The continuous weak Bruhat order

Luigi Santocanale
LIF, Université de Provence

TACL@Marseille, July 29, 2011

The continuous weak Bruhat order

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension >2

Discrete geometry and combinatorics of words

Plan

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension >2

Discrete geometry and combinatorics of words

The permutohedron $P(4)$

Definition of the order on $\mathrm{P}(n)$

Let

$$
u_{0} i j u_{1} \prec u_{0} j i u_{1}
$$

if $i<j$.

Then:

Definition of the order on $\mathrm{P}(n)$

Let

$$
u_{0} i j u_{1} \prec u_{0} j i u_{1}
$$

if $i<j$.

Then:

$$
\sigma \leq \sigma^{\prime} \text { iff } \sigma \prec^{*} \sigma^{\prime}
$$

Caracterisation of the order: inversions of a permutation

Example :

$\operatorname{Inv}(34152)=\{(1,3),(1,4),(2,3),(2,4),(2,5)\}$

Caracterisation of the order: inversions of a permutation

Example :

$\operatorname{Inv}(34152)=\{(1,3),(1,4),(2,3),(2,4),(2,5)\}$

Proposition

- $\sigma \leq \sigma^{\prime}$ iff $\operatorname{Inv}(\sigma) \subseteq \operatorname{Inv}\left(\sigma^{\prime}\right)$,
- $(\mathrm{P}(n), \leq)$ is a lattice (for all $n \geq 1$).

Caracterisation of the order: inversions of a permutation

Example :

$\operatorname{Inv}(34152)=\{(1,3),(1,4),(2,3),(2,4),(2,5)\}$

Proposition

- $\sigma \leq \sigma^{\prime}$ iff $\operatorname{Inv}(\sigma) \subseteq \operatorname{Inv}\left(\sigma^{\prime}\right)$,
- $(\mathrm{P}(n), \leq)$ is a lattice (for all $n \geq 1)$.

Another lattice, $\mathrm{L}(2,1,1)$

The lattices $\mathrm{L}(v), v \in \mathbb{N}^{d}$

$$
\mathrm{L}\left(v_{1}, \ldots, v_{d}\right)=\left\{\left.w \in\left\{x_{1}, \ldots, x_{d}\right\}^{*}| | w\right|_{x_{i}}=v_{i}\right\}
$$

Order, as for $\mathrm{P}(n)$:

$$
\begin{aligned}
& w \leq w^{\prime} \text { iff } w \prec^{*} w^{\prime}, \\
& \quad \text { where } w=u_{0} x_{i} x_{j} u_{1} \prec u_{0} x_{j} x_{i} u_{1}=w^{\prime} \text { and } i<j .
\end{aligned}
$$

Proposition
$(\mathrm{L}(v), \leq)$ is a lattice (for all $d \geq 1$ and $v \in \mathbb{N}^{d}$).

Geometry of the weak order

Let $\mathbb{I}=[0,1]$.
$\mathrm{L}\left(v_{1}, \ldots, v_{d}\right)=$ discrete increasing paths in \mathbb{I}^{d} from $(0, \ldots, 0)$ to $(1, \ldots, 1)$.

Scan of letter x_{i} : move right of $\frac{1}{v_{i}}$ on the x_{i} axis.

- understanding the order by means of geometry,
- easy in dimension $d=2$.

Geometry of the weak order

Let $\mathbb{I}=[0,1]$.

$$
\begin{aligned}
& \mathrm{L}\left(v_{1}, \ldots, v_{d}\right)=\text { discrete increasing paths in } \mathbb{I}^{d} \\
& \qquad \text { from }(0, \ldots, 0) \text { to }(1, \ldots, 1) .
\end{aligned}
$$

Scan of letter x_{i} : move right of $\frac{1}{v_{i}}$ on the x_{i} axis.

Goals:

- understanding the order by means of geometry,
- easy in dimension $d=2$.

