set P. Its elements are called
components.

I the function GenP : CompP → N (called genus) assigns a natural number to
each component in CompP

A map m→ n in F can be described as a linking on the set m + n.



The relevance of the “Frobenius equations” for proof theory is due to the fact that
they address the contraction-against-contraction case in cut elimination

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1

2

3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2

1

 

•

•

•

•

•

•

1 + 2 + 2

3 + 2 +1

•

•

•

•

•

•

•

•

•

•

Fig. 2. Maps in a free Frobenius category (drawn horizontally) seen as topological graphs
with object generators for nodes, and the bouquet of circles determining the genus. Com-
position of the maps amounts to glueing of graphs along nodes, and is determined by the
homotopy type of the new graph as depicted.

Proposition 2 The category F is compact-closed, the dual of an object being the object itself.

More generally, any Frobenius category is compact-closed.
The relevance of the “Frobenius equations” for proof theory is due to the fact that they

address the contraction-against-contraction case in cut elimination

` a, a
Ax ` a, a

Ax

` a, a, a, a
Mix

` a, a, a
Contr

` a, a
Ax ` a, a

Ax

` a, a, a, a
Mix

` a, a, a
Contr

` a, a, a, a
Cut

` a, a
Ax ` a, a

Ax

` a, a, a, a
Mix

` a, a, a
Contr ` a, a

Ax

` a, a, a, a, a
Mix

` a, a, a, a
Contr

Fig. 3. Two proofs identified by Frobenius equations

Definition 4 (F-prenet) We define an F-prenet to be a pair

P . Γ

where

• Γ is a sequent

• P = (P, CompP ,GenP ) is a linking

• there is a bijection between the underlying set P and the set of literals of Γ (for which
there is no need to make it explicit)

• every class in CompP contains only atoms of the same type and their negations.

Consider the calculus CL [?], under the name CL. In general, a sequent
calculus can be used to define a theory of proof nets is
TODO CL
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Definition (F-prenet)
We define an F-prenet to be a pair

P . Γ

where

I Γ is a sequent

I P = (P, CompP ,GenP) is a linking

I there is a bijection between the underlying set P and the set of literals of Γ
(for which there is no need to make it explicit)

I every class in CompP contains only atoms of the same type and their
negations.
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Fix a calculus: the calculus CL [LS05]

a
2

a
3

b
1

a
2

a
1

b
1

b
2

a
1

∧ ∧ ∨

∨ ∧

∧

a
2

a
3

b
1

a
2

a
1

b
1

b
2

a
1

∧ ∧ ∨

∨ ∧

∧

Γ

` a, a Ax

` Γ,A,B
` Γ,A ∨ B

∨ ` Γ,A ` B,Σ
` Γ,A ∧ B,Σ

∧

` Γ,A ` A,Σ
` Γ,Σ Cut

` Γ,A,A
` Γ,A Contr ` Γ

` Γ,A Weak

` Γ ` Σ
` Γ,Σ Mix

Figure 3: System CL
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Every n-ary introduction rule of CL

a
2

a
3
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1

a
2

a
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b

1
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∧ ∧ ∨

∨ ∧

∧

a
2

a
3

b
1

a
2

a
1

b

1
b

2
a

1

∧ ∧ ∨

∨ ∧

∧

Γ

every n-ary introduction rule of the calculus

` Γ1 ` Γ2 · · · ` Γn

` Γ

can be transformed into a family of n morphisms Pi . Γi → Q . Γ in the
following syntactic category.

Definition 5 (Syntactic Category) Let FSynt have F-prenets for objects, where a map

f : P . Γ→ Q . ∆

is given by an ordinary function on the underlying set of literals

f : P → Q
`
= Lit(Γ)→ Lit(∆)

´
such that

1. for every formula A, f maps Lit(A) to a subset of Lit(∆) which defines a subformula
of a formula in ∆, while preserving the syntactic left-right order on literals.

