◆□ → ◆□ → ◆臣 → ◆臣 → □ 臣

1/27

The continuous weak Bruhat order

Luigi Santocanale LIF, Université de Provence

TACL@Marseille, July 29, 2011

The continuous weak Bruhat order

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension > 2

Discrete geometry and combinatorics of words

< □ > < 部 > < E > < E > E のQ () 2/27

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension > 2

Discrete geometry and combinatorics of words

<□> < @> < E> < E> E のQで 3/27

The permutohedron P(4)

Definition of the order on P(n)

Let

 $u_0 i j u_1 \prec u_0 j i u_1$

if i < j.

Then:

Definition of the order on P(n)

Let

 $u_0 i j u_1 \prec u_0 j i u_1$

if *i* < *j*.

Then:

 $\sigma \leq \sigma' \operatorname{iff} \sigma \prec^* \sigma'.$

< □ ト < □ ト < ≧ ト < ≧ ト < ≧ ト ≧ り Q () 5/27

Caracterisation of the order: inversions of a permutation

Example :

 $Inv(34152) = \{ (1,3), (1,4), (2,3), (2,4), (2,5) \}$

Proposition

- $\sigma \leq \sigma'$ iff $Inv(\sigma) \subseteq Inv(\sigma')$,
- (P(n), ≤) is a lattice (for all n ≥ 1

Caracterisation of the order: inversions of a permutation

Example :

 $Inv(34152) = \{ (1,3), (1,4), (2,3), (2,4), (2,5) \}$

Proposition

- $\sigma \leq \sigma'$ iff $Inv(\sigma) \subseteq Inv(\sigma')$,
- $(P(n), \leq)$ is a lattice (for all $n \geq 1$).

Caracterisation of the order: inversions of a permutation

Example :

 $Inv(34152) = \{ (1,3), (1,4), (2,3), (2,4), (2,5) \}$

Proposition

- $\sigma \leq \sigma'$ iff $Inv(\sigma) \subseteq Inv(\sigma')$,
- $(P(n), \leq)$ is a lattice (for all $n \geq 1$).

3 x 3

Words and permutations

.

Dimension 2

Dimension > 2

Applications

・ロ ・ ・ 一部 ・ ・ 注 ・ 注 ・ 注 ・ う へ へ
7/27

Another lattice, L(2, 1, 1)

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q @ 7/27

The lattices L(v), $v \in \mathbb{N}^d$

$$L(v_1,...,v_d) = \{ w \in \{ x_1,...,x_d \}^* \mid |w|_{x_i} = v_i \}$$

Order, as for P(n): $w \le w'$ iff $w \prec^* w'$, where $w = u_0 x_i x_j u_1 \prec u_0 x_j x_i u_1 = w'$ and i < j.

Proposition

 $(L(v), \leq)$ is a lattice (for all $d \geq 1$ and $v \in \mathbb{N}^d$).

9/27

Geometry of the weak order

Let $\mathbb{I} = [0, 1]$.

 $L(v_1, \ldots, v_d) =$ discrete increasing paths in \mathbb{I}^d from $(0, \ldots, 0)$ to $(1, \ldots, 1)$.

Scan of letter
$$x_i$$
: move right of $\frac{1}{v_i}$ on the x_i axis.

Goals:

- understanding the order by means of geometry,
- easy in dimension d = 2.

Geometry of the weak order

Let $\mathbb{I} = [0, 1]$.

 $L(v_1, \ldots, v_d) =$ discrete increasing paths in \mathbb{I}^d from $(0, \ldots, 0)$ to $(1, \ldots, 1)$.

Scan of letter
$$x_i$$
: move right of $\frac{1}{v_i}$ on the x_i axis.

Goals:

- understanding the order by means of geometry,
- easy in dimension d = 2.

