Almost (MP)-based substructural logics

Petr Cintula¹ Carles Noguera²

¹Institute of Computer Science, Czech Academy of Sciences Prague, Czech Republic

²Artificial Intelligence Research Institute (IIIA - CSIC) Bellaterra, Catalonia

Petr Cintula and Carles Noguera

Almost (MP)-based substructural logics

< (T) >

Substructural logics

Petr Cintula and Carles Noguera

Almost (MP)-based substructural logics

표 문 표

Non-associative Full Lambek Calculus SL [Galatos-Ono, APAL, 2010]

 $\vdash \varphi \setminus \varphi \qquad \varphi, \varphi \setminus \psi \vdash \psi \qquad \varphi \vdash (\varphi \setminus \psi) \setminus \psi$ $\varphi \setminus \psi \vdash (\psi \setminus \chi) \setminus (\varphi \setminus \chi) \qquad \psi \setminus \chi \vdash (\varphi \setminus \psi) \setminus (\varphi \setminus \chi)$ $\vdash \varphi \setminus ((\psi \not \varphi) \setminus \psi) \qquad \varphi \setminus (\psi \setminus \chi) \vdash \psi \setminus (\chi \not \varphi) \qquad \psi \not \varphi \vdash \varphi \setminus \psi$ $\vdash \varphi \land \psi \setminus \varphi \qquad \vdash \varphi \land \psi \setminus \psi$ $\varphi, \psi \vdash \varphi \land \psi \qquad \vdash (\chi \searrow \varphi) \land (\chi \searrow \psi) \searrow (\chi \searrow \varphi \land \psi)$ $\vdash \varphi \setminus \varphi \lor \psi \qquad \vdash (\varphi \setminus \chi) \land (\psi \setminus \chi) \setminus (\varphi \lor \psi \setminus \chi)$ $\vdash \psi \setminus \varphi \lor \psi \qquad \vdash (\chi \swarrow \varphi) \land (\chi \nvdash \psi) \setminus (\chi \lor \varphi \lor \psi)$ $\vdash \psi \setminus (\varphi \setminus \varphi \& \psi) \qquad \psi \setminus (\varphi \setminus \chi) \vdash \varphi \& \psi \setminus \chi$ $\vdash \mathbf{1} \qquad \vdash \mathbf{1} \setminus (\varphi \setminus \varphi) \qquad \vdash \varphi \setminus (\mathbf{1} \setminus \varphi)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = ∽○ヘ

Convention

A logic L in a language $\mathcal L$ containing \searrow or \swarrow is substructural if

- L is an expansion of the $\mathcal{L} \cap \mathcal{L}_{SL}$ -fragment of SL.
- for each n, i < n, and each n-ary connective $c \in \mathcal{L} \setminus \mathcal{L}_{SL}$:

 $\varphi \to \psi, \psi \to \varphi \vdash_{\mathsf{L}} c(\chi_1, \ldots, \chi_i, \varphi, \ldots, \chi_n) \to c(\chi_1, \ldots, \chi_i, \psi, \ldots, \chi_n),$

where \rightarrow is any of the implications in $\mathcal{L}.$

Let us fix an one of the implications and denote it as \rightarrow .

向下 イヨト イヨト

Examples of substructural logics

- substructural logics in Ono's sense including e.g. monoidal logic, uninorm logic, psBL, GBL, BL, Intuitionistic logic, (variants of) relevance logics, Łukasiewicz logic;
- non-associative substructural logics recently developed by Buszkowski, Farulewski, Galatos, Ono, Halaš, Botur, etc.
- expansions by additional connectives, e.g. (classical) modalities, exponentials in (variants of) Linear Logic and Baaz's Delta in fuzzy logics;
- fragments to languages containing implication, e.g. BCK, BCI, psBCK, BCC, hoop logics, etc.;

A problem?

- Is the logic BCK_A of BCK-semilattices substructural?
- It does not satisfy $(\chi \searrow \varphi) \land (\chi \searrow \psi) \searrow (\chi \searrow \varphi \land \psi)$.
- Solution: it can be considered a substructural logic in our sense if formulated in the language {\,, \overline{\},...}.

