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Motivation

• Lattices with additional operations: algebraic semantics for
several logics

• For substructural logics, lattice reducts are not necessarily
distributive, e.g. residuated lattices, BL algebras, . . .

• (Extended) dualities can yield set-based semantics, e.g.:

• CABAop
' Set Kripke frames

• BAop
' Stone general / topological frames

• DLatop
' Priestley ordered topological frames

• PLatop
' RSFr RS frames / formal contexts

• Goal: Reconsider topological duality for arbitrary lattices in
the light of the developments of canonical extension.
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Canonical extensions and duality
Historical overview

• Jónsson, Tarski (1951): Canonical extension of Boolean
algebra – Stone duality in algebraic form

• Gehrke, Jónsson (1994): Canonical extension of
distributive lattice – Stone/Priestley duality in algebraic
form

• Gehrke, Harding (2001): Canonical extension of arbitrary
lattice – Hartung duality in algebraic form
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Canonical extensions and duality
Distributive lattices

• D a distributive lattice.

• Dual space X(D) of prime filters with topology generated
by taking as a basis of opens

â := {x ∈ X(D) : a ∈ x}, (a ∈ D).

• The collection of upsets of X(D) with respect to the
inclusion order yields a complete lattice which we denote
by Dδ.

• The lattice Dδ is called canonical extension of D.

• The canonical extension can be captured by purely
lattice-theoretic properties (without referring to the duality):
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Canonical extension for lattices

Theorem
Any lattice L can be embedded in a complete lattice Lδ in a
dense and compact way:

• (dense) The lattice L both
∨∧

-generates and∧∨
-generates Lδ,

• (compact) If S,T ⊆ L and
∧

S ≤
∨

T in Lδ, then there
exist finite S′ ⊆ S, T ′ ⊆ T such that

∧
S′ ≤

∨
T ′ in L.

Moreover, the completion Lδ is the unique dense and compact
completion of L up to isomorphism.
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Dδ

D

J∞(Dδ) = X(D)

a

â
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One-sorted vs. two-sorted

BA

DLat Lat

J∞

M∞

Set Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA

DLat Lat

J∞

M∞

Set Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA

DLat Lat

J∞

M∞

Set

Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA

DLat Lat

J∞

M∞

Set

Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA

DLat Lat

J∞

M∞

Set

Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat

Lat

J∞

M∞

Set

Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat

Lat

J∞

M∞

Set

Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat

Lat

J∞

M∞

Set Poset

RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat

Lat

J∞

M∞

Set Poset

RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat

Lat

J∞

M∞

Set Poset

RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat Lat

J∞

M∞

Set Poset

RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat Lat

J∞

M∞

Set Poset

RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat Lat

J∞

M∞

Set Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
One-sorted vs. two-sorted

BA DLat Lat

J∞

M∞

Set Poset RSFr

7 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Duality for lattices
General case

• For any reduced and separated frame F = (X ,Y ,R), we
have a Galois connection

()u : P(X)� P(Y)op : ()l

• The lattice F+ of Galois-stable sets is always perfect:
complete,

∨
-generated by J∞(F+) and

∧
-generated by

M∞(F+).

 One-to-one correspondence between perfect lattices and
RS frames.

• Plan for general lattice duality:

• Embed an arbitrary lattice L into its canonical extension
Lδ, which is perfect (!),

• Topologize the RS frame corresponding to Lδ to represent
the original lattice L .
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Topological duality for lattices
Definition of topological dual

LδL

X

Y

a

• L a lattice, L � Lδ its canonical
extension.

• X := J∞(Lδ), Y := M∞(Lδ).

• For a ∈ L , let â := {x ∈ X : x ≤ a},
ǎ := {y ∈ Y : a ≤ y}.

• Topology on X : {â : a ∈ L} subbasis of
closed sets,

• Topology on Y : {ǎ : a ∈ L} subbasis of
closed sets.

• R: order of Lδ restricted to X × Y .

• L distributive⇒ X � Y are spectral
dual spaces of L .
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• For a ∈ L , let â := {x ∈ X : x ≤ a},
ǎ := {y ∈ Y : a ≤ y}.
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• Topology on X : {â : a ∈ L} subbasis of
closed sets,

• Topology on Y : {ǎ : a ∈ L} subbasis of
closed sets.

• R: order of Lδ restricted to X × Y .

• L distributive⇒ X � Y are spectral
dual spaces of L .
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• Topology on Y : {ǎ : a ∈ L} subbasis of
closed sets.

• R: order of Lδ restricted to X × Y .

• L distributive⇒ X � Y are spectral
dual spaces of L .

