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I Topological semantics for GLPΛ will consist of

I 〈X , τ0, . . . , τΛ−1〉
I Where τi corresponds to 〈i〉:
I v(〈i〉ϕ) := di (v(ϕ))

I di : the derived set operator corresponding to τi
I x ∈ di (X ) ⇔ ∀U ∈ τi (x ∈ U → U ∩ X \ {x} 6= ∅)
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Scattered spaces
Existing results
Drawbacks and new approach

I [Blass, Abashidze]: GL is complete with respect to Ω w.r.t.
the interval topology and Ω > ωω

I [Blass] Completeness of GL is independent of ZFC for ordinal
spaces w.r.t. the club topology

I In particular, if V=L, then GL is complete w.r.t. the club
topology for any ordinal > ℵω

I [Beklemishev] If V=L, then GLB is complete w.r.t. interval
topology together with club topology for any ordinal > ℵω
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topology for any ordinal > ℵω

I [Beklemishev] If V=L, then GLB is complete w.r.t. interval
topology together with club topology for any ordinal > ℵω
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I So why this talk?

I Club topology and beyond requires set-theoretical
assumptions.

I Beklemishev and Gabalaia’s topologies are highly
non-constructive

I Icard’s topology is constructive but relies in its motivation and
completeness proof on descriptive frames for the closed
fragment

I In particular: does not extend to Λ where no frames are
known yet

I Our aim: a constructive definition with a purely topological
completeness proof.
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Future work

The main ideas
Worms
Soundness
Completeness

I Work in progress

I Desideratum: start with τ0 the interval topology on some
ordinal Ω

I First idea, make τ1 as tight as possible

I For example, 〈1〉> true exactly where

I 〈0〉n> true for any n ∈ ω
I as GLB ` 〈1〉> → 〈0〉n>
I Which ordinals can that be?
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Worms
Soundness
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I By le(α) we denote the exponent of the last term in the
Cantor Normal Form (CNF) expansion with base ω of α.

I For example, le(ωω + ω5) = 5

I Let X denote the entire space, that is, X = [1, κ].

I We define dα(X ) for ordinals α

I d0(X ) = X

I dα+1(X ) = d(dα(X ))

I dλ(X ) = ∩α<λdα(X ) for limits λ

I Lemma

dα0 (X ) = {x | le(x) ≥ α}
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Worms
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I GLB ` 〈1〉> → 〈0〉n>

I ω |= 〈0〉>
I ω2 |= 〈0〉〈0〉>
I ωn |= 〈0〉n>
I So, ωω is the smallest point where 〈1〉> can hold

I Moreover, each {ωn} should be open in τ1

I First idea, try the first topology that accomplishes this

I τ ′1 := τ0 ∪ {{α} | le(α) ∈ Succ} where Succ does so
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I τ ′1 := τ0 ∪ {{α} | le(α) ∈ Succ} where Succ does so

I However, with this definition of τ ′1 one can never prove
〈0〉α→ [1]〈0〉α.

I The smallest possible modification of τ ′ that leaves the
accumulation points invariant works for our construction

I τ1 := τ0 ∪ {{xa + ωa | a ∈ A & xa ∈ A′} | A ⊆ Succ & A′ ⊆
On}

I Y denotes the closure of Y in τ0
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The main ideas
Worms
Soundness
Completeness

I Modal formulas that consist only of > preceded by a (possibly
empty) sequence of consistency operators are called worms.

I We often write binary words a0a1 . . . an instead of
〈a0〉〈a1〉 . . . 〈an〉>

I The set of worms/words is denoted by S and the empty word
is denoted by ε.

I Theorem Every closed formula of GLB is equivalent to a
boolean combination of worms
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The main ideas
Worms
Soundness
Completeness

I Theorem ([1, κ], τ0, τ1) is sound for GLB0.

I Proof By induction on a proof in GLB

I We concentrate on the axioms

I As both τ0 and τ1 are scattered they validate GL

I Because τ0 ⊂ τ1 we have [0]ϕ→ [1]ϕ.

I Remaining axiom: 〈0〉ϕ→ [1]〈0〉ϕ.
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The logics GLPΛ
Topological Semantics for GLPΛ

A topological topological completeness proof
Future work

The main ideas
Worms
Soundness
Completeness

I If α is some worm

I we denote by d(α,X ) its topological interpretation

I d(ε,X ) = X

I d(iα,X ) = di (d(α,X ))

I Main Lemma

d(α,X ) := {x + ωo(β) | GLB ` β → α & x ∈ On}

I Proof: with hand and feet, case distinctions, etc

I no general insights yet

I Corollary d(0α,X ) = d
o(0α)
0 (X )
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Topological Semantics for GLPΛ
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Future work

The main ideas
Worms
Soundness
Completeness

I Remaining axiom: 〈0〉α→ [1]〈0〉α.

I 〈0〉ϕ is equivalent to a Boolean combination of words

I even to a disjunction of worms starting with 〈0〉
I Thus we only need to see (using previous corollary)

I {x | le(x) ≥ o(α) + 1} ⊆ d̃1({x | le(x) ≥ o(α) + 1})
I Which is a relatively easy exercise
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Topological Semantics for GLPΛ

A topological topological completeness proof
Future work

The main ideas
Worms
Soundness
Completeness

I Completeness is relatively easy

I If GLB 0 ϕ, and GLB 0 ¬ϕthen

I GLB ` 〈1〉n> → ¬ϕ for some n

I Thus, if we have points in our model where 〈1〉n> holds

I we are done

I Main lemma says 〈1〉n> holds at ordinals ending at ωω
n

I Thus ωω
ω

suffices for completeness

I Theorem ([1, κ], τ0, τ1) is sound and complete for GLB0

whenever κ ≥ ωωω
.
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The logics GLPΛ
Topological Semantics for GLPΛ

A topological topological completeness proof
Future work

A natural generalization
Kripke Semantics
Wormshop

I τ1 := τ0 ∪ {{xa + ωa | a ∈ A & xa ∈ A′} | A ⊆ Succ & A′ ⊆
On}

I Y denotes the closure of Y in τ0

I τy := τ0 ∪ {{xα + ωo(xα) | α ∈ Σ & xα ∈ A′} | Σ ⊆ S & A′ ⊆
On}

I Main Lemma

d(α,X ) := {x + ωo(β) | GLB ` β → α & x ∈ On}

I Only one inclusion missing to finish the entire proof
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Topological Semantics for GLPΛ

A topological topological completeness proof
Future work

A natural generalization
Kripke Semantics
Wormshop

I GLPΛ is Kripke incomplete (w.r.t. canonical frames) for Λ ≥ 2

I The closed fragment GLP0
Λ does have natural Kripke

structures for Λ ≤ ω (Ignatiev)

I New result (Fernández, Joosten): this also holds for Λ > ω

I Apply Icard’s technique to this frame

Joost J. Joosten Ordinal spaces for GLB0
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