Syntax: associativity and other notable extensions

Definition

FL is the extension of SL by

- $\bullet \vdash_{\mathcal{L}} \varphi \,\&\, (\psi \,\&\, \chi) \to (\varphi \,\&\, \psi) \,\&\, \chi$
- $\vdash_{\mathcal{L}} (\varphi \& \psi) \& \chi \to \varphi \& (\psi \& \chi)$

Axiomatic extensions of SL and FL

usual name	S	&-form	→-form
exchange	e	$\varphi \And \psi \to \psi \And \varphi$	$\varphi \to (\psi \to \chi) \vdash \psi \to (\varphi \to \chi)$
contraction	c	$\varphi \to \varphi \And \varphi$	$\varphi \to (\varphi \to \psi) \vdash \varphi \to \psi$
weakening	w	i + o	
left-weak. right-weak.	i o	$\varphi \And \psi \to \psi$	$\psi ightarrow (arphi ightarrow \psi) \ {f 0} ightarrow arphi$

프 🕨 🛛 프

/□ ▶ 《 三

Conjugation and axiomatic systems of FL and FL_e

Definition

- a left conjugate of φ is $\lambda_{\alpha}(\varphi) = (\alpha \lor \varphi \& \alpha) \land \mathbf{1}$
- a right conjugate of φ is $\rho_{\alpha}(\varphi) = (\alpha \& \varphi \swarrow \alpha) \land \mathbf{1}$
- an iterated conjugate of φ is $\gamma_{\alpha_1}(\gamma_{\alpha_2} \cdots \gamma_{\alpha_n}(\varphi) \ldots))$ where $\gamma_{\alpha_i} = \lambda_{\alpha_i}$ or $\gamma_{\alpha_i} = \rho_{\alpha_i}$

Let us consider the following rules:

(MP)	$\varphi,\varphi \searrow \psi \vdash \psi$		modus ponens
(Adj)	$arphi dash arphi \wedge 1$		unit adjunction
(PN)	$\varphi \vdash \lambda_{\alpha}(\varphi)$	$\varphi \vdash \rho_{\alpha}(\varphi)$	product normality

Theorem

- Logic The only rules needed in its axiomatization
- FL_{ew} modus ponens
- FLe modus ponens and unit adjunction
- FL modus ponens and product normality

Almost (MP)-based logics

Petr Cintula and Carles Noguera

Almost (MP)-based substructural logics

ъ

문▶ ★ 문▶

Main definition

We fix

- $\bullet\,$ a substructural logic L in language with $\rightarrow, \&, \, \textit{and} \, 1$
- a propositional variable p, the meaning of $\delta(\varphi)$ is obvious

∢ 臣 ≯

2 🕨 👘

ъ

We fix

- a substructural logic L in language with \rightarrow , &, and 1
- a propositional variable p, the meaning of $\delta(\varphi)$ is obvious

Definition (Almost (MP)-based substructural logic)

L is almost (MP)-based w.r.t. a set of basic deduction terms bDT if it has an axiomatic system where

- there are no rules with three or more premises
- there is only one rule with two premises: modus ponens
- the remaining rules are $\{\varphi \vdash \chi(\varphi) \mid \varphi \in \operatorname{Fm}, \chi \in \mathrm{bDT}\}$
- for each $\beta \in bDT$ and each φ, ψ , there are $\beta_1, \beta_2 \in bDT$ s.t.:

$$\vdash_{\mathcal{L}} \beta_1(\varphi \to \psi) \to (\beta_2(\varphi) \to \beta(\psi)).$$

< 同 ▶ < 三 ▶

Example

basic deduction terms
Ø
$\{p \land 1\}$
$\{\lambda_{\alpha}(p), \rho_{\alpha}(p) \mid \alpha \text{ a formula}\}$
$\{\Box p\}$

Almost (MP)-based substructural logics

イロト イヨト イヨト

ъ

Example

basic deduction terms	
Ø	
$\{p \land 1\}$	
$\{\lambda_{\alpha}(p), \rho_{\alpha}(p) \mid \alpha \text{ a formula}\}$	
$\{\Box p\}$	

Definition (Iterated and conjuncted Γ -formulae)

Let Γ be a set of formulae. We define the sets of:

• *iterated* Γ -formulae Γ^* as the smallest set s.t.

•
$$p\in\Gamma^*$$
,

- $\delta(\chi) \in \Gamma^*$ for each $\delta(p) \in \Gamma$ and each $\chi \in \Gamma^*$.
- conjuncted Γ -formulae $\Pi(\Gamma)$ as the smallest set containing $\Gamma \cup \{1\}$ and closed under &.

