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[1] S. Ghilardi. Unification through Projectivity.
Journal Logic and computation 7(4), 1997.

Given an algebraic language L, a unification problem in
the language L is a finite set of equations
S = {(s1, t1), . . . , (sn, tn)} ⊆ Term2

L.

Given a unification problem S and an equational theory
E , an algebraic E-unifier for S is pair (h,P) where P is a
projective algebra in the equational class determined by
E and h : Fp(S)→ P is a homomorphism.
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If (h1,P1), (h2,P2) are algebraic E-unifiers for S, we say
that (h1,P1) is more general than (h2,P2)
((h2,P2) 4 (h1,P1)) if there exists a homomorphism
f : P1 → P2 such that

Fp(S)
h1 //

h2 ""FFFFFFFF
P1

f
��

P2

We denote by UE(S) the pre-ordered set of algebraic
E-unifiers for S.
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Unification types
A unification problem S in an equational theory E is said
to have type:

UE(S)

1

ω

∞

0
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Unification types

A equational theory E is said to have type:
I 1 if every unification problem S has type 1,

I ω if every unification problem S has type ω and at
least one S has not unification type 1,

I ∞ if every unification problem S has type 1, ω or∞
and at least one S has unification type∞,

I 0 if at least one S has unification type 0.
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Fp(S)
u // P ! I

f // D(Fp(S))
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Bounded Distributive Lattices
(I) Description of finitely generated projectives

A finite bounded distributive lattice L is projective if and
only if 〈J(L),≤〉 is a lattice.
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z t

0

1

a b

c d
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(III): Causes of nullarity

Lemma
Let S be a unification problem in the language of bounded
lattices. If there exist x ,a,b, c,d , y ∈ J(Fp(S)) satisfying:

(i) x ≤ a,b ≤ c,d ≤ y, and
(ii) it does not exist e ∈ J(Fp(S)) such that

a,b ≤ e ≤ c,d,
then the unification type of S in the equational theory of
distributive lattices is nullary.
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Theorem
Let S be a unification problem in the language of
bounded lattices. Then the unification type of S is:

Unitary if and only if J(Fp(S)) is a lattice,

Finitary if and only if for every x , y ∈ J(Fp(S)) the
interval [x , y ] is a lattice,
Nullary otherwise.
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A Kleene algebra A = (A,∧,∨,¬,0,1) is a bounded
distributive lattice equipped with a unary operation, ¬x ,
satisfying:

x = ¬¬x ,

x ∧ y = ¬(¬x ∨ ¬y),

x ∧ ¬x ≤ y ∨ ¬y .

0

1

aK
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[2] Davey, B.A. & Werner, H.
Piggyback-Dualitäten,
Bull. Austral. Math. Soc.32, 1-32 (1985).

Definition
A structure X = 〈X ,≤,∼,Y , τ〉 is called a Kleene space
if it satisfies the following conditions:

(i) 〈X ,≤, τ〉 is a Priestley space,
(ii) ∼ is a closed binary relation, i.e., ∼ is a closed

subset of X 2,
(iii) Y is a closed subset of X , and
(iv) for every x , y , z ∈ X :
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Theorem
Let A be a finite Kleene Algebra. Then the following
statements are equivalent:

(i) A is projective,
(ii) XK (A) = {XA,≤A,∼A,YA, τA} satisfies the following

conditions:
(a) 〈XA,≤A〉 is a meet semi-lattice,
(b) YA = Max(〈XA,≤A〉),
(c) XA is 2-conditionally complete,
(d) x ∼A y if and only if there exists z ∈ XA such that

x , y ≤ z.
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The unification problem S = {x ∧ ¬x ≈ y ∨ z} has nullary
unification type.
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Lemma
Let S be a unification problem in the language of kleene
algebras. If there exist x ,a,b, c,d , y , z ∈ XK (Fp(S))
satisfying:

(i) x ≤ a,b ≤ c,d, c ≤ y and d ≤ z,
(ii) y , z ∈ Y , and
(iii) it does not exist e ∈ XK (Fp(S)) such that

a,b ≤ e ≤ c,d,
then the unification type of S is nullary.
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Let S be a unification problem in the language of kleene
algebras with. If there exist
w ,a,b, c,d ,e, f , x , y , z ∈ XK (Fp(S)) satisfying:

(i) w ≤ a,b, c; a ≤ d ,e; b ≤ d , f ; c ≤ e, f ; d ≤ x; e ≤ y;
and f ≤ z,

(ii) x , y , z ∈ Y, and
(iii) it does not exists g ∈ XK (Fp(S)) such that

a,b, c ≤ g,
then the unification type of S is nullary.
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Theorem
Let S be a unification problem. Then the unification type
of S over the equational theory of Kleene algebras is:

unitary if and only if the set

K = {x ∈ XK (Fp(S)) | ∃y ∈ Y , x ≤ y}

is a 2-conditionally complete meet semilattice,

finitary if and only if for x ∈ K the set

{y ∈ K | x ≤ y}

is a 2-conditionally complete meet semilattice,
nullary otherwise.
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Thank you for your attention!
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