Ordinal spaces for GLB⁰

Joost J. Joosten

Dept. Lògica, Història i Filosofia de la Ciència Universitat de Barcelona

Friday 29-07-2011 TACL, Marseille

Topological Semantics for ${\rm GLP}_\Lambda$ A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

▶ The modal provability logic GL

・ロン ・四 と ・ ヨ と ・ モ と

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

The modal provability logic GL

characterizes provability for Σ₁-sound theories

イロン イヨン イヨン イヨン

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- The modal provability logic GL
- characterizes provability for Σ_1 -sound theories
- Axioms are

イロン イヨン イヨン イヨン

The logics GLP_{Λ}

Topological Semantics for GLP_A A topological topological completeness proof Future work **Provability** logics The logic GLB

- The modal provability logic GL
- \blacktriangleright characterizes provability for Σ_1 -sound theories
- Axioms are
 - All boolean tautologies

イロト イヨト イヨト イヨト

The logics GLP_A

Provability logics Topological Semantics for GLP A topological topological completeness proof The logic GLB Future work

- The modal provability logic GL
- \blacktriangleright characterizes provability for Σ_1 -sound theories
- Axioms are
 - All boolean tautologies
 - $\blacktriangleright \Box (A \to B) \to (\Box A \to \Box B)$

イロト イヨト イヨト イヨト

Provability logics Extending to ordinal The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- The modal provability logic GL
- characterizes provability for Σ_1 -sound theories
- Axioms are
 - All boolean tautologies
 - $\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B)$
 - $\blacktriangleright \ \Box (\Box A \to A) \to \Box A$

<ロ> (日) (日) (日) (日) (日)

Provability logics Extending to ordinal The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- The modal provability logic GL
- characterizes provability for Σ_1 -sound theories
- Axioms are
 - All boolean tautologies
 - $\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B)$
 - $\blacktriangleright \square(\square A \to A) \to \square A$
- Rules are

イロト イヨト イヨト イヨト

Provability logics Extending to ordinal The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- The modal provability logic GL
- characterizes provability for Σ₁-sound theories
- Axioms are
 - All boolean tautologies
 - $\blacktriangleright \Box (A \to B) \to (\Box A \to \Box B)$
 - $\blacktriangleright \square (\square A \to A) \to \square A$
- Rules are
 - Modus Ponens

イロト イヨト イヨト イヨト

Provability logics Extending to ordinals The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- The modal provability logic GL
- characterizes provability for Σ₁-sound theories
- Axioms are
 - All boolean tautologies
 - $\blacktriangleright \ \Box(A \to B) \to (\Box A \to \Box B)$
 - $\blacktriangleright \square (\square A \to A) \to \square A$
- Rules are
 - Modus Ponens
 - Necessitation: $\frac{A}{\Box A}$

イロト イヨト イヨト イヨト

Topological Semantics for ${\rm GLP}_{\Lambda}$ A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

• GLP_{ω} has a modality [*i*] for each $i < \omega$

・ロト ・回ト ・ヨト ・ヨト

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- ▶ GLP_{ω} has a modality [*i*] for each *i* < ω
- Intuitive reading of [i]A:

・ロン ・回 と ・ ヨ と ・ ヨ と

The logics GLP_A

Topological Semantics for GLP_A A topological topological completeness proof Future work

Provability logics The logic GLB

- GLP $_{\omega}$ has a modality [i] for each $i < \omega$
- Intuitive reading of [i]A:
- "T together with all true Π_n -sentences proves A"

イロト イヨト イヨト イヨト

The logics GLP_A Topological Semantics for GLP_A

Provability logics A topological topological completeness proof The logic GLB Future work

- GLP $_{\omega}$ has a modality [*i*] for each *i* < ω
- Intuitive reading of [i]A:
- "*T* together with all true Π_n -sentences proves *A*"
- Axioms:

イロト イヨト イヨト イヨト

The logics GLP_A

Topological Semantics for GLP A topological topological completeness proof Future work **Provability** logics The logic GLB

- GLP $_{\omega}$ has a modality [i] for each $i < \omega$
- Intuitive reading of [i]A:
- "*T* together with all true Π_n -sentences proves *A*"
- Axioms:
 - All GL axioms for each [i]

イロト イヨト イヨト イヨト

Provability logics Extending to ordin The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- GLP_{ω} has a modality [*i*] for each $i < \omega$
- Intuitive reading of [i]A:
- "T together with all true Π_n-sentences proves A"
- Axioms:
 - All GL axioms for each [i]
 - $\langle i \rangle A \rightarrow [j] \langle i \rangle A$ for i < j

<ロ> (日) (日) (日) (日) (日)

Provability logics Extending to ordinals The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- GLP_{ω} has a modality [*i*] for each $i < \omega$
- Intuitive reading of [i]A:
- "T together with all true Π_n-sentences proves A"
- Axioms:
 - All GL axioms for each [i]
 - $\langle i \rangle A \rightarrow [j] \langle i \rangle A$ for i < j
 - $[i]A \rightarrow [j]A$ for $i \leq j$

イロト イヨト イヨト イヨト

Provability logics Extending to ordinals The logic GLB

Topological Semantics for GLP_A A topological topological completeness proof Future work

- GLP_{ω} has a modality [*i*] for each $i < \omega$
- Intuitive reading of [i]A:
- "T together with all true Π_n-sentences proves A"
- Axioms:
 - All GL axioms for each [i]
 - $\langle i \rangle A \rightarrow [j] \langle i \rangle A$ for i < j
 - $[i]A \rightarrow [j]A$ for $i \leq j$
- Rules: MP and Necessitation for each [i]