Dimension 2

$L(n, m)=$ dicrete increasing paths on the plan from $(0,0)$ to $(1,1)$, scan of x : move right of $\frac{1}{n}$,
scan of y : move up of $\frac{1}{m}$.
Example, the word $x x y x x y \in L(4,2)$:

Dimension 2

$\mathrm{L}(n, m)=$ dicrete increasing paths on the plan from $(0,0)$ to $(1,1)$, scan of x : move right of $\frac{1}{n}$,
scan of y : move up of $\frac{1}{m}$.
Example, the word $x x y x x y \in \mathrm{~L}(4,2)$:

Dimension 2

$\mathrm{L}(n, m)=$ dicrete increasing paths on the plan from $(0,0)$ to $(1,1)$, scan of x : move right of $\frac{1}{n}$,
scan of y : move up of $\frac{1}{m}$.
Example, the word $x x y x x y \in \mathrm{~L}(4,2)$:

Paths are step monotone functions CAD, the order is pointwise,

Plan

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension >2

Discrete geometry and combinatorics of words

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

Obtained by

1. considering all the words on x, y (inductive (co)limit),
2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $\mathrm{L}\left(\mathbb{I}^{2}\right)$

$$
\begin{aligned}
L\left(\mathbb{I}^{2}\right) & =\{C \subseteq \mathbb{I} \times \mathbb{I} \mid C \text { chain, dense, complete }\}, \\
& \simeq\{f: \mathbb{I} \rightarrow \mathbb{I} \mid f \text { is } \mathrm{CaD}\}, \\
& \simeq\{f: \mathbb{I} \rightarrow \mathbb{I} \mid f \text { is } \mathrm{CaG}\},
\end{aligned}
$$

order: pointwise.

Proposition

- $\mathrm{L}\left(\mathbb{I}^{2}\right)$ is a complete distributive lattice,
- $\mathrm{L}\left(\mathbb{I}^{2}\right)$ contains all the $\mathrm{L}(v)$,
- every $f \in \mathrm{~L}\left(\mathbb{I}^{2}\right)$ is the \bigwedge and \bigvee of monotone rational functions CAD.

Plan

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension >2

Discrete geometry and combinatorics of words

Higher dimensions ?

Goal:
for $d \geq 3$, find a lattice $L\left(\mathbb{I}^{d}\right)$ whose elements are (images of) monotone contintinuous paths

$$
\pi: \mathbb{I} \longrightarrow \mathbb{I}^{d}
$$

such that $\pi(0)=(0, \ldots, 0)$ and $\pi(1)=(1, \ldots, 1)$.

Two paths

Two possibilities:

- Lift characterizations from dimension 2 to higher dimensions, e.g. consider

$$
\bigcup_{d \geq 0, v \in \mathbb{N}^{d}} L(v),
$$

the colimit of the lattices $L(v), v \in \mathbb{N}^{d}$, and then its Dedekind-MacNeille completion.
(Abstract path)

- Lift to the continuous case the structure of the lattices $L(v), v \in \mathbb{N}^{d}$.
(Concrete path)

Back to $\mathrm{L}(v)$

By exemple, we work on $L(3,2,4)$.

We have:

$$
x z x z x y z y z \leq x z z y z x x z y
$$

since

$$
\begin{aligned}
x x x y y & \leq x y z x x y \\
z z y z y z & \leq z z y z z y \\
x z x z x z z & \leq x z z z x x z
\end{aligned}
$$

in $L(3,2)$,
in $L(2,4)$,
in $L(3,4)$.

Word reconstuction problem ...

Let:

$$
\begin{aligned}
& w_{1,2} \in\{x, y\}^{*} \cap \mathrm{~L}(3,2), \\
& w_{2,3} \in\{y, z\}^{*} \cap \mathrm{~L}(2,4), \\
& w_{1,3} \in\{x, z\}^{*} \cap \mathrm{~L}(3,4) .
\end{aligned}
$$

Find a word $w \in\{x, y, z\}^{*} \cap \mathrm{~L}(3,2,4)$ such that:

$$
\begin{aligned}
& w_{1,2}=w \backslash\{z\}, \\
& w_{2,3}=w \backslash\{x\}, \\
& w_{1,3}=w \backslash\{y\} .
\end{aligned}
$$