Dimension 2

$$\begin{split} \mathsf{L}(n,m) &= \text{dicrete increasing paths on the plan from } (0,0) \text{ to } (1,1) \,, \\ \text{scan of } x : \text{move right of } \frac{1}{n} \,, \\ \text{scan of } y : \text{move up of } \frac{1}{m} \,. \end{split}$$

Example, the word $xxyxxy \in L(4, 2)$:

Paths are step monotone functions CAD, the order is pointwise, 🛓

10/27

Dimension 2

L(n,m) = dicrete increasing paths on the plan from (0,0) to (1,1),scan of x : move right of $\frac{1}{n}$, scan of y : move up of $\frac{1}{m}$.

Example, the word $xxyxxy \in L(4,2)$:

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1$$

Paths are step monotone functions CAD, the order is pointwise, a

10/27

Dimension 2

L(n, m) = dicrete increasing paths on the plan from (0, 0) to (1, 1),scan of x : move right of $\frac{1}{n}$, scan of y : move up of $\frac{1}{m}$.

Example, the word $xxyxxy \in L(4, 2)$:

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1$$

Paths are step monotone functions CAD, the order is pointwise,.

10/27

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension > 2

Discrete geometry and combinatorics of words

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Applications

12/27

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

12/27

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

- 1. considering all the words on x, y (inductive (co)limit),
- 2. taking the Dedekind-MacNeille completion of the colimit.

The lattice $L(\mathbb{I}^2)$

$$L(\mathbb{I}^2) = \{ C \subseteq \mathbb{I} \times \mathbb{I} \mid C \text{ chain, dense, complete} \},$$
$$\simeq \{ f : \mathbb{I} \to \mathbb{I} \mid f \text{ is } CaD \},$$
$$\simeq \{ f : \mathbb{I} \to \mathbb{I} \mid f \text{ is } CaG \},$$
order: pointwise

order: pointwise

Proposition

- L(I²) is a complete distributive lattice,
- $L(\mathbb{I}^2)$ contains all the L(v),
- every $f \in L(\mathbb{I}^2)$ is the \bigwedge and \bigvee

of monotone rational functions CAD.

Dimension > 2

Applications

Plan

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension > 2

Discrete geometry and combinatorics of words

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □ → ⑦

15/27

Higher dimensions ?

Goal:

for $d \ge 3$, find a lattice $L(\mathbb{I}^d)$ whose elements are (images of) monotone contintinuous paths

$$\pi:\mathbb{I}\longrightarrow\mathbb{I}^d$$

such that $\pi(0) = (0, \ldots, 0)$ and $\pi(1) = (1, \ldots, 1)$.

16/27

Two paths

Two possibilities:

• Lift characterizations from dimension 2 to higher dimensions, e.g. consider

 $\bigcup_{d\geq 0, v\in \mathbb{N}^d} \mathsf{L}(v)\,,$

the colimit of the lattices L(v), $v \in \mathbb{N}^d$, and then its Dedekind-MacNeille completion. (Abstract path)

Lift to the continuous case

the structure of the lattices L(v), $v \in \mathbb{N}^d$. (Concrete path)

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣 □

Applications

17/27

Back to L(v)

By exemple, we work on L(3, 2, 4).

We have:

 $xzxzxyzyz \leq xzzyzxxzy$

since

 $\begin{array}{ll} xxxyy \leq xyzxxy & \text{ in } L(3,2), \\ zzyzyz \leq zzyzzy & \text{ in } L(2,4), \\ xzxzxzz \leq xzzzxxz & \text{ in } L(3,4). \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applications

18/27

Word reconstuction problem

Let:

$$\begin{split} &w_{1,2} \in \{ \, x, y \,\}^* \cap \mathsf{L}(3,2) \,, \\ &w_{2,3} \in \{ \, y, z \,\}^* \cap \mathsf{L}(2,4) \,, \\ &w_{1,3} \in \{ \, x, z \,\}^* \cap \mathsf{L}(3,4) \,. \end{split}$$

Find a word $w \in \{x, y, z\}^* \cap L(3, 2, 4)$ such that:

$$w_{1,2} = w \setminus \{ z \},$$

 $w_{2,3} = w \setminus \{ x \},$
 $w_{1,3} = w \setminus \{ y \}.$

... and its solution

For $u \in \{a, b\}^*$ write

 $(a,i) <_u (b,j)$

for

the i-th occurence of a precedes the j-th occurence of b in u.