The logics GLP_A

Provability logics Extending to ordinals The logic GLB

Topological Semantics for GLP A topological topological completeness proof Future work

- GLP $_{\omega}$ has a modality [*i*] for each *i* < ω
- Intuitive reading of [i]A:
- "T together with all true \prod_{n} -sentences proves A"
- Axioms:
 - All GL axioms for each [i]
 - $\langle i \rangle A \rightarrow [j] \langle i \rangle A \text{ for } i < j$
 - \blacktriangleright [*i*] $A \rightarrow$ [*j*]A for *i* < *j*
- Rules: MP and Necessitation for each |i|
- GLP_{ω} characterizes Π_{n} -provability for sound theories

Topological Semantics for ${\rm GLP}_{\Lambda}$ A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

• The closed fragment of GLP_{ω} : no variables

・ロト ・回ト ・ヨト ・ヨト

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- ► The closed fragment of GLP_ω: no variables
- ▶ It has been used for an ordinal analysis of Peano Arithmetic

・ロン ・回と ・ヨン・

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- ► The closed fragment of GLP_ω: no variables
- It has been used for an ordinal analysis of Peano Arithmetic
- Calculation carried out within the closed fragment

(日) (四) (三) (三) (三)

The logics GLP_A

Topological Semantics for GLP A topological topological completeness proof Future work **Provability** logics Extending to ordinals The logic GLB

- The closed fragment of GLP_{ω} : no variables
- It has been used for an ordinal analysis of Peano Arithmetic
- Calculation carried out within the closed fragment
- Can this type of analysis be extended to stronger theories?

Topological Semantics for ${\rm GLP}_{\Lambda}$ A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

 Introduce modalities [α] for each ordinal α satisfying the GLP axioms

イロン 不同と 不同と 不同と

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Introduce modalities [α] for each ordinal α satisfying the GLP axioms
- $[\alpha]\varphi \rightarrow [\beta]\varphi$ for $\alpha \leq \beta$

・ロン ・回と ・ヨン・

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Introduce modalities [α] for each ordinal α satisfying the GLP axioms
- $[\alpha]\varphi \rightarrow [\beta]\varphi$ for $\alpha \leq \beta$
- $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \alpha \rangle \varphi$ for $\alpha < \beta$

イロト イヨト イヨト イヨト

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Introduce modalities [α] for each ordinal α satisfying the GLP axioms
- $[\alpha]\varphi \rightarrow [\beta]\varphi$ for $\alpha \leq \beta$
- $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \alpha \rangle \varphi$ for $\alpha < \beta$
- GLP with modalities for all ordinals is still "decidable"!

・ロン ・回と ・ヨン・

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Introduce modalities [α] for each ordinal α satisfying the GLP axioms
- $[\alpha]\varphi \rightarrow [\beta]\varphi$ for $\alpha \leq \beta$
- $\langle \alpha \rangle \varphi \to [\beta] \langle \alpha \rangle \varphi$ for $\alpha < \beta$
- GLP with modalities for all ordinals is still "decidable"!
- The intuitive reading of $[\alpha]_T \varphi$ is

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Introduce modalities [α] for each ordinal α satisfying the GLP axioms
- $[\alpha]\varphi \rightarrow [\beta]\varphi$ for $\alpha \leq \beta$
- $\langle \alpha \rangle \varphi \rightarrow [\beta] \langle \alpha \rangle \varphi$ for $\alpha < \beta$
- GLP with modalities for all ordinals is still "decidable"!
- The intuitive reading of $[\alpha]_T \varphi$ is
- $\blacktriangleright \varphi$ is provable from ${\cal T}$ together with all true hyperarithmetical sentences of level α

・ロト ・回ト ・ヨト ・ヨト

Topological Semantics for ${\rm GLP}_\Lambda$ A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

Building an ordinal analysis beyond Peano Arithmetic poses:

イロン 不同と 不同と 不同と

The logics GLP_{Λ}

Topological Semantics for GLP_A A topological topological completeness proof Future work **Provability** logics Extending to ordinals The logic GLB

- Building an ordinal analysis beyond Peano Arithmetic poses:
- Important question: is there suitable semantics for GLP⁰_A?

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Building an ordinal analysis beyond Peano Arithmetic poses:
- Important question: is there suitable semantics for GLP^{0}_{Λ} ?
- First case study

The logics GLP_A

Topological Semantics for GLP A topological topological completeness proof Future work **Provability** logics The logic GLB

- Building an ordinal analysis beyond Peano Arithmetic poses:
- Important question: is there suitable semantics for GLP^0_{Λ} ?
- First case study
- ▶ In particular, is there suitable topological semantics for GLB⁰?

() < </p>

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Building an ordinal analysis beyond Peano Arithmetic poses:
- ▶ Important question: is there suitable semantics for GLP⁰_Λ?
- First case study
- ▶ In particular, is there suitable topological semantics for GLB⁰?
- $GLB := GLP_2$

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Building an ordinal analysis beyond Peano Arithmetic poses:
- ▶ Important question: is there suitable semantics for GLP⁰_Λ?
- First case study
- ▶ In particular, is there suitable topological semantics for GLB⁰?
- $GLB := GLP_2$
- More in particular:

Topological Semantics for GLP_A A topological topological completeness proof Future work Provability logics Extending to ordinals The logic GLB

- Building an ordinal analysis beyond Peano Arithmetic poses:
- ▶ Important question: is there suitable semantics for GLP⁰_Λ?
- First case study
- ▶ In particular, is there suitable topological semantics for GLB⁰?
- $GLB := GLP_2$
- More in particular:
- Semantics based on ordinal spaces!