2. for every C ∈ CompP , one has that f(C) ⊆ Lit(∆) is contained in a component
C′ ∈ CompQ, with GenP (C) ≤ GenQ(C′).

Ax a a Exch

P

. . . . . . . . . . . .

Γ A B Σ

 

P

. . .

. . . . . .

. . .

Γ B A Σ
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can be transformed into a family of n morphisms Pi . Γi → Q . Γ in the following
syntactic category.

Definition (Syntactic Category)
Let FSynt have F-prenets for objects, where a map

f : P . Γ→ Q . ∆

is given by an ordinary function on the underlying set of literals

f : P → Q
`
= Lit(Γ)→ Lit(∆)

´
such that

1. for every formula A, f maps Lit(A) to a subset of Lit(∆) which defines a
subformula of a formula in ∆, while preserving the syntactic left-right order
on literals.

2. for every C ∈ CompP , one has that f (C) ⊆ Lit(∆) is contained in a
component C ′ ∈ CompQ , with GenP(C) ≤ GenQ(C ′).



Definition
In the category FSynt, we define the families of cospans Mix and ∧ to be

Pl . Γ
Mix : l

**TTTTTTT Pr . Γ
Mix : r

ttjjjjjjj

Pl ] Pr (Γ � Γ) . Γ

and

Pl . Γ, A ∧ B, A
∧ : l
))TTTTT Pr . B, A ∧ B, Γ

∧ : r
uujjjjj

Q . Γ, A ∧ B

where Q is Pl ] Pr

`
Γ � Γ, A � A � A, B � B � B

´
.



Definition
An anodyne map P . Γ //	 Q . ∆ is a syntactic map that can be
decomposed

P . Γ
∼ // Q . ∆1

∨ // · · · ∨ // Q . ∆n = ∆.

We write
[P . Γ] //� P . Γ

to denote the anodyne map whose domain is the sequent where all outer
disjunctions have been removed.



Definition (Correctness diagram)
A correctness diagram T : T→ FSynt is a diagram (functor) of the type

•
��

•
��•

  @
@ •
~~~~•
��•
...

•
��

•
��•

  @
@ •
~~~~•
��•
..
.

•
��

•
��•

  @
@ •
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��•
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•
��

•
��•

  @
@ •
~~~~•
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. . .

•
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•
��•

  @
@ •
~~~~•
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...

. . .
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.
•
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.

..
•
��

.

..
•
��

.

..
•
��•

  @
@ •
~~~~

•
  @

@ •
~~~~•

��
•
��•

''PPPPPP •
wwnnnnnn

•
��•

(1)
for which:

1. the branchings are ∧- and Mix-cospans ;

2. vertical maps are anodyne;

3. every leaf of the tree is an F-prenet Q . ∆ s.t. CompQ = {{a, a}, {x1}, . . . , {xm}} and
GenQ is 0 everywhere.

This can be strengthened by forcing the anodyne maps always to be �-maps.

Theorem 3 (Sequentialization) Correct F-nets are precisely those F-prenets that come
from CL without Cut.

Given a linking P let

• |P | stand for the size of its underlying set,

• |CompP | be the number of components,

• |GenP | be the sum of all genera in P , i.e. |GenP | =
P

C∈CompP
GenP (C).

The following observation is crucial to the proof:

Lemma 1 (Counting axiom links in an F-prenet) If an F-prenet P . Γ corresponds to
a CL proof, then

|Ax |= |P | − |CompP |+ |GenP |,
where |Ax | is the number of axioms in the proof.
(Corollary: any correctness diagram for this proof will have the same number of leaves).
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Definition (Correct F-nets)
An F-prenet P . Γ is a CL-correct F-net, (or simply an F-net) if it is at the root of
a correctness diagram

This can be strengthened by forcing the anodyne maps in a correctness diagram

always to be �-maps.



Theorem (Sequentialization)
Correct F-nets are precisely those F-prenets that come from CL without Cut.