A word exists (and then is unique) iff $(w_{1,2}, w_{2,3}, w_{1,3})$ is 1. closed:

 $(z,k) <_{w_{2,3}} (y,j) <_{w_{1,2}} (x,i) \text{ implies } (z,k) <_{w_{1,3}} (x,i),$

2. open:

 $(x,i) <_{w_{1,2}} (y,j) <_{w_{2,3}} (z,k) \text{ implies } (x,i) <_{w_{1,3}} (z,k).$

... and its solution

For $u \in \{a, b\}^*$ write

$$(a,i) <_u (b,j)$$

for

the *i*-th occurence of a precedes the *j*-th occurence of b in u.

A word exists (and then is unique) iff $(w_{1,2}, w_{2,3}, w_{1,3})$ is 1. closed:

$$(z,k) <_{w_{2,3}} (y,j) <_{w_{1,2}} (x,i) \text{ implies } (z,k) <_{w_{1,3}} (x,i),$$

2. open:

$$(x,i) <_{w_{1,2}} (y,j) <_{w_{2,3}} (z,k) \text{ implies } (x,i) <_{w_{1,3}} (z,k).$$

< □ > < □ > < □ > < □ > < □ > = Ξ > = Ξ

Applications

20/27

Some algebraic properties

- $L(3,2) \times L(2,4) \times L(3,4)$ is a lattice,
- closed tuples are stable under infs,
- open tuples are stable under sups.

For $w \in L(3,2) \times L(2,4) \times L(3,4)$, let

$$\overline{w} = \bigwedge \{ u \text{ closed } | w \le u \}, \qquad (\text{closure of } w),$$
$$w^{\circ} = \bigvee \{ u \text{ open } | w \le u \}, \qquad (\text{interior of } w).$$

- the closure of an open is open,
- the interior of a closed is closed.

20/27

Some algebraic properties

- $L(3,2) \times L(2,4) \times L(3,4)$ is a lattice,
- closed tuples are stable under infs,
- open tuples are stable under sups.

For $w \in L(3,2) \times L(2,4) \times L(3,4)$, let

$$\overline{w} = \bigwedge \{ u \text{ closed } | w \le u \}, \qquad (\text{closure of } w),$$
$$w^{\circ} = \bigvee \{ u \text{ open } | w \le u \}, \qquad (\text{interior of } w).$$

- the closure of an open is open,
- the interior of a closed is closed.

20/27

Some algebraic properties

- $L(3,2) \times L(2,4) \times L(3,4)$ is a lattice,
- closed tuples are stable under infs,
- open tuples are stable under sups.

For $w \in L(3,2) \times L(2,4) \times L(3,4)$, let

$$\overline{w} = \bigwedge \{ u \text{ closed } | w \le u \}, \qquad (\text{closure of } w),$$
$$w^{\circ} = \bigvee \{ u \text{ open } | w \le u \}, \qquad (\text{interior of } w).$$

- the closure of an open is open,
- the interior of a closed is closed.

The clopens

Let

 $\mathsf{CO}(3,2,4) = \{ w \in \mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4) \mid w \text{ is closed and open } \}.$

We have an order isomorphism

 $L(3,2,4) \simeq CO(3,2,4)$.