10 / 25



Top. duality for
lattices

Craig, Gehrke,
van Gool

Introduction

Topological
frames

Distributive
envelope

Morphisms

Topological duality for lattices
Definition of topological dual

LδL

X

Y

a

• L a lattice, L � Lδ its canonical
extension.

• X := J∞(Lδ), Y := M∞(Lδ).
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Topological duality for lattices

Theorem (Hartung (1992))
The lattice L is isomorphic to the lattice of doubly closed,
Galois-stable subsets of X (or Y).

• Hartung also characterized the topological frames arising
as duals of lattices

• However, the spaces X (and Y ) do not have nice
topological properties:

• X need not be sober,
• In X , intersection of compact opens may not be compact,
• In particular, the sobrification of X may not be a spectral

space.
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Properties of the dual space
Not always sober

L
.....

L ′

.....

• Here, Lδ = L , (L ′)δ = L ′,

• XL � N � XL ′ , where

• topology on XL (and XL ′) is generated by taking singletons
to be closed: cofinite topology (not sober).
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M ↪→ Mδ

X

b̂0
c

ĉ0
c

b̂0
c
∩ ĉ0

c

b2 c2

a2b1 c1

a1b0 c0
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..
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Topological duality for lattices
Intermediate conclusions

• We obtain a topological ‘dual object’ for lattices using the
canonical extension, corresponding to Hartung’s work in
formal concept analysis.

• We have seen that the spaces X and Y do not have nice
topological properties:

• The spaces need not be sober,

• The sobrification of X (and of Y ) may not be a spectral
space.

• On the other hand, by Hartung’s results, a lattice L is
represented by the bases of the spaces X and Y , which
are distributive lattices.

• We now investigate an approach to topological duality for
lattices which makes the connection to distributive lattices
explicit.
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Representing canonical extension
Back to distributive lattices

ǎ := {y ∈ Y | a ≤Lδ y}. The map (̂·) is a ∧-embedding of L into P(X), and (̌·) is a ∨-embedding of L into

P(Y )op.

Summarizing, we have the following diagram.

P(X) P(Y )op

Lδ

L

i j

(̂·) (̌·)

()u

()l

Denote by D∧(L) the sublattice of P(X) generated by the image of (̂·), and by D∨(L) the sublattice of P(Y )

generated by the image of (̌·). We observe that the Galois connection (()u, ()l) restricts to the distributive

lattices D∧(L) and D∨(L), and that L can also be represented as the lattice of stable pairs under this

restricted Galois connection.

The lattices D∧(L) and D∨(L) yield ‘topological structure’, in the following two ways. Firstly, the lattice

D∧(L), being a collection of subsets, can be used to generate a topology τX on X, in a manner that we will

describe below, and similarly D∨(L) can be used to generate a topology τY on Y . From the topologized RS

frame (X, τX ; Y, τY ; R), the original lattice L can be retrieved, and we will see below that this yields a very

natural description of Hartung’s topological duality in terms of the canonical extension.

Secondly, if we denote by (XS ,σX) and (YS ,σY ) the Stone dual spaces of the distributive lattices D∧(L) and

D∨(L), respectively, and by S ⊆ XS ×YS the relation dual to the Galois connection (()u, ()l), then the tuple

(XS ,σX ; YS ,σY ; S) will also suffice to retrieve the original lattice L.

Our goal is to study both of these topological structures in more detail as well as relations between them.

In order to do so, our first result is a construction of the distributive lattices D∧(L) and D∨(L) completely in

terms of L, so that referring to its canonical extension is no longer necessary. We do so by defining a finitary

version of a classical construction by Bruns and Lakser of the injective hull of a meet-semilattice [2]. Call a

finite subset M ⊆ L join-admissible if, for all a ∈ L,

�
M ∧ a =

�

m∈M

(m ∧ a).

We now say a subset A ⊆ L is an admissible downset if A is a downset such that for all join-admissible

M ⊆ A,
�

M ∈ A. We then prove the following characterisation theorem.

Theorem. The poset of finitely generated admissible downsets, ordered by inclusion, is a distributive lattice

which is isomorphic to D∧(L). Moreover, (̂·) : L → D∧(L) is the unique distributive ∧-extension of L which

preserves admissible joins and in which L is join-dense.

Of course we have an order-dual characterisation for D∨(L).

If the lattice L is distributive, then any finite join is admissible, so that the admissible downsets coincide

with the lattice ideals. Moreover, the finitely generated lattice ideals are simply the principal ideals, so that

in this case, L is isomorphic to D∧(L), and similarly, L is isomorphic to D∨(L).