Given a linking P let

I |P| stand for the size of its underlying set,

I |CompP | be the number of components,

I |GenP | be the sum of all genera in P, i.e. |GenP | =
P

C∈CompP
GenP(C).

The following observation is crucial to the proof:

Lemma (Counting axiom links in an F-prenet)
If an F-prenet P . Γ corresponds to a CL proof, then

|Ax |= |P| − |CompP |+ |GenP |,

where |Ax | is the number of axioms in the proof.
(Corollary: any correctness diagram for this proof will have the same number of
leaves).



Theorem
Given an F-prenet, its CL-correctness (CL-sequentializability) can be checked in
finite time, i.e. the CL-correctness criterion yields a decision procedure for
CL-correct F-nets.

Strong evidence that the procedure is NP-complete, actually.



Cut:
I We define a cut formula to be A �A, where − �− is a new binary

connective that is only allowed to appear as a root in a sequent

I Our original goal is to normalize these prenets with cuts by means of
composition in F

[This is quite different to Hyland’s [Hyl04]. It more resembles [LS05] with
an “interaction category” construction [Hyl04, Section 3] on sets and
relations, where composition is defined by the means of a trace operator]



Immediate problems:

a a a a a

 
a a a

For the resulting F-prenet to come from a proof we need the singleton component

to come from a weakening, but this cannot happen according to our interpretation

since its genus is > 0.



These issues can be dealt with by changing the deductive system and we define a
new sound and complete calculus for classical logic, FL.

a a a

�

a a

 
a a a

For the resulting F-prenet to come from a proof we need the singleton component to come

from a weakening, but this cannot happen according to our interpretation since its genus is

> 0.
These issues can be dealt with by changing the deductive system and we define a new

sound and complete calculus for classical logic, FL.

` a, a ;
Ax ` Γ ; ∆

` Γ ; ∆, a, a, . . . , a, a, a, . . . , a
MulWeak

` Γ,A,B ; ∆

` Γ,A ∨ B ; ∆
∨l

` Γ,A ; ∆,B

` Γ,A ∨ B ; ∆
∨c

` Γ ; ∆,A,B

` Γ ; ∆,A ∨ B
∨r

` Γ1,A ; ∆1 ` B,Γ2 ; ∆2

` Γ1,A ∧ B,Γ2 ; ∆1,∆2
∧l

` Γ ; ∆,A,B

` Γ ; ∆,A ∧ B
∧r

` Γ1,A ; ∆1 ` Γ2 ; B,∆2

` Γ2 ; A ∧ B,Γ1,∆1,∆2
∧c

` Γ,A,A ; ∆

` Γ,A ; ∆
Contrl

` Γ ; ∆,A,A

` Γ ; ∆,A
Contrr

` Γ,A ; ∆,A

` Γ,A ; ∆
Contrc

` Γ ; ∆1 ` ∆ ; ∆2

` Γ,∆ ; ∆1,∆2
Mix

` Γ,A ; ∆1 ` A,∆ ; ∆2

` Γ,∆ ; ∆1,∆2
Cutl

` Γ ; ∆,AA

` Γ ; ∆
Cutr

` Γ,A ; ∆1 ` ∆ ; A,∆2

` ∆ ; Γ,∆1,∆2
Cutc

Fig. 5. System FL.

• The stoup keeps track of the part that is sure to come from weakening and to allow
the introduction of arbitrary linking configurations

• The intended interpretation of MulWeak is adding to the linking a single component
of genus zero
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Fig. 4. System FL.



I The stoup keeps track of the part that is sure to come from weakening and
to allow the introduction of arbitrary linking configurations

I The intended interpretation of MulWeak is adding to the linking a single
component of genus zero

P

. . .

Γ

MulWeak−−−−−→
P

. . .