... and its solution

For $u \in\{a, b\}^{*}$ write

$$
(a, i)<_{u}(b, j)
$$

for
the i-th occurence of a precedes the j-th occurence of b in u. A word exists (and then is unique) iff ($w_{1,2}, w_{2,3}, w_{1,3}$) is

$$
(z, k)<_{w_{2,3}}(y, j)<_{w_{1,2}}(x, i) \text { implies }(z, k)<_{w_{1,3}}(x, i) \text {, }
$$

2. open:

$$
(x, i)<w_{1,2}(y, j)<w_{2,3}(z, k) \text { implies }(x, i)<w_{1,3}(z, k) \text {. }
$$

... and its solution

For $u \in\{a, b\}^{*}$ write

$$
(a, i)<_{u}(b, j)
$$

for
the i-th occurence of a precedes the j-th occurence of b in u.
A word exists (and then is unique) iff ($w_{1,2}, w_{2,3}, w_{1,3}$) is

1. closed:

$$
(z, k)<_{w_{2,3}}(y, j)<_{w_{1,2}}(x, i) \text { implies }(z, k)<_{w_{1,3}}(x, i),
$$

2. open:

$$
(x, i)<_{w_{1,2}}(y, j)<_{w_{2,3}}(z, k) \text { implies }(x, i)<_{w_{1,3}}(z, k) .
$$

Some algebraic properties

- $\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)$ is a lattice,
- closed tuples are stable under infs,
- open tuples are stable under sups.

For $w \in L(3,2) \times L(2,4) \times L(3,4)$, let

- the closure of an open is open,
- the intevior of a closed is clased

Some algebraic properties

- $\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)$ is a lattice,
- closed tuples are stable under infs,
- open tuples are stable under sups.

For $w \in L(3,2) \times L(2,4) \times L(3,4)$, let

$$
\begin{aligned}
\bar{w} & =\bigwedge\{u \text { closed } \mid w \leq u\} \\
w^{\circ} & =\bigvee\{u \text { open } \mid w \leq u\}
\end{aligned}
$$

(closure of w),
(interior of w).

- the closure of an open is open,
- the interior of a closed is closed.

Some algebraic properties

- $\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)$ is a lattice,
- closed tuples are stable under infs,
- open tuples are stable under sups.

For $w \in L(3,2) \times L(2,4) \times L(3,4)$, let

$$
\begin{aligned}
\bar{w} & =\bigwedge\{u \text { closed } \mid w \leq u\} \\
w^{\circ} & =\bigvee\{u \text { open } \mid w \leq u\}
\end{aligned}
$$

(closure of w),
(interior of w).

- the closure of an open is open,
- the interior of a closed is closed.

The clopens

Let
$\mathrm{CO}(3,2,4)=\{w \in \mathrm{~L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4) \mid w$ is closed and open $\}$.
We have an order isomorphism
$\mathrm{L}(3,2,4) \simeq \mathrm{CO}(3,2,4)$.
$\mathrm{CO}(3,2,4)$ is a lattice:

$w \wedge_{\mathrm{CO}(3,2,4)} u=\left(w \wedge_{\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)} u\right)^{\circ}$

The clopens

Let
$\mathrm{CO}(3,2,4)=\{w \in \mathrm{~L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4) \mid w$ is closed and open $\}$.
We have an order isomorphism
$\mathrm{L}(3,2,4) \simeq \mathrm{CO}(3,2,4)$.
$\mathrm{CO}(3,2,4)$ is a lattice:

$$
\begin{aligned}
& w \vee_{\mathrm{CO}(3,2,4)} u=\overline{\left(w \vee_{\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)} u\right)}, \\
& w \wedge_{\mathrm{CO}(3,2,4)} u=\left(w \wedge_{\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)} u\right)^{\circ} .
\end{aligned}
$$

Whence:

\square
$\mathrm{L}(3,2,4)$ is a lattice.