Now recall, from how we first defined D∧(L), that D∧(L) comes with a set representation on X = J∞(Lδ),

which we want to use to generate a topology τX on X. If L is distributive, then we can simply take the sets

in D∧(L) as a basis for the open sets of a topology on X to obtain the Stone dual space of L. However, if L

is not distributive, then taking D∧(L) to be a basis for the open sets may destroy all the information about

2

• We embed L into a perfect lattice Lδ.

• In turn, Lδ is represented as Galois-stable elements of
P(X) and P(Y)op.

• In particular, L embeds in P(X) and P(Y)op via (̂) and (̌).
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Of course we have an order-dual characterisation for D∨(L).

If the lattice L is distributive, then any finite join is admissible, so that the admissible downsets coincide

with the lattice ideals. Moreover, the finitely generated lattice ideals are simply the principal ideals, so that

in this case, L is isomorphic to D∧(L), and similarly, L is isomorphic to D∨(L).

Now recall, from how we first defined D∧(L), that D∧(L) comes with a set representation on X = J∞(Lδ),

which we want to use to generate a topology τX on X. If L is distributive, then we can simply take the sets

in D∧(L) as a basis for the open sets of a topology on X to obtain the Stone dual space of L. However, if L

is not distributive, then taking D∧(L) to be a basis for the open sets may destroy all the information about

2

• We embed L into a perfect lattice Lδ.

• In turn, Lδ is represented as Galois-stable elements of
P(X) and P(Y)op.

• In particular, L embeds in P(X) and P(Y)op via (̂) and (̌).
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Summarizing, we have the following diagram.
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Denote by D∧(L) the sublattice of P(X) generated by the image of (̂·), and by D∨(L) the sublattice of P(Y )

generated by the image of (̌·). We observe that the Galois connection (()u, ()l) restricts to the distributive

lattices D∧(L) and D∨(L), and that L can also be represented as the lattice of stable pairs under this
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The lattices D∧(L) and D∨(L) yield ‘topological structure’, in the following two ways. Firstly, the lattice

D∧(L), being a collection of subsets, can be used to generate a topology τX on X, in a manner that we will

describe below, and similarly D∨(L) can be used to generate a topology τY on Y . From the topologized RS

frame (X, τX ; Y, τY ; R), the original lattice L can be retrieved, and we will see below that this yields a very

natural description of Hartung’s topological duality in terms of the canonical extension.

Secondly, if we denote by (XS ,σX) and (YS ,σY ) the Stone dual spaces of the distributive lattices D∧(L) and

D∨(L), respectively, and by S ⊆ XS ×YS the relation dual to the Galois connection (()u, ()l), then the tuple

(XS ,σX ; YS ,σY ; S) will also suffice to retrieve the original lattice L.

Our goal is to study both of these topological structures in more detail as well as relations between them.

In order to do so, our first result is a construction of the distributive lattices D∧(L) and D∨(L) completely in

terms of L, so that referring to its canonical extension is no longer necessary. We do so by defining a finitary

version of a classical construction by Bruns and Lakser of the injective hull of a meet-semilattice [2]. Call a

finite subset M ⊆ L join-admissible if, for all a ∈ L,

�
M ∧ a =

�

m∈M

(m ∧ a).

We now say a subset A ⊆ L is an admissible downset if A is a downset such that for all join-admissible

M ⊆ A,
�

M ∈ A. We then prove the following characterisation theorem.

Theorem. The poset of finitely generated admissible downsets, ordered by inclusion, is a distributive lattice

which is isomorphic to D∧(L). Moreover, (̂·) : L → D∧(L) is the unique distributive ∧-extension of L which

preserves admissible joins and in which L is join-dense.

Of course we have an order-dual characterisation for D∨(L).

If the lattice L is distributive, then any finite join is admissible, so that the admissible downsets coincide

with the lattice ideals. Moreover, the finitely generated lattice ideals are simply the principal ideals, so that

in this case, L is isomorphic to D∧(L), and similarly, L is isomorphic to D∨(L).

Now recall, from how we first defined D∧(L), that D∧(L) comes with a set representation on X = J∞(Lδ),

which we want to use to generate a topology τX on X. If L is distributive, then we can simply take the sets

in D∧(L) as a basis for the open sets of a topology on X to obtain the Stone dual space of L. However, if L

is not distributive, then taking D∧(L) to be a basis for the open sets may destroy all the information about

2

• Let D∧(L) and D∨(L) sublattices
of P(X) and P(Y)op generated
by L̂ and Ľ .

• Note: D∧(L) and D∨(L) are
bases for closed sets of XL and
YL .