The logics GLP_A **Topological Semantics for GLP**_A A topological topological completeness proof Future work

Scattered spaces Existing results Drawbacks and new approach

\blacktriangleright Topological semantics for ${\sf GLP}_\Lambda$ will consist of

・ロト ・回ト ・ヨト ・ヨト

• Topological semantics for GLP_{Λ} will consist of

 $\blacktriangleright \langle X, \tau_0, \ldots, \tau_{\Lambda-1} \rangle$

・ロン ・回と ・ヨン・

- Topological semantics for GLP_{Λ} will consist of
- $\blacktriangleright \langle X, \tau_0, \ldots, \tau_{\Lambda-1} \rangle$
- Where τ_i corresponds to $\langle i \rangle$:

・ロン ・回 と ・ ヨ と ・ ヨ と

- Topological semantics for GLP_{Λ} will consist of
- $\blacktriangleright \langle X, \tau_0, \ldots, \tau_{\Lambda-1} \rangle$
- Where τ_i corresponds to $\langle i \rangle$:

$$\blacktriangleright v(\langle i \rangle \varphi) := d_i(v(\varphi))$$

・ロン ・回 と ・ ヨ と ・ ヨ と

- Topological semantics for GLP_{Λ} will consist of
- $\blacktriangleright \langle X, \tau_0, \ldots, \tau_{\Lambda-1} \rangle$
- Where τ_i corresponds to $\langle i \rangle$:

$$\blacktriangleright v(\langle i \rangle \varphi) := d_i(v(\varphi))$$

• d_i : the derived set operator corresponding to τ_i

イロン 不同と 不同と 不同と

- Topological semantics for GLP_{Λ} will consist of
- $\blacktriangleright \langle X, \tau_0, \ldots, \tau_{\Lambda-1} \rangle$
- Where τ_i corresponds to $\langle i \rangle$:

$$\blacktriangleright v(\langle i \rangle \varphi) := d_i(v(\varphi))$$

- d_i : the derived set operator corresponding to τ_i
- ► $x \in d_i(X) \iff \forall \mathcal{U} \in \tau_i \ (x \in \mathcal{U} \rightarrow \mathcal{U} \cap X \setminus \{x\} \neq \emptyset)$

・ロト ・回ト ・ヨト ・ヨト

The logics GLP_A **Topological Semantics for GLP_A** A topological topological completeness proof Future work

Scattered spaces Existing results Drawbacks and new approach

As each [i] satisfies Löb's axioms

・ロト ・回 ト ・ヨト ・ヨト

The logics GLP_A **Topological Semantics for GLP_A** A topological topological completeness proof Future work

Scattered spaces Existing results Drawbacks and new approach

- As each [i] satisfies Löb's axioms
- we need all τ_i to be scattered

イロン イヨン イヨン イヨン

Scattered spaces Existing results Drawbacks and new approach

- As each [i] satisfies Löb's axioms
- we need all τ_i to be scattered
- Typical examples: ordinal spaces

イロト イヨト イヨト イヨト

- As each [i] satisfies Löb's axioms
- we need all τ_i to be scattered
- Typical examples: ordinal spaces
- $[x]\varphi \rightarrow [y]\varphi$ for x < y imposes $\tau_x \subseteq \tau_y$

- As each [i] satisfies Löb's axioms
- we need all τ_i to be scattered
- Typical examples: ordinal spaces
- $[x]\varphi \rightarrow [y]\varphi$ for x < y imposes $\tau_x \subseteq \tau_y$
- $\langle x \rangle \varphi \rightarrow [y] \langle x \rangle \varphi$ for x < y imposes $d_x(A) \in \tau_y$

イロン 不同と 不同と 不同と

► [Blass, Abashidze]: GL is complete with respect to Ω w.r.t. the interval topology and $\Omega > \omega^{\omega}$

イロン イヨン イヨン イヨン

- ► [Blass, Abashidze]: GL is complete with respect to Ω w.r.t. the interval topology and Ω > ω^ω
- [Blass] Completeness of GL is independent of ZFC for ordinal spaces w.r.t. the club topology

- ► [Blass, Abashidze]: GL is complete with respect to Ω w.r.t. the interval topology and Ω > ω^ω
- [Blass] Completeness of GL is independent of ZFC for ordinal spaces w.r.t. the club topology
- In particular, if V=L, then GL is complete w.r.t. the club topology for any ordinal > ℵ_ω

- ► [Blass, Abashidze]: GL is complete with respect to Ω w.r.t. the interval topology and Ω > ω^ω
- [Blass] Completeness of GL is independent of ZFC for ordinal spaces w.r.t. the club topology
- In particular, if V=L, then GL is complete w.r.t. the club topology for any ordinal > ℵ_ω
- ► [Beklemishev] If V=L, then GLB is complete w.r.t. interval topology together with club topology for any ordinal > ℵ_ω

・ロン ・回と ・ヨン・

► [Beklemishev, G. Bezhanishvili, Icard] GLB is complete w.r.t. upset topology together with the interval topology for any ordinal > ω^ω

イロト イヨト イヨト イヨト

- ► [Beklemishev, G. Bezhanishvili, Icard] GLB is complete w.r.t. upset topology together with the interval topology for any ordinal > ω^ω
- [Beklemishev, Gabelaia] GLP_ω is complete w.r.t. ε₀ for specificly tailored but non-constructive topologies

- ► [Beklemishev, G. Bezhanishvili, Icard] GLB is complete w.r.t. upset topology together with the interval topology for any ordinal > ω^ω
- [Beklemishev, Gabelaia] GLP_ω is complete w.r.t. ε₀ for specificly tailored but non-constructive topologies
- ► [Icard] GLP^0_{ω} is complete w.r.t. ϵ_0 for specificly tailored topologies

・ロト ・回ト ・ヨト

 The logics GLPA
 Scattered spaces

 Topological Semantics for GLPA
 Existing results

 A topological topological completeness proof
 Drawbacks and new approach

So why this talk?

