Stably supported quantales with a given support

David Kruml
Masaryk University, Brno
TACL, Marseille 2011

Supported by

social fund in the czech republic

INVESTMENTS IN EDUCATION DEVELOPMENT

Quantales

Sup-lattice - complete lattice, homomorphisms preserve arbitrary joins.
Quantale - sup-lattice with associative multiplication which distrubutes over joins.
Involutive quantale - quantale + involution, provided that

$$
\begin{aligned}
a^{* *} & =a \\
(a b)^{*} & =b^{*} a^{*} \\
\left(\bigvee a_{i}\right)^{*} & =\bigvee a_{i}^{*}
\end{aligned}
$$

Quantales are residuated (adjoints of the right/left action exist). 0 - bottom element, 1 - top element, e - unit (need not exists), $r \cdot 1 \leq r$ - right-sided element, $1 \cdot I \leq I$ - left-sided element, both rules - two-sided element.

Examples of involutive quantales

(1) Every frame is an involutive quantale with multiplication \wedge and trivial involution.
(2) Binary relations Rel X on X set with \bigvee, \circ,*.

$$
\rho_{A}=X \times A, \quad \lambda_{A}=A \times X
$$

(3) (J. Wick Pelletier, J. Rosický 97) Quantale of endomorphisms $\mathcal{Q}(S)$ on a sup-lattice S.

$$
\rho_{a}(b)=\left\{\begin{array}{ll}
a & b \neq 0, \\
0 & b=0,
\end{array} \quad \lambda_{a}(b)= \begin{cases}1 & b \not \leq a, \\
0 & b \leq 0 .\end{cases}\right.
$$

If S is self-dual with a duality ${ }^{\prime}$, then $\mathcal{Q}(S)$ is involutive:

$$
\alpha^{*}(x)=\left(\bigvee\left\{y \mid \alpha(y) \leq x^{\prime}\right\}\right)^{\prime}
$$

Stably supported quantales

(Resende 2003) Support - sup-lattice endomorphism $\varsigma: Q \rightarrow Q$, s.t.

$$
\begin{aligned}
& \varsigma a \leq e \\
& \varsigma a \leq a^{*} a \\
& \varsigma a \leq \varsigma a a
\end{aligned}
$$

for any $a \in Q$.
The support is called stable if

$$
\varsigma a=e \wedge a
$$

for every a.
Examples: (1) Rel X.
(2) Quantales on étale groupoids.

Remark: $\downarrow e$ is a frame. SSQ is an involutive quantale "with enough projections".

Problems

(1) For a given self-dual sup-lattice S, is there a Girard quantale where S is the lattice of right- (left-) sided elements? [Yes, J. Egger \& D. Kruml 2009.]
(2) (A. Palmigiano) F, what are the SSQ where F appears as $\downarrow e$?

Triads categorically

$$
\begin{array}{cl}
T \otimes T \rightarrow T & Q \otimes Q \rightarrow Q \\
R \otimes T \rightarrow R & Q \otimes R \rightarrow R \\
T \otimes L \rightarrow L & L \otimes Q \rightarrow L \\
L \otimes R \rightarrow T & R \otimes L \rightarrow Q
\end{array}
$$

16 pentagonal coherence axioms

+ some of the 6 triangular axioms for unital objects.

Solutions

$$
R \otimes T \otimes L \Longrightarrow R \otimes L \longrightarrow Q_{0}
$$

$Q_{0}=R \otimes_{T} L, Q_{1}=\{(\phi, \psi)|\phi(I) r=| \psi(r)$ for any $r \in R, I \in L$, and ϕ, ψ are T-module endomorphisms of L, R, resp. $\}$.

Involutive triads

Triad (L, T, R) is involutive if T is commutative, and there is a T-module isomorphism $L \cong R$ making the inner product $L \times R \rightarrow T$ symmetric.
If (L, T, R) is involutive, then Q_{0}, Q_{1} are involutive quantales:
$(r \otimes I)^{*}=I \otimes r,(\alpha, \beta)^{*}=\left(\beta^{*}, \alpha^{*}\right)$.
Practical assumptions: $L=R$ and $T \subseteq L$ is an open frame homomorphism, i.e. it has both adjoints and satisfies Frobenius reciprocity condition

$$
|a \wedge t|=|a| \wedge t
$$

for $a \in F, t \in T$ and left adjoint $|-|: L \rightarrow T$.
It induces an involutive $\operatorname{triad}(L, T, L)$ with inner product $(I, r) \mapsto|I \wedge r|$.

Main result

Let $T \subseteq L$ be an open subframe. Then solution Q_{1} of involutive triad (L, T, L) is a SSQ, s.t. L, T appears as lattices of left/two-sided elements respectively (and thus L as the support as well).
Examples: (1) If $L=T,|-|=i d$, then $Q_{1} \cong L$.
(2) $T=2,|0|=0$ and $|x|=1$ otherwise.

Remark: The construction works also for OML L and its centre T with the same assumption (the solution is no more a SSQ).

Thank you!