Γ

I Correctness for FL needs to accommodate the new connective for cut,

I We introduce another cospan in the syntactic category of F-prenets FSynt

I We relax the definition of anodyne map to allow for

P . Γ
� � //	 P ] Q . ∆

I The sequentializability theorem and the correctness procedure are restated

I This time, for FL-correct net we have |Ax| ≤ |P| − |CompP |+ |GenP |.



I F-prenets do form a category which is equivalent to the free Frobenius
category generated by the set of literal types (an atom and its negation have
the same “type”)

I We can consider FL-correct (and CL-correct) nets to be a class of maps in
that category, which is not closed under composition.



Some examples:

4.3. Cut elimination and FL- correct F-nets.

these two lemmas can be rephrased to saying that if a proof can be constructed using
resources coming from an F-prenet, then, naturally, a proof can be constructed using more
resources. An axiom introduces a unit of resources, wheres cut elimination is consuming
resources. Finally, the previous theorem can be rephrased, with slight generalization

Theorem 4.3.10. A sound F-prenet can be turned into a FL-correct F-net by adding
resources.

Notice that one can speak of three dimensions of a resource - (number of) components,
genera, and (number of) literals, with the last one being constant for all proofs of the given
sequent.

We have already established that the notion of correctness for F-prenets is heavily
dependent on the deductive system in question. In the case of CL, we have encountered F-
prenets for which there is no derivation in the calculus, but for which there exist derivations
in a deep inference system. The same is for the case of FL and its deep inference version.

Example 4.3.11. We go back to the two F-prenets in Example 3.2.15 on page 82.

b ∧ a a ∧ b b ∧ a a ∧ b a ∧ a a ∧ a

The F-prenet to the right has the following KS proof (notice that we make no effort
towards reducing the proof bureaucracy) :

T

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ b) ∧ (b ∨ b) ∧ (b ∨ b) ∧ (b ∨ b)
5× ai ↓

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ b) ∧ (b ∨ b) ∧ (b ∨ (b ∧ (b ∨ b)))
s

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ b) ∧ (b ∨ b) ∧ (b ∨ b ∨ (b ∧ b))
s

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ b) ∧ (b ∨ b) ∧ (b ∨ (b ∧ b))
ac ↓

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ (b ∧ (b ∨ b))) ∧ (b ∨ (b ∧ b))
s

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ b ∨ (b ∧ b)) ∧ (b ∨ (b ∧ b))
s

(a ∨ a) ∧ (a ∨ a) ∧ (b ∨ (b ∧ b)) ∧ (b ∨ (b ∧ b))
ac ↓

(a ∨ a) ∧ (a ∨ a) ∧ ((b ∧ b) ∨ (b ∧ (b ∨ (b ∧ b)))
s

(a ∨ a) ∧ (a ∨ a) ∧ ((b ∧ b) ∨ (b ∧ b) ∨ (b ∧ b))
s

(a ∨ a) ∧ (a ∨ a) ∧ ((b ∧ b) ∨ (b ∧ b))
ac ↓

(b ∧ a) ∨ (a ∧ b) ∨ (b ∧ a) ∨ (a ∧ b)
6× s

To see that the same F-prenet corresponds to no proof in CL/FL, one may attempt
to construct a correctness tree for the F-prenet. Any such tree needs to begin with a
conjunction cospan, since a Mix cospan would have to have a non-sound F-prenet as the
domain of one of its legs. A conjunction cospan yields F-prenets in the domains that both
have to have a single component {a, a}, which guarantees that the one containing the
formula a (or a) is not sound.
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Correct F-prenets are calculus-dependent

Chapitre 4. F-nets and Cut Elimination

Correct F-nets themselves do not form a category (at least not in the standard way of
composing nets by connecting linkings), but we know that we can construct a FL-correct
F-net out of a sound one by adding genera. In addition, FL-correct F-nets are closed
under this adding of resources, so the question is what is the minimal amount of resources
one needs to add to obtain a FL-correct F-net. We do not have generic answer to this
question (but we re-address this issue further in the text), still we know how to compute
the minimal amount of resources for every sound F-prenet separately. Indeed, due to the
decision procedure for FL-correct F-nets, by incremental adding of genera, we can find
minimal FL-correct F-nets w.r.t. � relation.

b ∧ a a ∧ b b a ∧ bb ∧ ab

 
b ∧ a a ∧ b b ∧ a a ∧ b

Fig. 4.6 – The sound F-prenet without both the green and the red loop is not FL-correct.
If either, the green one or the red one is added, resulting F-prenet is FL-correct.

