A Graphical Game Semantics for MLL

Florian Hatat Tom Hirschowitz

TACL11

UMR 5127

- Theory of prog. languages dynamics, composition of programs.
 - categorical models: good for composition, hide dynamics,
 - game semantics:
 - handle both,
 - not expressed in a general structure (usual framework: SMCC, CCC).

- Theory of prog. languages dynamics, composition of programs.
 - categorical models: good for composition, hide dynamics,
 - game semantics:
 - handle both,
 - not expressed in a general structure (usual framework: SMCC, CCC).
- Proof theory for LL.

- Theory of prog. languages dynamics, composition of programs.
 - categorical models: good for composition, hide dynamics,
 - game semantics:
 - handle both,
 - not expressed in a general structure (usual framework: SMCC, CCC).
- Proof theory for LL.
- Graphical game semantics for LL.

- Theory of prog. languages dynamics, composition of programs.
 - categorical models: good for composition, hide dynamics,
 - game semantics:
 - handle both,
 - not expressed in a general structure (usual framework: SMCC, CCC).
- Proof theory for LL.
- Graphical game semantics for LL.
- Graphical game semantics for MLL.

This attempt

- Graphical:
 - positions are graphs, moves transform graphs,
 - embedded notion of sites.
- Parallel composition as amalgamation in a stack
- Composition decomposed as amalgamation+hiding.

Graphical sequents

A sequent $\vdash A, B, C, D, E$:

- A, B, C, D, E formulae: $A, B ::= A | 1 | A \otimes B | A^{\perp} | \perp | A \otimes B$
- graphical representation.

Cut rule:

$$\frac{\Gamma \vdash A \qquad A \vdash \Delta}{\Gamma \vdash \Delta}$$

Idea: connect A output to A input:

$$\Gamma \geqslant \bullet \stackrel{A}{\longrightarrow} \stackrel{A}{\longrightarrow} \bullet \lessdot \bigtriangleup$$

Graphical sequents

A sequent $\vdash A, B, C, D, E$:

- A, B, C, D, E formulae: $A, B ::= A | 1 | A \otimes B | A^{\perp} | \perp | A \otimes B$
- graphical representation.

Cut rule:

$$\frac{\Gamma \vdash A \qquad A \vdash \Delta}{\Gamma \vdash \Delta}$$

Idea: connect A output to A input:

(Pre-)positions

Pre-position: graph which is:

- oriented and labelled by formulae,
- partial: edges possibly without source/target.

Positions: topologically (i.e., forget orientation) acyclic:

up to duality.

Topology

See pre-positions as topological spaces:

- points: vertices and edges,
- open sets: for any vertex, contain all adjacent edges.

With neighbourhoods:

- neighbourhood of an edge: the edge itself,
- neighbourhood of a vertex: vertex plus adjacent edges.

Morphisms

- Pre-positions are topological spaces plus edges and orientation.
- What are continuous maps?
 - almost graph morphisms, preserving paths,
 - may collapse an edge to a vertex,
 - and a few more things, which we will exclude.
- What about labels?
 - occurrences: formulae in the domain are sub-formulae of the image.
- Orientation: obeys duality.

Examples of morphisms

Morphism $f: U \to V$:

- f continuous $U \rightarrow V$,
- occurrences o_f: "where formulae in U come from."

Examples of morphisms

Morphism $f: U \to V$:

- f continuous $U \rightarrow V$,
- occurrences o_f: "where formulae in U come from."

а

 \downarrow

Examples of morphisms

Morphism $f: U \rightarrow V$:

- f continuous $U \rightarrow V$,
- occurrences o_f: "where formulae in U come from."

Examples of morphisms

Morphism $f: U \to V$:

- f continuous $U \rightarrow V$,
- occurrences o_f: "where formulae in U come from."

Pullbacks along embeddings

- An (open) embedding $U \longrightarrow V$:
 - f open embedding: no edge added to vertices in U,
 - of constant, empty occurrence.
- Pullbacks along embeddings (= inverse image):

Restriction = pullback along an embedding (~> defined up to iso).

Context	Category of positions	Game	Split *-autonomous	Further work
Moves				

- Move: transforms a position into another position.
- Basic move, tensor :

Moves and proof nets

Plays Definition (Play)

Finite composite of moves:

Guerini, Masini parsing criterion for proof nets

Plays Definition (Play)

Finite composite of moves:

Guerini, Masini parsing criterion for proof nets

Won positions:

Amalgamating plays

Plays p and q over $A \vdash B$ and $B \vdash C$

Can we amalgamate them to a play r over $A \vdash B \vdash C$?

$$A \xrightarrow{B} C$$

Stacks

- Stacks: weak version of sheaves.
- (U_i) conver of a site S
- Family of $p_i: V_i \to U_i$
- Compatible up to coherent iso:

$$\xi_{ij} \colon p_{i|j} \cong p_{j|i}$$

• cocycle condition:

$$\xi_{jk|i}\xi_{ij|k} = \xi_{ki|i}$$

• then there exists a unique (up to coherent iso) $p: V \rightarrow U$ s.t. $p_{|i} = p_{i}$.

Recasting DR criterion A sequent, and its adverse position:

Theorem (Characterization of plays)

Well-balanced morphism p is a play iff, for any adverse play q compatible with p, p|q is connected and acyclic.

- Adverse plays encode DR switchings of proof-structures,
- Implies that plays are a sub-stack of the stack of morphisms of pre-positions.

 \downarrow

 $\mathcal{G}(\mathbb{A})$

Define a category $\mathcal{G}(\mathbb{A})$:

- objects are MLL formulae,
- morphisms $A \rightarrow B$ are won plays over $A \vdash B$.
 - composition?

Composition in $\mathcal{G}(\mathbb{A})$

Amalgamation of plays produces morphisms over positions like:

Hiding the middle part with a sequence of cuts:

Factorising cuts

Every morphisms factors as $r \circ \ell$:

- *L*: generalized cuts,
- \mathcal{R} : "cut-free" morphisms, i.e., never collapse edges. Uniquely:

Split *-autonomous category

Theorem

 $\mathcal{G}(\mathbb{A})$ isomorphic to Hugues' free split *-autonomous category generated by \mathbb{A} .

• Associativity of composition from diagram chasing using general properties of stacks and factorisation systems.

Further work

- Suitable notion of strategy to deal with Trimble's rewiring
 - ► free ***-autonomous, not only "split".
- Full LL:
 - provability ok,
 - proof theory?
- Restricted λ -calculus with contractions
 - Selinger response categories
- Positions as presheaves:
 - ► CCS,
 - implementation of cuts?