< □ > < □ > < □ > < □ > < □ > .

- So why this talk?
- Club topology and beyond requires set-theoretical assumptions.

イロン イヨン イヨン イヨン

- So why this talk?
- Club topology and beyond requires set-theoretical assumptions.
- Beklemishev and Gabalaia's topologies are highly non-constructive

- So why this talk?
- Club topology and beyond requires set-theoretical assumptions.
- Beklemishev and Gabalaia's topologies are highly non-constructive
- Icard's topology is constructive but relies in its motivation and completeness proof on descriptive frames for the closed fragment

- So why this talk?
- Club topology and beyond requires set-theoretical assumptions.
- Beklemishev and Gabalaia's topologies are highly non-constructive
- Icard's topology is constructive but relies in its motivation and completeness proof on descriptive frames for the closed fragment
- In particular: does not extend to Λ where no frames are known yet

- So why this talk?
- Club topology and beyond requires set-theoretical assumptions.
- Beklemishev and Gabalaia's topologies are highly non-constructive
- Icard's topology is constructive but relies in its motivation and completeness proof on descriptive frames for the closed fragment
- In particular: does not extend to Λ where no frames are known yet
- Our aim: a constructive definition with a purely topological completeness proof.

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

► Work in progress

・ロン ・四 と ・ ヨ と ・ モン・

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Work in progress
- Desideratum: start with τ₀ the interval topology on some ordinal Ω

・ロト ・回ト ・ヨト

문 🕨 👘 문

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Work in progress
- Desideratum: start with τ₀ the interval topology on some ordinal Ω
- First idea, make τ_1 as tight as possible

- Work in progress
- Desideratum: start with τ₀ the interval topology on some ordinal Ω
- First idea, make τ_1 as tight as possible
- \blacktriangleright For example, $\langle 1 \rangle \top$ true exactly where

- Work in progress
- Desideratum: start with τ₀ the interval topology on some ordinal Ω
- First idea, make τ_1 as tight as possible
- \blacktriangleright For example, $\langle 1 \rangle \top$ true exactly where
- ▶ $\langle 0 \rangle^n \top$ true for any $n \in \omega$

- Work in progress
- Desideratum: start with τ₀ the interval topology on some ordinal Ω
- First idea, make τ_1 as tight as possible
- For example, $\langle 1 \rangle op$ true exactly where
- ▶ $\langle 0 \rangle^n \top$ true for any $n \in \omega$
- as $\mathbf{GLB} \vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$

- Work in progress
- Desideratum: start with τ₀ the interval topology on some ordinal Ω
- First idea, make τ_1 as tight as possible
- For example, $\langle 1 \rangle op$ true exactly where
- ▶ $\langle 0 \rangle^n \top$ true for any $n \in \omega$
- as $\mathsf{GLB} \vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$
- Which ordinals can that be?

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

 By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$

周▶ ▲ 臣▶

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$
- Let X denote the entire space, that is, $X = [1, \kappa]$.

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$
- Let X denote the entire space, that is, $X = [1, \kappa]$.
- We define $d^{\alpha}(X)$ for ordinals α

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$
- Let X denote the entire space, that is, $X = [1, \kappa]$.
- We define $d^{\alpha}(X)$ for ordinals α

►
$$d^0(X) = X$$

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$
- Let X denote the entire space, that is, $X = [1, \kappa]$.
- We define $d^{\alpha}(X)$ for ordinals α

►
$$d^0(X) = X$$

$$\blacktriangleright d^{\alpha+1}(X) = d(d^{\alpha}(X))$$

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$
- Let X denote the entire space, that is, $X = [1, \kappa]$.
- We define $d^{\alpha}(X)$ for ordinals α
- ► $d^0(X) = X$
- ► $d^{\alpha+1}(X) = d(d^{\alpha}(X))$
- $d^{\lambda}(X) = \cap_{lpha < \lambda} d^{lpha}(X)$ for limits λ

白 と く ヨ と く ヨ と …

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- By le(α) we denote the exponent of the last term in the Cantor Normal Form (CNF) expansion with base ω of α.
- For example, $le(\omega^{\omega} + \omega^5) = 5$
- Let X denote the entire space, that is, $X = [1, \kappa]$.
- We define $d^{\alpha}(X)$ for ordinals α
- ► $d^0(X) = X$
- ► $d^{\alpha+1}(X) = d(d^{\alpha}(X))$
- $d^{\lambda}(X) = \cap_{lpha < \lambda} d^{lpha}(X)$ for limits λ

Lemma

$$d_0^\alpha(X) = \{x \mid \mathsf{le}(x) \ge \alpha\}$$

回 と く ヨ と く ヨ と …

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP _A	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

▶ **GLB** $\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

▶ **GLB** $\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$ ▶ $\omega \models \langle 0 \rangle \top$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

• GLB
$$\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$$

$$\blacktriangleright \ \omega \models \langle \mathbf{0} \rangle \top$$

$$\blacktriangleright \ \omega^2 \models \langle 0 \rangle \langle 0 \rangle \top$$

・ロン ・四 と ・ ヨン ・ ヨ

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

• GLB
$$\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$$

$$\blacktriangleright \ \omega \models \langle \mathbf{0} \rangle \top$$

$$\blacktriangleright \ \omega^2 \models \langle \mathbf{0} \rangle \langle \mathbf{0} \rangle \top$$

$$\blacktriangleright \ \omega^n \models \langle \mathbf{0} \rangle^n \top$$

・ロン ・四と ・ヨン ・ヨ

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_{Λ} A topological topological completeness proof	Worms Soundness
Future work	Completeness

