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Description logic EL

In this talk, we develop an algebraic semantics for EL.

▸ EL is a tractable description logic, and is used for representing
large scale ontologies in medicine and other life sciences.

▸ The profile OWL2EL of OWL2 Web Ontology Language is
based on EL.

Example: SNOMED CT – Comprehensive health care terminology
with approximately 400,000 definitions.

Examples of concept inclusions of EL:

▸ Pericardium ⊑ Tissue ⊓ ∃contained in.Heart

▸ Pericarditis ⊑ Inflammation ⊓ ∃has location.Pericardium

▸ Inflammation ⊑ Disease ⊓ ∃acts on.Tissue



Concept and Theory of EL

Concepts of EL:

▸ Two disjoint countably infinite sets NC of concept names and
NR of role names.

▸ EL-concepts C are defined inductively as follows:

C ∶∶= ⊺ ∣ � ∣ A ∣ C1 ⊓ C2 ∣ ∃r .C ,

where A ∈ NC, r ∈ NR and C1, C2 and C are EL-concepts.

Concept inclusions and theories of EL:

▸ A concept inclusion is an expression C ⊑ D, where C and D
are EL-concepts.

▸ An EL-theory is a set of EL concept inclusions.

♯ EL can be regarded as a fragment of modal logic constructed
from propositional variables, ⊺, �, ∧ and ◇r for each r ∈ NR.



Interpretation of EL

An interpretation of EL is a structure I = (∆I , ⋅I), where

▸ ∆I /= ∅ is the domain of interpretation and

▸ AI ⊆∆I for each A ∈ NC and rI ⊆∆I ×∆I for each r ∈ NR.

▸ ⊺I =∆I , �I = ∅.

▸ (C1 ⊓ C2)
I = CI1 ∩ C

I
2 .

▸ (∃r .C)I = {x ∈∆I ∣ ∃y ∈ CI((x , y) ∈ rI)}.

We say that I satisfies C ⊑ D and write I ⊧ C ⊑ D, if CI ⊆ DI .

Certain constraints could be put on binary relations rI . Standard
constraints on OWL2EL are transitivity and reflexivity as well as
symmetry and functionality.

♯ Interpretation of EL can be regarded as a Kripke model,
equivalently, a model on a complex Boolean algebra with operators.



Model of EL-theories and quasi-equations

Let X be an EL-theory. An interpretation I = (∆I , ⋅I) is a model
of X if it satisfies CI ⊆ DI for every C ⊑ D ∈ X .

Theorem
(Sofronie-Stokkermans 08). For any finite EL-theory X and any
concept inclusion C ⊑ D, the following two conditions are
equivalent:

▸ C ⊑ D is valid in every models of X .

▸ BAO ⊧ ⋀X → C ⊑ D, where BAO is the class of Boolean
algebras with operators.

♯ Validity of concept inclusions in the models of an EL-theory
corresponds to validity of quasi-equations in BAOs.

♯ What is a proof system, or, in other words, an algebraic
semantics for EL?



Algebraic semantics of EL

An algebraic semantics of EL:

▸ The underlying algebras are bounded meet-semilattices with
monotone operators fr for each r ∈ NR (SLOs, for short).

▸ An EL concept is interpreted as a term of the language of
SLOs.

▸ A concept inclusion C ⊑ D is interpreted as an equation
C ≤ D.

▸ Relational constraints of original interpretation are given by
equational theories of SLO. For example, x ≤ fx for reflexivity.

♯ Is the SLO semantics equivalent to original interpretation for EL?



Conservativity and completeness

Let C denotes the class of algebras, T a set of equations of SLO
and q a quasi-equation of SLO. We say

▸ T ⊧C q if A ⊧ q for every A ∈ C with A ⊧ T ;

▸ T is C-conservative if T ⊧C q implies T ⊧SLO q for every q;

▸ T is complete if it is CA-conservative, where CA is the set of
all complex Boolean algebras with operators.

Theorem
(Sofronie-Stokkermans 08). Any subset of the following theory is
complete:

{fr2 ○ fr1(x) ≤ fr(x) ∣ r1, r2, r ∈ NR} ∪ {fr(x) ≤ fs(x) ∣ r , s ∈ NR}

♯ Completeness of {ffx ≤ fx} for transitivity follows from the above
theorem.

♯ Which relational constraints are complete?



Completeness and embedding

We give relational constraints of original interpretation by
equational theories T of SLO. Is it complete with respect to the
original interpretation?

Let V(T ) be the variety of SLOs axiomatized by T . We say that
T is complex if every A ∈ V(T ) is embeddable in a complex BAO
B whose reduct to SLO is in V(T ).

Theorem
For every T , the following conditions are equivalent:

1. T is complex.

2. T is complete. (T ⊧CA q⇒ T ⊧SLO q.)

3. T is BAO-conservative. (T ⊧BAO q⇒ T ⊧SLO q.)

♯ So, if we find an appropriate embedding, we get completeness.



Constructing embeddings

We construct an embedding via two steps:

1. Embed any SLO validating T into a DLO validating T :
This is equivalent to prove DLO-conservativity, that is,

T ⊧DLO q⇒ T ⊧SLO q.

2. Embed any DLO validating T into a BAO validating T :
This is equivalent to prove DLO-BAO-conservativity, that is,

T ⊧BAO q⇒ T ⊧DLO q.