• Question: Algebraic description
of D∧(L) and D∨(L)?
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Definition
A finite subset M ⊆ L is join-admissible if, for all a ∈ L ,

a ∧
∨

M =
∨
m∈M

a ∧m.

Theorem
The extension (̂) : L → D∧(L) is the free distributive meet- and
admissible-join-preserving extension of L:

3.1 Universal property of D∧(L)

Our first objective in this section is to prove that D∧(L) is a universal distributive lattice envelope of

the meet-semilattice reduct of L. We first make this statement precise.

Definition 1. Let L be a lattice. We call a finite1 subset M ⊆ L join-admissible if, for every c ∈ L,

c ∧
�

M =
�

m∈M

(c ∧ m).

We say that a function f : L → K between lattices L and K preserves admissible joins2 if, for any

join-admissible M ⊆ L, f(
�

M) =
�

m∈M f(m).

Theorem 2. Let L be a lattice and D a distributive lattice. If f : L → D preserves meets and

admissible joins, then there exists a unique homomorphism f̄ : D∧(L) → D such that f̄ ◦ (̂·) = f .

L D∧(L)

D

f
f̄

(̂·)

Moreover, if f is injective, then so is f̄ .

Before we prove the theorem, let us make a few remarks.

Remark 3. 1. Of course, an order-dual universal property holds for the distributive lattice D∨(L)

of finite unions of the sets ǎ which form a basis for the topology of closed sets on Y .

2. This result is a finitary analogue of the injective hull of a meet-semilattice given by Bruns and

Lakser [?].

3. By definition, the image of (̂·) is join-dense in the lattice D∧(L). Therefore, the following

characterisation of D∧(L) easily follows from the Theorem:

Corollary 4. If f : L → D is an injective (∧, a∨)-preserving map such that f [L] is join-dense

in D, then D is isomorphic to D∧(L), via the isomorphism f̄ .

To prove the Theorem, we will first connect the concept of join-admissible subset with the lattice

D∧(L).

Lemma 5. Let a ∈ L and M ⊆ L a finite subset. If â ⊆ �
m∈M m̂, then a =

�{a∧m | m ∈ M}, and

{a ∧ m | m ∈ M} is join-admissible.

Proof. To prove that a =
�{a ∧ m | m ∈ M}, the inequality ≥ is clear. To prove ≤, let x ∈ â be

arbitrary. By assumption, we may pick m ∈ M such that x ∈ m̂. Then x ≤ a∧m ≤ �{a∧m | m ∈ M}.

The required inequality now follows since (̂·) is an order-embedding.

1We will mainly be concerned with finite joins and meets in this section, and thus often drop the adjective ‘finite’.
2We will also write: “f is a∨-preserving”.
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• A lattice L can now be minimally presented by

()u : D∧(L)� D∨(L) : ()l

• Dually, we get spectral spaces XS and YS , with a relation
RS between them.

• We can describe the points of XS in terms of L as
admissible-join-prime filters,

• The space X embeds into XS , and Y embeds into YS .

• There is more to be said (not here), using uniform spaces.
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Distributive lattice case

• For distributive lattices L and M:

• If f : L → M a ∧-homomorphism, let f δ : Lδ → Mδ its
canonical extension.

• Then f δ is a
∧

-homomorphism, so let g : Mδ → Lδ its
lower adjoint.

Prop. f δ is a
∨

-homomorphism ⇐⇒ g sends J∞(Mδ) to J∞(Lδ).

• Thus, if f is a lattice homomorphism, g restricts to a
function J∞(Mδ)→ J∞(Lδ): the usual dual morphism of f .

• For arbitrary lattices, the Proposition may fail to hold.
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Arbitrary lattice case

For arbitrary lattices, we do have, for g : Mδ � Lδ : fδ:

Prop. fδ is a
∨

-homomorphism ⇐⇒ for all x ∈ X :

If g(x) ≤
∨

T then ∀y ∈ Y s.t. x � y :

∃xy ∈ X , ty ∈ T : xy � y and g(xy) ≤ ty .

• Duals of general lattice homomorphisms: given by
relations rather than functions.
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Summary

• Topological duality for arbitrary lattices can be easily
described using the canonical extension.

• Because the spaces are not well-behaved, we are led to
consider other options distributive envelope of a lattice.

• General morphisms remain hard to handle, but the
canonical extension perspective allows for the use of
correspondence methods.
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Further work
(An incomplete wish list)

• The relation between the two candidates for dual objects:
(X ,Y ,R) and (XS ,YS ,RS).

• A nice(r) description of morphisms on the side of
topological frames.

• Applications to obtain topological semantics for
substructural logics which are not Kripke-complete.
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