CO(3, 2, 4) is a lattice:

 $w \lor_{\mathsf{CO}(3,2,4)} u = (w \lor_{\mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4)} u),$ $w \land_{\mathsf{CO}(3,2,4)} u = (w \land_{\mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4)} u)^{\circ}.$

Whence:

Proposition L(3,2,4) *is a lattice.*

◆□ → ◆□ → ◆注 → ◆注 → □ □ □

21/27

The clopens

Let

 $\mathsf{CO}(3,2,4) = \{ w \in \mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4) \mid w \text{ is closed and open } \}.$

We have an order isomorphism

 $L(3,2,4) \simeq CO(3,2,4)$.

CO(3, 2, 4) is a lattice:

$$w \lor_{\mathsf{CO}(3,2,4)} u = \overline{(w \lor_{\mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4)} u)},$$

$$w \land_{\mathsf{CO}(3,2,4)} u = (w \land_{\mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4)} u)^{\circ}.$$

Whence:

Proposition L(3,2,4) *is a lattice*.

The clopens

Let

 $\mathsf{CO}(3,2,4) = \{ w \in \mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4) \mid w \text{ is closed and open } \}.$

We have an order isomorphism

 $L(3,2,4) \simeq CO(3,2,4)$.

CO(3, 2, 4) is a lattice:

$$w \lor_{\mathsf{CO}(3,2,4)} u = \overline{(w \lor_{\mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4)} u)},$$

$$w \land_{\mathsf{CO}(3,2,4)} u = (w \land_{\mathsf{L}(3,2) \times \mathsf{L}(2,4) \times \mathsf{L}(3,4)} u)^{\circ}.$$

Whence:

Proposition L(3,2,4) is a lattice.

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣 □

Applications

The continuous case Let $f = (f_{1,2}, f_{2,3}, f_{1,3}) \in L(\mathbb{I}^2) \times L(\mathbb{I}^2) \times L(\mathbb{I}^2)$.

(□) (圖) (E) (E) = E

Applications

22/27

The continuous case Let $f = (f_{1,2}, f_{2,3}, f_{1,3}) \in L(\mathbb{I}^2) \times L(\mathbb{I}^2) \times L(\mathbb{I}^2).$

Say that *f* is:

• closed si

 $r < f_{2,3}(q)$ and $q < f_{1,2}(p)$ implies $r < f_{1,3}(p)$, for all $p, q, r \in \mathbb{I}$, • open if $p < f_{2,1}(q)$ and $q < f_{3,2}(r)$ implies $p < f_{3,1}(r)$. for all $p, q, r \in \mathbb{I}$.

Here, for i < j, we have

 $f_{j,i} \simeq \text{left} \text{ adjoint of } f_{i,j}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○

22/27

Applications

The continuous case Let $f = (f_{1,2}, f_{2,3}, f_{1,3}) \in L(\mathbb{I}^2) \times L(\mathbb{I}^2) \times L(\mathbb{I}^2).$

Say that *f* is:

• closed si

 $r < f_{2,3}(q)$ and $q < f_{1,2}(p)$ implies $r < f_{1,3}(p)$, for all $p, q, r \in \mathbb{I}$, • open if $p < f_{2,1}(q)$ and $q < f_{3,2}(r)$ implies $p < f_{3,1}(r)$. for all $p, q, r \in \mathbb{I}$.

Here, for i < j, we have

 $f_{j,i} \simeq \text{left} \text{ adjoint of } f_{i,j}$.

<□> <@> < 注→ < 注→ < 注→ < 注→ < 注 → の

22/27

Applications

The continuous case Let $f = (f_{1,2}, f_{2,3}, f_{1,3}) \in L(\mathbb{I}^2) \times L(\mathbb{I}^2) \times L(\mathbb{I}^2).$

Say that *f* is:

• closed si

 $r < f_{2,3}(q)$ and $q < f_{1,2}(p)$ implies $r < f_{1,3}(p)$, for all $p, q, r \in \mathbb{I}$, • open if $p < f_{2,1}(q)$ and $q < f_{3,2}(r)$ implies $p < f_{3,1}(r)$.

for all $p, q, r \in \mathbb{I}$. Here, for i < j, we have

 $f_{j,i} \simeq \text{left} \text{ adjoint of } f_{i,j}$.