- ▶ **GLB** $\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$
- $\blacktriangleright \ \omega \models \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^2 \models \langle \mathbf{0} \rangle \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^n \models \langle \mathbf{0} \rangle^n \top$
- \blacktriangleright So, ω^ω is the smallest point where $\langle 1 \rangle \top$ can hold

< 口 > < 回 > < 回 > < 回 > < 回 > <

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ **GLB** $\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$
- $\blacktriangleright \ \omega \models \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^2 \models \langle \mathbf{0} \rangle \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^n \models \langle \mathbf{0} \rangle^n \top$
- \blacktriangleright So, ω^ω is the smallest point where $\langle 1 \rangle \top$ can hold
- Moreover, each $\{\omega^n\}$ should be open in τ_1

・日・ ・ ヨ ・ ・ ヨ ・

æ

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ **GLB** $\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$
- $\blacktriangleright \ \omega \models \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^2 \models \langle \mathbf{0} \rangle \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^n \models \langle \mathbf{0} \rangle^n \top$
- \blacktriangleright So, ω^ω is the smallest point where $\langle 1 \rangle \top$ can hold
- Moreover, each $\{\omega^n\}$ should be open in τ_1
- First idea, try the first topology that accomplishes this

同 と く ヨ と く ヨ と

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ **GLB** $\vdash \langle 1 \rangle \top \rightarrow \langle 0 \rangle^n \top$
- $\blacktriangleright \ \omega \models \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^2 \models \langle \mathbf{0} \rangle \langle \mathbf{0} \rangle \top$
- $\blacktriangleright \ \omega^n \models \langle \mathbf{0} \rangle^n \top$
- \blacktriangleright So, ω^ω is the smallest point where $\langle 1 \rangle \top$ can hold
- Moreover, each $\{\omega^n\}$ should be open in τ_1
- First idea, try the first topology that accomplishes this
- ▶ $\tau'_1 := \tau_0 \cup \{\{\alpha\} \mid \mathsf{le}(\alpha) \in \mathsf{Succ}\}$ where Succ does so

白 ト イヨト イヨト

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

▶ $\tau'_1 := \tau_0 \cup \{\{\alpha\} \mid \mathsf{le}(\alpha) \in \mathsf{Succ}\}$ where Succ does so

æ

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ $\tau'_1 := \tau_0 \cup \{\{\alpha\} \mid \mathsf{le}(\alpha) \in \mathsf{Succ}\}$ where Succ does so
- ► However, with this definition of τ'_1 one can never prove $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.

▲ □ ► < □ ►</p>

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ $\tau'_1 := \tau_0 \cup \{\{\alpha\} \mid \mathsf{le}(\alpha) \in \mathsf{Succ}\}$ where Succ does so
- ► However, with this definition of τ'_1 one can never prove $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- The smallest possible modification of \(\tau\)' that leaves the accumulation points invariant works for our construction

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ $\tau'_1 := \tau_0 \cup \{\{\alpha\} \mid \mathsf{le}(\alpha) \in \mathsf{Succ}\}$ where Succ does so
- ► However, with this definition of τ'_1 one can never prove $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- The smallest possible modification of \(\tau\)' that leaves the accumulation points invariant works for our construction

►
$$\tau_1 := \tau_0 \cup \{ \overline{\{x_a + \omega^a \mid a \in A \& x_a \in A'\}} \mid A \subseteq \text{Succ } \& A' \subseteq \text{On} \}$$

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ $\tau'_1 := \tau_0 \cup \{\{\alpha\} \mid \mathsf{le}(\alpha) \in \mathsf{Succ}\}$ where Succ does so
- ► However, with this definition of τ'_1 one can never prove $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- The smallest possible modification of \(\tau\)' that leaves the accumulation points invariant works for our construction
- ► $\tau_1 := \tau_0 \cup \{ \{ x_a + \omega^a \mid a \in A \& x_a \in A' \} \mid A \subseteq \text{Succ } \& A' \subseteq \text{On} \}$

•
$$\overline{Y}$$
 denotes the closure of Y in τ_0

向下 イヨト イヨト

The logics GLP _A	The main ideas
Topological Semantics for $GLP^{\mathcal{O}}_{\Lambda}$	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

► Modal formulas that consist only of ⊤ preceded by a (possibly empty) sequence of consistency operators are called worms.

The logics GLP _A	The main ideas
Topological Semantics for $GLP^{\mathcal{O}}_{\Lambda}$	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ► Modal formulas that consist only of ⊤ preceded by a (possibly empty) sequence of consistency operators are called worms.
- We often write binary words a₀a₁...a_n instead of ⟨a₀⟩⟨a₁⟩...⟨a_n⟩⊤

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ► Modal formulas that consist only of ⊤ preceded by a (possibly empty) sequence of consistency operators are called worms.
- We often write binary words a₀a₁...a_n instead of ⟨a₀⟩⟨a₁⟩...⟨a_n⟩⊤
- ► The set of worms/words is denoted by S and the empty word is denoted by e.