These minimal FL-correct F-nets can be several, as shown in Figure 4.6.

a a a a∨ a ∧ a a a a ∧ a

 
a a a a∧

Fig. 4.7 – Depending on the order of elimination of cuts, one has to add resources or
not to. If the cut to the right is eliminated first on two FL-correct F-nets, genus needs to
increased by 1 to get a FL-correct F-net. If the cut to the left is eliminated first, the green
loop need not be added.

One may be tempted to start with FL-correct F-nets and then for every sound F-
prenet that is obtained in the composition / cut elimination, to establish a policy of
adding resources to it to remain in the realm of FL-correct F-nets. Unfortunately, the
strait forward attempt proves to be faulty, since the composition/ cut elimination turns
to be non-associtative, as in the F-prenets of Figure 4.7

Also, one can hope that the sound F-prenet obtained from cut elimination on a FL-
correct F-net is the infimum of all FL-correct nets it is �-smaller than, but this is also
not the case, as shown in the Figure 4.8 on the next page
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Minimal amount of loops that need to be added is not uniquely determined...
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... and it depends on the order in which normalization is done.
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Conjunctive switching:



Conjunctive switching:



Conjunctive switching:



Definition
For an F-prenet P . Γ for which every switching yields a component with atoms of
opposite polarity, we say that is a sound net.

Appears as the Lamarche-Strassburger condition on B-nets in [LS05].

Proposition
A (CL- / FL-) correct F-net is sound.

Theorem
Sound F-prenets define a category.



The large category of F-prenets (as usual objects are formulas and a map A→ B
is a P . A, B) has an order enrichment.

Definition
Let P . Γ, Q . Γ be two linkings over the same sequent. We write

P 6 Q

if

I CompP = CompQ and

I GenP 6 GenQ , i.e, the genus functions are ordered pointwise.



Theorem
The set of FL-correct nets is up-closed under the ≤ order.

Theorem
Let P . Γ be a sound net. Then there exists an FL-correct linking Q > P.

So we can obtain a category by cheating on our original goal and define a

composition that “fattens” the one given by ordinary Frobenius categories.



Definition

I F-prenet P . Γ

I | ∧ | - the number of conjunctions

I |Γ|- the number of literals in Γ.
We define a bonus to be the value

B(P . Γ) = | ∧ | · |Γ| · 3|∧|+1 − 1

2

I dP . ΓeB is obtained by adding B(P . Γ) many loops to every component of
P . Γ,

I bP . ΓcB be the F-prenet obtained by subtracting B(P . Γ) many loops
from every component of P . Γ, if possible, P . Γ otherwise.

Theorem
For every sound net P . Γ, dP . ΓeB is FL-correct.



Definition
Define:

(P . Γ, A) � (Q . A, Σ) =

8>><>>:
(P . Γ, A) ◦ (Q . A, Σ), if (P . Γ, A) ◦ (Q . A, Σ)

is either P . Γ, A or

Q . A, Σ˚
bP . Γ, AcB ◦ bQ . A, ΣcB

ˇB
, otherwise

where the ◦ is the standard ”Frobenius” composition.

Theorem
The � composition of two correct F-nets yields a correct net, it is associative and
has a unit for each F-prenet.



Theorem
Every F-prenet in the category of sound F-prenets is obtained by cut
elimination/Frobenius composition applied on correct F-nets.



Thank you!
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