23/27

Main results

Let:

$$\begin{split} \mathsf{L}(\mathbb{I}^3) &:= \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \text{ is closed and open} \, \} \, . \end{split}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- L(1³), with the order inherited from L(1²)³, is a (complete) lattice,
- 6. every L(n, m, l) embeds into $L(l^2)$.
- $= \inf_{\substack{i \in [n, n] \in \mathbb{N}^{n}}} b(i, [1]) \in b(i, [n]) = \inf_{\substack{i \in [n, n] \in \mathbb{N}^{n}}} b(i, [n]) = \inf_{\substack{i \in [n, n] \in \mathbb{N}^{n}}} b(i, [n]) = \inf_{\substack{i \in [n, n] \in \mathbb{N}^{n}}} b(i, [n]) = \inf_{\substack{i \in [n, n] \in \mathbb{N}^{n}}} b(i, [n]) = \inf_{\substack{i \in [n] \in \mathbb{N}^{n}} b(i, [n]) = \inf_{\substack{i \in [n] \in \mathbb{N}^{n} \in \mathbb{N}^{n} b(i, [n]) = \inf_{\substack{i \in [n] \in \mathbb{N}^{n} \in \mathbb{N}^{n} b(i, [n]) = i_{i \in [n]} b(i, [n]) = i_{i \in [n$
- analogous constructions and results apply to dimentions resultats d > 3.

23/27

Main results

Let:

$$\begin{array}{l} \mathsf{L}(\mathbb{I}^3) := \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \, \, \text{is closed and open} \, \} \, . \end{array}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- L(I³), with the order inherited from L(I²)³, is a (complete) lattice,
- 4. every L(n,m,l) embeds into L(\mathbb{I}^3),
- 5. every element of $L(\mathbb{I}^3)$ is both a inf and a sup of elements from $\bigcup_{(n,m,l)\in\mathbb{N}^3} L(n,m,l)$,
- analogous constructions and results apply to dimentions résultats d > 3.

23/27

Main results

Let:

$$\begin{array}{l} \mathsf{L}(\mathbb{I}^3) := \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \, \, \text{is closed and open} \, \} \, . \end{array}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- L(I³), with the order inherited from L(I²)³, is a (complete) lattice,
- 4. every L(n,m,l) embeds into L(\mathbb{I}^3),
- 5. every element of $L(\mathbb{I}^3)$ is both a inf and a sup of elements from $\bigcup_{(n,m,l)\in\mathbb{N}^3} L(n,m,l)$,
- analogous constructions and results apply to dimentions résultats d > 3.

Let:

$$\begin{split} \mathsf{L}(\mathbb{I}^3) &:= \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \text{ is closed and open} \, \} \, . \end{split}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- 3. L(\mathbb{I}^3), with the order inherited from L(\mathbb{I}^2)³, is a (complete) lattice,
- 4. every L(n, m, l) embeds into $L(\mathbb{I}^3)$,
- 5. every element of $L(\mathbb{I}^3)$ is both a inf and a sup of elements from $\bigcup_{(n,m,l)\in\mathbb{N}^3} L(n,m,l)$,
- analogous constructions and results apply to dimentions résultats d > 3.

Let:

$$\begin{split} \mathsf{L}(\mathbb{I}^3) &:= \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \text{ is closed and open} \, \} \, . \end{split}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- 3. $L(\mathbb{I}^3)$, with the order inherited from $L(\mathbb{I}^2)^3$, is a (complete) lattice,
- 4. every L(n, m, l) embeds into $L(\mathbb{I}^3)$,
- 5. every element of $L(\mathbb{I}^3)$ is both a inf and a sup of elements from $\bigcup_{(n,m,l)\in\mathbb{N}^3} L(n,m,l)$,
- 6. analogous constructions and results apply to dimentions résultats d > 3.