イロト 不同 トイヨト イヨト

- 2

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT. Then for each set $\Gamma \cup \{\varphi, \psi\}$ of formulae:

 $\Gamma, \varphi \vdash_{\mathsf{L}} \psi \qquad \textit{iff} \qquad \Gamma \vdash_{\mathsf{L}} \delta(\varphi) \to \psi \textit{ for some } \delta \in \Pi(\mathsf{b}\mathsf{D}\mathsf{T}^*).$

→ < 프 > < 프 >

Definition

A logic L has the Almost-Implicational Deduction Theorem w.r.t. a set of deductive terms DT, if for each set $\Gamma \cup \{\varphi, \psi\}$ of formulae:

$$\Gamma, \varphi \vdash_{\mathrm{L}} \psi \qquad \text{iff} \qquad \Gamma \vdash_{\mathrm{L}} \delta(\varphi) \to \psi \text{ for some } \delta \in \mathrm{DT}.$$

Theorem

Let L have the Almost-Implicational Deduction Theorem w.r.t. DT.

• If L is finitary, then it is almost (MP)-based w.r.t.

 $bDT = \{\sigma \delta \mid \delta \in DT, \sigma \text{ a substitution such that } \sigma p = p\}.$

L has the Almost-Implicational Deduction Theorem w.r.t.
 DT' ⊆ DT IFF for every χ ∈ DT there is φ ∈ DT' s.t. ⊢_L φ → χ.

・ロト ・ 同 ト ・ ヨ ト

Theorem (Proof by Cases Property)

Let L be almost (MP)-based w.r.t. bDT s.t.

- for each $\beta \in bDT$ we have $\vdash_L \beta(p) \to 1$,
- there is $\beta_0 \in \text{bDT}$ such that $\vdash_L \beta_0(p) \to p$.

Then

$$\frac{\Gamma, \varphi \vdash_{\mathsf{L}} \chi}{\Gamma \cup \{\alpha(\varphi) \lor \beta(\psi) \mid \alpha, \beta \in \mathsf{bDT}^*\} \vdash_{\mathsf{L}} \chi}$$

Corollary (Proof by Cases Property for logics with weakening)

Let L satisfy weakening and be almost (MP)-based w.r.t. bDT. Then

$$\frac{\Gamma, \varphi \vdash_{\mathbf{L}} \chi}{\Gamma \cup \{\alpha(\varphi) \lor \beta(\psi) \mid \alpha, \beta \in \mathbf{bDT}^*\} \vdash_{\mathbf{L}} \chi}$$

< 同 ▶ < 三 ▶

Corollary (Proof by cases in notable logics)

The following meta-rules are valid:

 $\frac{\Gamma, \varphi \vdash_{\mathsf{FL}} \chi}{\Gamma \cup \{\gamma_1(\varphi) \lor \gamma_2(\psi) \mid \gamma_1, \gamma_2 \text{ iterated conjugates}\} \vdash_{\mathsf{FL}} \chi}$

$$\frac{\Gamma, \varphi \vdash_{\mathsf{FL}_{\mathsf{e}}} \chi \quad \Gamma, \psi \vdash_{\mathsf{FL}_{\mathsf{e}}} \chi}{\Gamma, (\varphi \land \mathbf{1}) \lor (\psi \land \mathbf{1}) \vdash_{\mathsf{FL}_{\mathsf{e}}} \chi}$$

$$\frac{\Gamma, \varphi \vdash_{\mathsf{FL}_{\mathsf{ew}}} \chi \quad \Gamma, \psi \vdash_{\mathsf{FL}_{\mathsf{ew}}} \chi}{\Gamma, \varphi \lor \psi \vdash_{\mathsf{FL}_{\mathsf{ew}}} \chi}$$

$$\frac{\Gamma, \varphi \vdash_{K} \chi}{\Gamma \cup \{\Box^{n}(\varphi) \lor \Box^{m}(\psi) \mid n, m \geq 0\} \vdash_{K} \chi}$$

A ID IN A (17) IN A

Proof of the Almost-Implicational Deduction Theorem

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT. Then for each set $\Gamma \cup \{\varphi, \psi\}$ of formulae:

 $\Gamma, \varphi \vdash_{\mathsf{L}} \psi \qquad \textit{iff} \qquad \Gamma \vdash_{\mathsf{L}} \delta(\varphi) \to \psi \textit{ for some } \delta \in \Pi(\mathsf{b}\mathsf{D}\mathsf{T}^*).$