The clopens

Let
$\mathrm{CO}(3,2,4)=\{w \in \mathrm{~L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4) \mid w$ is closed and open $\}$.
We have an order isomorphism
$\mathrm{L}(3,2,4) \simeq \mathrm{CO}(3,2,4)$.
$\mathrm{CO}(3,2,4)$ is a lattice:

$$
\begin{aligned}
& w \vee_{\mathrm{CO}(3,2,4)} u=\overline{\left(w \vee_{\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)} u\right)}, \\
& w \wedge_{\mathrm{CO}(3,2,4)} u=\left(w \wedge_{\mathrm{L}(3,2) \times \mathrm{L}(2,4) \times \mathrm{L}(3,4)} u\right)^{\circ} .
\end{aligned}
$$

Whence:
Proposition
$\mathrm{L}(3,2,4)$ is a lattice.

The continuous case
Let $f=\left(f_{1,2}, f_{2,3}, f_{1,3}\right) \in \mathrm{L}\left(\mathbb{T}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right)$.

The continuous case
Let $f=\left(f_{1,2}, f_{2,3}, f_{1,3}\right) \in \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right)$.
Say that f is:

- closed si

$$
r<f_{2,3}(q) \text { and } q<f_{1,2}(p) \text { implies } r<f_{1,3}(p),
$$

for all $p, q, r \in \mathbb{I}$,

$$
p<f_{2,1}(q) \text { and } q<f_{3,2}(r) \text { implies } p<f_{3,1}(r) \text {. }
$$

$f_{j, i} \simeq$ left adjoint of $f_{i, j}$

The continuous case
Let $f=\left(f_{1,2}, f_{2,3}, f_{1,3}\right) \in \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right)$.
Say that f is:

- closed si

$$
r<f_{2,3}(q) \text { and } q<f_{1,2}(p) \text { implies } r<f_{1,3}(p),
$$

for all $p, q, r \in \mathbb{I}$,

- open if

$$
p<f_{2,1}(q) \text { and } q<f_{3,2}(r) \text { implies } p<f_{3,1}(r) .
$$

for all $p, q, r \in \mathbb{I}$.
Here, for $i<j$, we have
$f_{j, i} \simeq$ left adjoint of $f_{i, j}$

The continuous case

Let $f=\left(f_{1,2}, f_{2,3}, f_{1,3}\right) \in \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right)$.
Say that f is:

- closed si

$$
r<f_{2,3}(q) \text { and } q<f_{1,2}(p) \text { implies } r<f_{1,3}(p)
$$

for all $p, q, r \in \mathbb{I}$,

- open if

$$
p<f_{2,1}(q) \text { and } q<f_{3,2}(r) \text { implies } p<f_{3,1}(r) .
$$

for all $p, q, r \in \mathbb{I}$.
Here, for $i<j$, we have

$$
f_{j, i} \simeq \text { left adjoint of } f_{i, j}
$$

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{T}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Proposition

1. the closure of an open is open,
2. the interior of a closed is closed, lattice,

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Proposition

1. the closure of an open is open,
2. the interior of a closed is closed,
3. $L\left(\mathbb{I}^{3}\right)$, with the order inherited from $L\left(\mathbb{I}^{2}\right)^{3}$, is a (complete) lattice,
every I (n m, /) embeds into $L\left(\mathbb{I}^{3}\right)$

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Proposition

1. the closure of an open is open,
2. the interior of a closed is closed,
3. $\mathrm{L}\left(\mathbb{I}^{3}\right)$, with the order inherited from $\mathrm{L}\left(\mathbb{I}^{2}\right)^{3}$, is a (complete) lattice,
4. every $L(n, m, /)$ embeds into $L\left(\mathbb{I}^{3}\right)$, every element of $L\left(\mathbb{I}^{3}\right)$ is both a inf and a sup of elements from $\bigcup_{(n, m, l) \in \mathbb{N}^{3}} \mathrm{~L}(n, m, l)$,

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Proposition

1. the closure of an open is open,
2. the interior of a closed is closed,
3. $\mathrm{L}\left(\mathbb{I}^{3}\right)$, with the order inherited from $\mathrm{L}\left(\mathbb{I}^{2}\right)^{3}$, is a (complete) lattice,
4. every $L(n, m, l)$ embeds into $L\left(\mathbb{I}^{3}\right)$,
5. every element of $\mathrm{L}\left(\mathbb{I}^{3}\right)$ is both a inf and a sup of elements from $\bigcup_{(n, m, l) \in \mathbb{N}^{3}} \mathrm{~L}(n, m, l)$,
6. analogous constructions and results apply to dimentions résultats $d>3$.