The logics GLP _A	The main ideas
Topological Semantics for GLP	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ► Modal formulas that consist only of ⊤ preceded by a (possibly empty) sequence of consistency operators are called worms.
- ▶ We often write binary words $a_0 a_1 \dots a_n$ instead of $\langle a_0 \rangle \langle a_1 \rangle \dots \langle a_n \rangle \top$
- ► The set of worms/words is denoted by S and the empty word is denoted by e.
- Theorem Every closed formula of GLB is equivalent to a boolean combination of worms

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

▶ Define $<_i$ on *S* by $\alpha <_i \beta \iff \mathbf{GLB} \vdash \beta \rightarrow \langle i \rangle \alpha$ for $i \in \{0, 1\}$

æ

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ Define $<_i$ on *S* by $\alpha <_i \beta \iff \mathbf{GLB} \vdash \beta \rightarrow \langle i \rangle \alpha$ for $i \in \{0, 1\}$
- ▶ It turns out that, modulo provable equivalence in **GLB**, the order <₀ defines a well-order of type ω^{ω}

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ Define $<_i$ on *S* by $\alpha <_i \beta \iff \mathbf{GLB} \vdash \beta \rightarrow \langle i \rangle \alpha$ for $i \in \{0, 1\}$
- ▶ It turns out that, modulo provable equivalence in **GLB**, the order <₀ defines a well-order of type ω^{ω}
- We can define an isomorphism o

The logics GLP_Λ Topological Semantics for GLP_Λ	The main ideas Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ Define $<_i$ on *S* by $\alpha <_i \beta \iff \mathbf{GLB} \vdash \beta \rightarrow \langle i \rangle \alpha$ for $i \in \{0, 1\}$
- ▶ It turns out that, modulo provable equivalence in **GLB**, the order <₀ defines a well-order of type ω^{ω}
- We can define an isomorphism o
- ► $o: S \to \omega^{\omega}$

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ Define $<_i$ on *S* by $\alpha <_i \beta \iff \mathbf{GLB} \vdash \beta \rightarrow \langle i \rangle \alpha$ for $i \in \{0, 1\}$
- ▶ It turns out that, modulo provable equivalence in **GLB**, the order <₀ defines a well-order of type ω^{ω}
- We can define an isomorphism o
- $o: S \to \omega^{\omega}$
- $o(0^{m_0}1^{n_0}\dots 0^{m_l}1^{n_l}) = \omega^{n_l} + m_l + \dots + \omega^{n_0} + m_0$ for $n_l > 0$

伺 ト イヨト イヨト

The logics GLP _A	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- ▶ Define $<_i$ on *S* by $\alpha <_i \beta \iff \mathbf{GLB} \vdash \beta \rightarrow \langle i \rangle \alpha$ for $i \in \{0, 1\}$
- ▶ It turns out that, modulo provable equivalence in **GLB**, the order <₀ defines a well-order of type ω^{ω}
- We can define an isomorphism o

•
$$o: S \to \omega^{\omega}$$

- $o(0^{m_0}1^{n_0}\dots 0^{m_l}1^{n_l}) = \omega^{n_l} + m_l + \dots + \omega^{n_0} + m_0$ for $n_l > 0$
- ▶ and $o(0^m) = m$

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

• Theorem $([1, \kappa], \tau_0, \tau_1)$ is sound for **GLB**₀.

・ロト ・回 ト ・ヨト ・ヨト

æ

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	The main ideas Worms Soundness Completeness
Tutule work	Completeness

- Theorem $([1, \kappa], \tau_0, \tau_1)$ is sound for **GLB**₀.
- Proof By induction on a proof in GLB

● ▶ < ミ ▶

The logics GLP_A	The main idea
Topological Semantics for GLP_A	Worms
A topological topological completeness proof	Soundness
A topological topological completeness proof Future work	Completeness

- Theorem $([1, \kappa], \tau_0, \tau_1)$ is sound for **GLB**₀.
- Proof By induction on a proof in GLB
- We concentrate on the axioms

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	The main idea Worms Soundness Completeness
Future work	Completeness

- Theorem $([1, \kappa], \tau_0, \tau_1)$ is sound for **GLB**₀.
- Proof By induction on a proof in GLB
- We concentrate on the axioms
- \blacktriangleright As both τ_0 and τ_1 are scattered they validate GL

The logics GLP_Λ Topological Semantics for GLP_Λ	The main ideas Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Theorem $([1, \kappa], \tau_0, \tau_1)$ is sound for **GLB**₀.
- Proof By induction on a proof in GLB
- We concentrate on the axioms
- As both τ_0 and τ_1 are scattered they validate GL
- Because $\tau_0 \subset \tau_1$ we have $[0]\varphi \rightarrow [1]\varphi$.

- Theorem $([1, \kappa], \tau_0, \tau_1)$ is sound for **GLB**₀.
- Proof By induction on a proof in GLB
- We concentrate on the axioms
- As both τ_0 and τ_1 are scattered they validate GL
- Because $\tau_0 \subset \tau_1$ we have $[0]\varphi \rightarrow [1]\varphi$.
- Remaining axiom: $\langle 0 \rangle \varphi \rightarrow [1] \langle 0 \rangle \varphi$.

・ロン ・回と ・ヨン ・ヨン

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

\blacktriangleright If α is some worm

(ロ) (四) (注) (注) (注) [

The logics GLP _A	The main ideas
Topological Semantics for GLP _A A topological topological completeness proof	Worms Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation

- 4 回 ト - 4 三 ト

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation

$$\blacktriangleright d(\epsilon, X) = X$$

d⊒ ▶ < ≣

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation

•
$$d(\epsilon, X) = X$$

 $\blacktriangleright d(i\alpha, X) = d_i(d(\alpha, X))$

/⊒ > < ≣ >

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation

$$\blacktriangleright d(\epsilon, X) = X$$

- $\blacktriangleright d(i\alpha, X) = d_i(d(\alpha, X))$
- Main Lemma

$$d(\alpha, X) := \{ x + \omega^{o(\beta)} \mid \mathsf{GLB} \vdash \beta \to \alpha \And x \in \mathsf{On} \}$$