Embedding SLO into DLO

As concerns for embedding from SLOs into DLOs, we have the
following result:

Theorem
Every EL-theory containing only equations where each variable
occurs at most once in the left-hand side is DLO-conservative.

Example: An EL-theory TS5 satisfies the condition of the
theorem, but TS4.3 does not, where

TS5 = {x ≤ fx , ffx ≤ fx , x ∧ fy ≤ f (fx ∧ y)}

TS4.3 = {x ≤ fx , ffx ≤ fx , f (x ∧ y) ∧ f (x ∧ z) ≤ f (x ∧ fy ∧ fz)}.

♯ As we will see later, TS4.3 is not DLO-conservative.



Embedding DLO into BAO

Embedding from a DLO D to a BAO is given by defining
appropriate binary relation R on the set F(D) of prime filters of D.

Let B be the complex BA defined on the set ℘(F(D)). Let fD be
the operator on D and fB an operator on B defined by
fB(U) = {F ∣ ∃G ∈ U (F ,G) ∈ R}.

Example:

▸ If fD is functional and (F ,G) ∈ R⇔ G = f −1
D
(F ), then fB is

functional.

▸ If fD is symmetry and (F ,G) ∈ R⇔ fD(G) ⊆ F and
fD(F ) ⊆ G , then fB is symmetry.

♯ Unfortunately, we don’t know any general way to define R .



Complete theories

As a consequence, we have following completeness results:

Theorem
The following EL-theories are complete:

▸ Symmetry:
{x ∧ fy ≤ f (fx ∧ y)}

▸ Functionality:
{fx ∧ fy ≤ f (x ∧ y)}

▸ Reflexivity, transitivity and symmetry:

TS5 = {x ≤ fx , ffx ≤ fx , x ∧ fy ≤ f (fx ∧ y)}



Fusion of EL theories

Let T1 and T2 be EL-theories. We call T1 ∪ T2 a fusion of T1 and
T2 if the set of f -operators occurring in T1 and T2 are disjoint.

Theorem
The fusions of complete EL-theories are also complete.

♯ Union of complete theories is not complete in general, as we will
see later.



Incompleteness

There are EL theories T which are incomplete. That is, there
exists quasi-equation q such that

T ⊧CA q, T /⊧SLO q.

Some incomplete EL theories are DLO-nonconservative. That is,
there exists quasi-equation q such that

T ⊧DLO q, T /⊧SLO q.



BAO-nonconservative incomplete EL theory

Example: Both {x ≤ fx} and {fx ∧ fy ≤ f (x ∧ y)} are complete,
but their union is not. Let S = {0, a,1}, f 0 = 0 and fa = f 1 = 1.
Then, fa /≤ a. However, in BAO

{x ≤ fx , fx ∧ fy ≤ f (x ∧ y)} ⊧BAO fx ≤ x

1
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Figure: fa /≤ a

♯ On the other hand, the above theory is DLO-conservative.

♯ Union of complete theories is not complete, in general.



DLO-nonconservative incomplete EL theory
Example: TS4.3 is DLO-nonconservative and hence incomplete.
Let S be the following SLO, where fa = d , fc = e and fx = x for the
remaining x . Then, a ∧ fc = fa ∧ c and fa ∧ fc /≤ f (a ∧ c). However,
in DLO

TS4.3 ⊧DLO x ∧ fy = fx ∧ y ⇒ fx ∧ fy ≤ f (x ∧ y).

a c
b

ed

Figure: a ∧ fc = fa ∧ c , fa ∧ fc /≤ f (a ∧ c)

♯ Is there any SLO equation e such that

TS4.3 ⊧DLO e and TS4.3 /⊧SLO e?



Subvarieties of S5

It is known that the lattice of subvarieties of V(TS5) is the
following (Jackson 04), where

TS5 = {x ≤ fx , ffx ≤ fx , x ∧ fy ≤ f (fx ∧ y)}.

B

E

0

V(S5)

MI

Figure: Lattice of subvarieties of V(TS5)



Subvarieties of S5

The only incomplete one is E , which is defined by

TS5 ∪ {fx ∧ fy ≤ f (x ∧ y)}.
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Figure: Lattice of subvarieties of V(TS5)



Completeness problem for EL-theories

▸ We have observed that some theories of EL are complete and
some are not.

▸ So, it is a natural question that whether we can decide a given
EL-theory is complete or not.

▸ The last topic of this presentation is undecidability of this
completeness problem for EL-theories.



Undecidability of completeness

By reducing the halting problem for Turing machines, we can show
the following:

Theorem
No algorithm can decide, given a finite set T of EL-equations,
whether T ⊧SLO 0 = 1.

We also have the following:

Theorem
For every EL-theory T , the following two conditions are
equivalent:

▸ the fusion of T and {f (x) ≤ x} is complete;

▸ T ⊧SLO 0 = 1.



Undecidability of completeness

Hence, we have undecidability of completeness:

Theorem
It is undecidable whether a finite set T of EL-equations is
complete.



Further research

▸ General sufficient syntactic criteria for completeness.

▸ Discuss conservativity for equations, instead of
quasi-equations.

▸ Relation between quasi-varieties of SLOs and varieties of
SLOs defined by EL theories.



Thank you for your attention.
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