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Proposition

1. the closure of an open is open,
2. the interior of a closed is closed,
3. $\mathrm{L}\left(\mathbb{I}^{3}\right)$, with the order inherited from $\mathrm{L}\left(\mathbb{I}^{2}\right)^{3}$, is a (complete) lattice,
4. every $\mathrm{L}(n, m, /)$ embeds into $L\left(\mathbb{I}^{3}\right)$,
5. every element of $\mathrm{L}\left(\mathbb{I}^{3}\right)$ is both a inf and a sup of elements from $\bigcup_{(n, m, l) \in \mathbb{N}^{3}} \mathrm{~L}(n, m, l)$,
6. analogous constructions and results apply to dimentions résultats $d>3$.

Main results

Let:

$$
\begin{aligned}
& \mathrm{L}\left(\mathbb{I}^{3}\right):= \\
& \quad\left\{f \in \mathrm{~L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \times \mathrm{L}\left(\mathbb{I}^{2}\right) \mid f \text { is closed and open }\right\}
\end{aligned}
$$

Proposition

1. the closure of an open is open,
2. the interior of a closed is closed,
3. $\mathrm{L}\left(\mathbb{I}^{3}\right)$, with the order inherited from $\mathrm{L}\left(\mathbb{I}^{2}\right)^{3}$, is a (complete) lattice,
4. every $L(n, m, l)$ embeds into $L\left(\mathbb{T}^{3}\right)$,
5. every element of $\mathrm{L}\left(\mathbb{I}^{3}\right)$ is both a inf and a sup of elements from $\bigcup_{(n, m, l) \in \mathbb{N}^{3}} \mathrm{~L}(n, m, l)$,
6. analogous constructions and results apply to dimentions résultats $d>3$.

Open problem(s)

- Is there a bijective correspondence

$$
\begin{aligned}
\mathrm{L}\left(\mathbb{I}^{3}\right) & \simeq\left\{C \subseteq \mathbb{I}^{3} \mid C \text { chain, dense, complete }\right\} \\
& =\left\{\text { images of continous paths } \pi: \mathbb{I} \longrightarrow \mathbb{I}^{3}\right\}
\end{aligned}
$$

Plan

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension >2

Discrete geometry and combinatorics of words

The Christoffel words $\mathcal{C}_{n, m}$
Best lower approximation of a straight lines of slope $\frac{m}{n}$:

That is:

The Christoffel words $\mathcal{C}_{n, m}$
Best lower approximation of a straight lines of slope $\frac{m}{n}$:

That is:

$$
\mathcal{C}_{5,4}=\bigvee\left\{w \in \mathrm{~L}(5,4) \mid w \leq i d \in \mathrm{~L}\left(\mathbb{I}^{2}\right)\right\} .
$$

Christoffel words in higher dimension?

- open question in combimnatorics of words...
- Sturmian words in higher dimension?

Natural generalisation: for $v \in \mathbb{N}^{d}$, define

where

- i is the embedding of $L(v)$ into $L\left(\mathbb{I}^{d}\right)$,
- $\Delta \in L\left(\mathbb{I}^{d}\right)$ codes the path $t \mapsto(t, \ldots, t)$

Christoffel words in higher dimension?

- open question in combimnatorics of words...
- Sturmian words in higher dimension?

Natural generalisation: for $v \in \mathbb{N}^{d}$, define

$$
\mathcal{C}_{v}=\bigvee\{w \in \mathrm{~L}(v) \mid i(w) \leq \Delta\}
$$

where

- i is the embedding of $L(v)$ into $L\left(\mathbb{I}^{d}\right)$,
- $\Delta \in \mathrm{L}\left(\mathbb{I}^{d}\right)$ codes the path $t \mapsto(t, \ldots, t)$.