/⊒ > < ≣ >

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation

$$\blacktriangleright d(\epsilon, X) = X$$

- $\blacktriangleright d(i\alpha, X) = d_i(d(\alpha, X))$
- Main Lemma

$$d(\alpha, X) := \{ x + \omega^{o(\beta)} \mid \mathsf{GLB} \vdash \beta \to \alpha \And x \in \mathsf{On} \}$$

Proof: with hand and feet, case distinctions, etc

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation
- $\blacktriangleright d(\epsilon, X) = X$
- $\blacktriangleright d(i\alpha, X) = d_i(d(\alpha, X))$
- Main Lemma

$$d(\alpha, X) := \{ x + \omega^{o(\beta)} \mid \mathsf{GLB} \vdash \beta \to \alpha \And x \in \mathsf{On} \}$$

- Proof: with hand and feet, case distinctions, etc
- no general insights yet

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- If α is some worm
- we denote by $d(\alpha, X)$ its topological interpretation
- $\blacktriangleright d(\epsilon, X) = X$
- $\blacktriangleright d(i\alpha, X) = d_i(d(\alpha, X))$
- Main Lemma

$$d(\alpha, X) := \{ x + \omega^{o(\beta)} \mid \mathsf{GLB} \vdash \beta \to \alpha \And x \in \mathsf{On} \}$$

- Proof: with hand and feet, case distinctions, etc
- no general insights yet

• Corollary
$$d(0\alpha, X) = d_0^{o(0\alpha)}(X)$$

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP _A	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

• Remaining axiom: $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.

æ

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Remaining axiom: $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- $\blacktriangleright~\langle 0 \rangle \varphi$ is equivalent to a Boolean combination of words

イロン イヨン イヨン イヨン

æ

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Remaining axiom: $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- $\langle 0 \rangle \varphi$ is equivalent to a Boolean combination of words
- \blacktriangleright even to a disjunction of worms starting with $\langle 0 \rangle$

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Remaining axiom: $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- $\langle 0 \rangle \varphi$ is equivalent to a Boolean combination of words
- \blacktriangleright even to a disjunction of worms starting with $\langle 0 \rangle$
- Thus we only need to see (using previous corollary)

The logics ${ m GLP}_{\Lambda}$ Topological Semantics for ${ m GLP}_{\Lambda}$	The main ideas Worms
A topological topological completeness proof Future work	Soundness Completeness
r dt dr o work	Completeneed

- Remaining axiom: $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- $\langle 0 \rangle \varphi$ is equivalent to a Boolean combination of words
- \blacktriangleright even to a disjunction of worms starting with $\langle 0 \rangle$
- Thus we only need to see (using previous corollary)
- ► $\{x \mid \mathsf{le}(x) \ge o(\alpha) + 1\} \subseteq \tilde{d}_1(\{x \mid \mathsf{le}(x) \ge o(\alpha) + 1\})$

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Remaining axiom: $\langle 0 \rangle \alpha \rightarrow [1] \langle 0 \rangle \alpha$.
- $\langle 0
 angle arphi$ is equivalent to a Boolean combination of words
- \blacktriangleright even to a disjunction of worms starting with $\langle 0 \rangle$
- Thus we only need to see (using previous corollary)
- ► $\{x \mid \mathsf{le}(x) \ge o(\alpha) + 1\} \subseteq \tilde{d}_1(\{x \mid \mathsf{le}(x) \ge o(\alpha) + 1\})$
- Which is a relatively easy exercise

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

Completeness is relatively easy

< 4 ₽ > < E >

-≣->

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Completeness is relatively easy
- ▶ If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then

(□) ► < (Ξ) ►</p>

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Completeness is relatively easy
- ▶ If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then
- ▶ $\mathsf{GLB} \vdash \langle 1 \rangle^n \top \rightarrow \neg \varphi$ for some *n*

▲ □ ► < □ ►</p>

The main ideas
Worms
Soundness
Completeness

- Completeness is relatively easy
- If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then
- $\mathsf{GLB} \vdash \langle 1 \rangle^n \top \rightarrow \neg \varphi$ for some n
- ▶ Thus, if we have points in our model where $\langle 1 \rangle^n op$ holds

The logics GLP_{Λ}	The main ideas
Topological Semantics for GLP _A	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Completeness is relatively easy
- If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then
- $\mathsf{GLB} \vdash \langle 1 \rangle^n \top \rightarrow \neg \varphi$ for some n
- ▶ Thus, if we have points in our model where $\langle 1 \rangle^n op$ holds
- we are done

The logics GLP_Λ	The main ideas
Topological Semantics for GLP_Λ	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Completeness is relatively easy
- If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then
- $\mathsf{GLB} \vdash \langle 1 \rangle^n \top \rightarrow \neg \varphi$ for some *n*
- ▶ Thus, if we have points in our model where $\langle 1 \rangle^n op$ holds

we are done

 \blacktriangleright Main lemma says $\langle 1 \rangle^n \top$ holds at ordinals ending at ω^{ω^n}

The logics GLP_A	The main ideas
Topological Semantics for GLP_A	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Completeness is relatively easy
- If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then
- $\mathsf{GLB} \vdash \langle 1 \rangle^n \top \rightarrow \neg \varphi$ for some *n*
- ▶ Thus, if we have points in our model where $\langle 1 \rangle^n op$ holds

we are done

- Main lemma says
 $\langle 1 \rangle^n op$ holds at ordinals ending at ω^{ω^n}
- Thus $\omega^{\omega^{\omega}}$ suffices for completeness

The logics GLP	The main ideas
Topological Semantics for GLP_{Λ}	Worms
A topological topological completeness proof	Soundness
Future work	Completeness

- Completeness is relatively easy
- If GLB $\nvdash \varphi$, and GLB $\nvdash \neg \varphi$ then
- ▶ $\mathsf{GLB} \vdash \langle 1 \rangle^n \top \rightarrow \neg \varphi$ for some *n*
- \blacktriangleright Thus, if we have points in our model where $\langle 1 \rangle^n \top$ holds

we are done

- Main lemma says
 $\langle 1 \rangle^n op$ holds at ordinals ending at ω^{ω^n}
- Thus $\omega^{\omega^{\omega}}$ suffices for completeness
- Theorem ([1, κ], τ₀, τ₁) is sound and complete for GLB₀ whenever κ ≥ ω^{ω^ω}.