Let:

$$\begin{split} \mathsf{L}(\mathbb{I}^3) &:= \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \text{ is closed and open} \, \} \, . \end{split}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- 3. $L(\mathbb{I}^3)$, with the order inherited from $L(\mathbb{I}^2)^3$, is a (complete) lattice,
- 4. every L(n, m, l) embeds into $L(\mathbb{I}^3)$,
- 5. every element of $L(\mathbb{I}^3)$ is both a inf and a sup of elements from $\bigcup_{(n,m,l)\in\mathbb{N}^3} L(n,m,l)$,
- analogous constructions and results apply to dimentions résultats d > 3.

Let:

$$\begin{array}{l} \mathsf{L}(\mathbb{I}^3) := \\ \{ \, f \in \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \times \mathsf{L}(\mathbb{I}^2) \mid f \, \, \text{is closed and open} \, \} \, . \end{array}$$

- 1. the closure of an open is open,
- 2. the interior of a closed is closed,
- 3. $L(\mathbb{I}^3)$, with the order inherited from $L(\mathbb{I}^2)^3$, is a (complete) lattice,
- 4. every L(n, m, l) embeds into $L(\mathbb{I}^3)$,
- 5. every element of $L(\mathbb{I}^3)$ is both a inf and a sup of elements from $\bigcup_{(n,m,l)\in\mathbb{N}^3} L(n,m,l)$,
- 6. analogous constructions and results apply to dimentions résultats d > 3.

Dimension > 2

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

Applications

24/27

Open problem(s)

• Is there a bijective correspondence

$$L(\mathbb{I}^3) \simeq \{ \ C \subseteq \mathbb{I}^3 \mid C \text{ chain, dense, complete} \}$$

= { images of continous paths $\pi : \mathbb{I} \longrightarrow \mathbb{I}^3 \}$?

Dimension > 2

Applications

The order on permutations and words

The continuous order, dimension 2

The continuous order, dimension > 2

Discrete geometry and combinatorics of words

The Christoffel words $C_{n,m}$

Best lower approximation of a straight lines of slope $\frac{m}{n}$:

That is:

 $\mathcal{C}_{5,4} = \bigvee \{ w \in \mathsf{L}(5,4) \mid w \leq \mathsf{id} \in \mathsf{L}(\mathbb{I}^2) \}.$

26/27

Application

The Christoffel words $C_{n,m}$

Best lower approximation of a straight lines of slope $\frac{m}{n}$:

That is:

$$\mathcal{C}_{5,4} = igvee \{ \, w \in \mathsf{L}(5,4) \mid w \leq \mathtt{id} \in \mathsf{L}(\mathbb{I}^2) \, \}$$
 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

27/27

Christoffel words in higher dimension?

- open question in combimnatorics of words ...
- Sturmian words in higher dimension?

Natural generalisation: for $v \in \mathbb{N}^d$, define

$$\mathcal{C}_{v} = \bigvee \{ w \in \mathsf{L}(v) \mid i(w) \leq \Delta \}$$

where

- *i* is the embedding of L(v) into $L(\mathbb{I}^d)$,
- $\Delta \in \mathsf{L}(\mathbb{I}^d)$ codes the path $t \mapsto (t, \ldots, t)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圖 - 例

Christoffel words in higher dimension?

- open question in combimnatorics of words ...
- Sturmian words in higher dimension?

Natural generalisation: for $v \in \mathbb{N}^d$, define

$$\mathcal{C}_{\mathbf{v}} = \bigvee \{ w \in \mathsf{L}(\mathbf{v}) \mid i(w) \leq \Delta \}$$

where

- *i* is the embedding of L(v) into $L(\mathbb{I}^d)$,
- $\Delta \in \mathsf{L}(\mathbb{I}^d)$ codes the path $t \mapsto (t, \dots, t)$.