Stably supported quantales with a given support

David Kruml Masaryk University, Brno TACL, Marseille 2011

Supported by

INVESTMENTS IN EDUCATION DEVELOPMENT

イロト 不得 トイヨト イヨト

э

Quantales

Sup-lattice — complete lattice, homomorphisms preserve arbitrary joins.

Quantale — sup-lattice with associative multiplication which distrubutes over joins.

Involutive quantale — quantale + involution, provided that

$$a^{**} = a,$$

 $(ab)^* = b^*a^*,$
 $\left(\bigvee a_i\right)^* = \bigvee a_i^*.$

Quantales are residuated (adjoints of the right/left action exist). 0 — bottom element, 1 — top element, e — unit (need not exists), $r \cdot 1 \le r$ — right-sided element, $1 \cdot l \le l$ — left-sided element, both rules — two-sided element.

Examples of involutive quantales

(1) Every frame is an involutive quantale with multiplication \wedge and trivial involution.

(2) Binary relations Rel X on X set with $\bigvee, \circ, *$.

$$\rho_A = X \times A, \qquad \qquad \lambda_A = A \times X$$

(3) (J. Wick Pelletier, J. Rosický 97) Quantale of endomorphisms Q(S) on a sup-lattice S.

$$\rho_{a}(b) = \begin{cases} a & b \neq 0, \\ 0 & b = 0, \end{cases} \qquad \lambda_{a}(b) = \begin{cases} 1 & b \nleq a, \\ 0 & b \leq 0. \end{cases}$$

If S is self-dual with a duality ', then $\mathcal{Q}(S)$ is involutive:

$$\alpha^*(x) = \left(\bigvee \{y \mid \alpha(y) \le x'\}\right)'$$

Stably supported quantales

(Resende 2003) Support — sup-lattice endomorphism $\varsigma: Q \rightarrow Q$, s.t.

$$arsigma a \leq e,$$

 $arsigma a \leq a^*a,$
 $arsigma a \leq arsigma aa$

for any $a \in Q$. The support is called *stable* if

 $\varsigma a = e \wedge a$

for every *a*. Examples: (1) Rel *X*. (2) Quantales on étale groupoids. Remark: $\downarrow e$ is a frame. SSQ is an involutive quantale "with enough projections".

Problems

(1) For a given self-dual sup-lattice S, is there a Girard quantale where S is the lattice of right- (left-) sided elements? [Yes, J. Egger & D. Kruml 2009.] (2) (A. Palmigiano) F, what are the SSQ where F appears as $\downarrow e$?

Triads categorically

$T\otimes T \to T$	$Q\otimes Q o Q$
$R\otimes T \to R$	$Q\otimes R o R$
$T\otimes L \to L$	$L\otimes Q ightarrow L$
$L\otimes R \to T$	$R\otimes L o Q$

・ロト ・聞ト ・ヨト ・ヨト

э.

16 pentagonal coherence axioms

+ some of the 6 triangular axioms for unital objects.

Solutions

and ϕ, ψ are *T*-module endomorphisms of *L*, *R*, resp.}.

Involutive triads

Triad (L, T, R) is *involutive* if T is commutative, and there is a T-module isomorphism $L \cong R$ making the inner product $L \times R \to T$ symmetric.

If (L, T, R) is involutive, then Q_0, Q_1 are involutive quantales: $(r \otimes I)^* = I \otimes r, (\alpha, \beta)^* = (\beta^*, \alpha^*).$

Practical assumptions: L = R and $T \subseteq L$ is an open frame homomorphism, i.e. it has both adjoints and satisfies Frobenius reciprocity condition

 $|a \wedge t| = |a| \wedge t$

for $a \in F$, $t \in T$ and left adjoint $|-|: L \to T$. It induces an involutive triad (L, T, L) with inner product $(l, r) \mapsto |l \wedge r|$.

Main result

Let $T \subseteq L$ be an open subframe. Then solution Q_1 of involutive triad (L, T, L) is a SSQ, s.t. L, T appears as lattices of left/two-sided elements respectively (and thus L as the support as well).

Examples: (1) If
$$L = T$$
, $|-| = id$, then $Q_1 \cong L$.

(2)
$$T = 2$$
, $|0| = 0$ and $|x| = 1$ otherwise.

Remark: The construction works also for OML L and its centre T with the same assumption (the solution is no more a SSQ).

Thank you!