One direction: obvious from (MP) and $\varphi \vdash_L \delta(\varphi)$ for $\delta \in \Pi(bDT^*)$

The other direction: for each χ in the proof of ψ from $\Gamma \cup \{\varphi\}$ we find $\delta_{\chi} \in \Pi(bDT^*)$ s.t. $\Gamma \vdash_{L} \delta_{\chi}(\varphi) \rightarrow \chi$

• if
$$\chi = \varphi$$
, we set $\delta_{\chi} = p$;

- if $\chi \in \Gamma$ or it is an axiom, we set $\delta_{\chi} = 1$.
- if χ results from η and $\eta \to \chi$ by (MP). IH: $\Gamma \vdash_{\mathrm{L}} \delta_{\eta}(\varphi) \to \eta$ and $\Gamma \vdash_{\mathrm{L}} \delta_{\eta \to \chi}(\varphi) \to (\eta \to \chi)$. We set $\delta_{\chi} = \delta_{\eta} \& \delta_{\eta \to \chi}$.

イロト イボト イヨト 一日

Proof of the Almost-Implicational Deduction Theorem

Theorem

Let L be almost (MP)-based w.r.t. a set of basic deductive terms bDT. Then for each set $\Gamma \cup \{\varphi, \psi\}$ of formulae:

 $\Gamma, \varphi \vdash_{\mathsf{L}} \psi \qquad \textit{iff} \qquad \Gamma \vdash_{\mathsf{L}} \delta(\varphi) \to \psi \textit{ for some } \delta \in \Pi(\mathsf{b}\mathsf{D}\mathsf{T}^*).$

One direction: obvious from (MP) and $\varphi \vdash_L \delta(\varphi)$ for $\delta \in \Pi(bDT^*)$

The other direction: for each χ in the proof of ψ from $\Gamma \cup \{\varphi\}$ we find $\delta_{\chi} \in \Pi(bDT^*)$ s.t. $\Gamma \vdash_{L} \delta_{\chi}(\varphi) \rightarrow \chi$

• if
$$\chi = \varphi$$
, we set $\delta_{\chi} = p$;

- if $\chi \in \Gamma$ or it is an axiom, we set $\delta_{\chi} = 1$.
- if χ results from η and $\eta \to \chi$ by (MP). IH: $\Gamma \vdash_{L} \delta_{\eta}(\varphi) \to \eta$ and $\Gamma \vdash_{L} \delta_{\eta \to \chi}(\varphi) \to (\eta \to \chi)$. We set $\delta_{\chi} = \delta_{\eta} \& \delta_{\eta \to \chi}$. From the former we derive $\Gamma \vdash_{L} (\eta \to \chi) \to (\delta_{\eta}(\varphi) \to \chi)$, and so, by using the latter, $\Gamma \vdash_{L} \delta_{\eta \to \chi}(\varphi) \to (\delta_{\eta}(\varphi) \to \chi)$, and thus $\Gamma \vdash_{L} \delta_{\eta}(\varphi) \& \delta_{\eta \to \chi}(\varphi) \to \chi$.

if χ is obtained from η using the rule $\eta \vdash \chi$. Thus $\chi = \beta(\eta)$ for some $\beta \in \text{bDT}$. Induction Hypothesis: $\Gamma \vdash_{L} \delta_{\eta}(\varphi) \rightarrow \eta$.

Claim: for each $\beta \in bDT$, $\delta \in \Pi(bDT^*)$, and formulae φ, ψ

 $\begin{array}{ll} \bullet \ \varphi \to \psi \vdash_{\mathcal{L}} \beta'(\varphi) \to \beta(\psi) & \quad \text{for some } \beta' \in \mathrm{bDT} \\ \bullet \vdash_{\mathcal{L}} \delta'(\varphi) \to \beta(\delta(\varphi)) & \quad \text{for some } \delta' \in \Pi(\mathrm{bDT}^*) \end{array}$

From $\Gamma \vdash_{L} \delta_{\eta}(\varphi) \rightarrow \eta$ we get $\beta' \in \text{bDT s.t. } \Gamma \vdash_{L} \beta'(\delta_{\eta}(\varphi)) \rightarrow \beta(\eta)$. Thus there is δ_{χ} s.t. $\Gamma \vdash_{L} \delta_{\chi}(\varphi) \rightarrow \chi$.

(日本)(日本)(日本)(日本)

Thank you for your attention!

Petr Cintula and Carles Noguera

Almost (MP)-based substructural logics

포 > 표