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	--

►
$$\tau_1 := \tau_0 \cup \{ \overline{\{x_a + \omega^a \mid a \in A \& x_a \in A'\}} \mid A \subseteq \text{Succ } \& A' \subseteq \text{On} \}$$

・ロン ・四 と ・ ヨン ・ ヨ

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	---

•
$$\overline{Y}$$
 denotes the closure of Y in τ_0

・ロン ・四と ・ヨン ・ヨ

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	---

- \overline{Y} denotes the closure of Y in τ_0
- ► $\tau_y := \tau_0 \cup \{ \overline{\{x_\alpha + \omega^{o(x\alpha)} \mid \alpha \in \Sigma \& x_\alpha \in A'\}} \mid \Sigma \subseteq S \& A' \subseteq On \}$

周▶ 《 ≧ ▶

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	---

- \overline{Y} denotes the closure of Y in τ_0
- ► $\tau_y := \tau_0 \cup \{ \overline{\{x_\alpha + \omega^{o(x\alpha)} \mid \alpha \in \Sigma \& x_\alpha \in A'\}} \mid \Sigma \subseteq S \& A' \subseteq On \}$
- Main Lemma

$$d(\alpha, X) := \{ x + \omega^{o(\beta)} \mid \mathsf{GLB} \vdash \beta \to \alpha \And x \in \mathsf{On} \}$$

周▶ 《 ≧ ▶

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	--

- \overline{Y} denotes the closure of Y in τ_0
- ► $\tau_y := \tau_0 \cup \{ \overline{\{x_\alpha + \omega^{o(x\alpha)} \mid \alpha \in \Sigma \& x_\alpha \in A'\}} \mid \Sigma \subseteq S \& A' \subseteq On \}$
- Main Lemma

$$d(\alpha, X) := \{ x + \omega^{o(\beta)} \mid \mathsf{GLB} \vdash \beta \to \alpha \And x \in \mathsf{On} \}$$

Only one inclusion missing to finish the entire proof

\blacktriangleright GLP $_{\Lambda}$ is Kripke incomplete (w.r.t. canonical frames) for $\Lambda \geq 2$

⊡ ▶ < ≣ ▶

|--|

- ▶ GLP_{Λ} is Kripke incomplete (w.r.t. canonical frames) for $\Lambda \ge 2$
- The closed fragment GLP⁰_Λ does have natural Kripke structures for Λ ≤ ω (Ignatiev)

$\label{eq:theta} \begin{array}{c} \text{The logics } \text{GLP}_{\Lambda} \\ \text{Topological Semantics for } \text{GLP}_{\Lambda} \\ \text{A topological topological completeness proof} \\ \hline \textbf{Future work} \end{array}$	A natural generalization Kripke Semantics Wormshop

- ▶ GLP_{Λ} is Kripke incomplete (w.r.t. canonical frames) for $\Lambda \ge 2$
- The closed fragment GLP⁰_Λ does have natural Kripke structures for Λ ≤ ω (Ignatiev)
- ▶ New result (Fernández, Joosten): this also holds for $\Lambda > \omega$

$\label{eq:theta} \begin{array}{c} \text{The logics } \text{GLP}_{\Lambda} \\ \text{Topological Semantics for } \text{GLP}_{\Lambda} \\ \text{A topological topological completeness proof} \\ \hline \textbf{Future work} \end{array}$	A natural generalization Kripke Semantics Wormshop

- ▶ GLP_{Λ} is Kripke incomplete (w.r.t. canonical frames) for $\Lambda \ge 2$
- The closed fragment GLP⁰_Λ does have natural Kripke structures for Λ ≤ ω (Ignatiev)
- New result (Fernández, Joosten): this also holds for $\Lambda > \omega$
- Apply Icard's technique to this frame

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	--

・ロト ・回ト ・ヨト ・ヨト

æ

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	A natural generalization Kripke Semantics Wormshop
---	--

Barcelona, April 16-20, 2011

</l>< □ > < □ >

문 🕨 👘 문

- Barcelona, April 16-20, 2011
- Contact one of the organizers: Joost J. Joosten, Lev D. Beklemishev, David Fernández-Duque, Joan Bagaria, Felix Bou

- Barcelona, April 16-20, 2011
- Contact one of the organizers: Joost J. Joosten, Lev D. Beklemishev, David Fernández-Duque, Joan Bagaria, Felix Bou
- http://www.phil.uu.nl/~jjoosten/Wormshop

- Barcelona, April 16-20, 2011
- Contact one of the organizers: Joost J. Joosten, Lev D. Beklemishev, David Fernández-Duque, Joan Bagaria, Felix Bou
- http://www.phil.uu.nl/~jjoosten/Wormshop
- Google on "Wormshop"

Topological Semantics for GLP _A A topological topological completeness proof Future work

- Barcelona, April 16-20, 2011
- Contact one of the organizers: Joost J. Joosten, Lev D. Beklemishev, David Fernández-Duque, Joan Bagaria, Felix Bou
- http://www.phil.uu.nl/~jjoosten/Wormshop
- Google on "Wormshop"
- Thank you