Finite Representations for Finite Algebras of Binary Relations

R Egrot, R Hirsch and S Mikúlas

July 28, 2011

Algebras of Binary Relations

Subset of $\wp(X \times X)$ (some base X).

Relations: =, \subseteq .

Constants: \emptyset , 1, Id_X .

Functions: \cup , \cap , \setminus , $\stackrel{\smile}{}$, ;, dom, rng

where

$$S = \{(y,x) : (x,y) \in S\}$$
 $S;T = \{(x,y) : \exists z \ (x,z) \in S\&(z,x) \in T\}$
 $\mathsf{dom}(S) = \{(x,x) : \exists y \ (x,y) \in S\}$
 $\mathsf{rng}(S) = \{(y,y) : \exists x \ (x,y) \in S\}$

Representation Classes

Signature $S \subseteq \{=, \leq, 0, 1, -, +, \cdot, 1', \smile, ;, dom, rng\}$.

R(S): the class of S-algebras isomorphic to sets of binary relations closed under S.

Signature S has finite representation property if every finite, representable S-algebra has a representation over a finite base.

We seek signatures where R(S) is finitely axiomatisable, also signatures with FMP.

There are 567 inequivalent signatures.

Signature \mathcal{F}	Fin. ax.	Ref.
RA	X	Monk, 1964
\mid ; $ ot\in\mathcal{F}$	$\sqrt{}$	Schein, 1991
$ \{\leq,;\},\{\cdot,;\}$	$\sqrt{}$	Schein, 1991
$ \{\cdot,;\}^{\uparrow}$	×	Mikulas, 15.40
$ \{\check{},;\}$	×	Bredikhin,1977
$ \{+,;\}$	X	Andreka, 1988
$\mid \{\leq,1',;\}$	×	Hirsch
[{dom,;}, {0, 1, dom, rng, AntiDom, 1',;}]	×	Hirsch Mikulas
$[\{dom, , \}, \{\leq, 0, 1, 1', , dom, rng, \}]$	$\sqrt{}$	Bredikhin, 1977

An Oasis of Finite Axiomatisability

FMP

Theorem 1 Let $S \subseteq \{0, 1, -, +, \cdot, \leq, 1', {}^{\smile}, ;, \text{dom}, \text{rng}\}$.

- 1. If composition is not in S then S has fmp.
- 2. If $S \supseteq \{\cdot, ;\}$ then S does not have the fmp.
- 3. If $\{ \smile, ;, \text{dom}, \text{rng} \} \subseteq S \subseteq \{0, 1, \le, 1', \smile, ;, \text{dom}, \text{rng} \}$ then S is finitely axiomatisable and has fmp.

Axioms for $R\{0, \underline{1}, \leq, \underline{1}', \overset{\smile}{,};, dom, rng\}$

 \leq is a partial order, bounds 0, 1, $\stackrel{\smile}{}$,;, dom, rng are monotonic and normal. $(1',\stackrel{\smile}{})$; is involuted monoid.

Domain/range axioms

```
\operatorname{dom}(a) = (\operatorname{dom}(a))^{\smile} \leq 1' = \operatorname{dom}(1')
\operatorname{dom}(a) \leq a \; ; \; a^{\smile}
\operatorname{dom}(a^{\smile}) = \operatorname{rng}(a)
\operatorname{dom}(\operatorname{dom}(a)) = \operatorname{dom}(a) = \operatorname{rng}(\operatorname{dom}(a))
\operatorname{dom}(a) \; ; \; a = a
\operatorname{dom}(a \; ; b) = \operatorname{dom}(a \; ; \operatorname{dom}(b))
\operatorname{dom}(\operatorname{dom}(a) \; ; \operatorname{dom}(b)) = \operatorname{dom}(a) \; ; \operatorname{dom}(b) = \operatorname{dom}(b) \; ; \operatorname{dom}(a)
\operatorname{dom}(\operatorname{dom}(a) \; ; b) = \operatorname{dom}(a) \; ; \operatorname{dom}(b)
```

Closed Sets

 $\mathcal{A} = (A, 0, 1, \leq, 1', \overset{\smile}{},;, dom, rng) \models Ax, X \subseteq \mathcal{A}$ is closed if

- $\bullet X^{\uparrow} = X$
- dom(X); X; $rng(X) \subseteq X$.

For $X \subseteq A$ let $\gamma(X)$ be the *closed set generated by* X.

- a^{\uparrow} is closed, for $a \in \mathcal{A}$.
- If X, Y are closed, dom(X) = dom(Y) and rng(X) = rng(Y) then $X \cup Y$ is closed and Z; $(X \cup Y) = Z$; $X \cup Z$; Y.

Representation

Base: the set $\Gamma(A)$ of closed subsets of A.

Isomorphism: $\iota(a) = \{(X,Y) : X; a \subseteq Y \land Y; a^{\smile} \subseteq X\}.$

Faithful: $a \not\leq b \Rightarrow (\operatorname{dom}(a)^{\uparrow}, a^{\uparrow}) \in \iota(a) \setminus \iota(b)$.

X; a; $b \subseteq Z$, Z; $b \subset$; $a \subset X$.

 $Y = X; a^{\uparrow}; \operatorname{rng}(Z; b^{\smile}) \cup Z; b^{\smile}; \operatorname{rng}(X; a).$

$$Y = X; a^{\uparrow}; \operatorname{rng}(Z; b^{\smile}) \cup Z; b^{\smile}; \operatorname{rng}(X; a).$$

Algebra of closed sets

Domain algebra $\mathcal{A}=(A,\leq,1',\stackrel{\smile}{,};,\mathsf{dom},\mathsf{rng})$ $\mathcal{A}^*=(\Gamma(\mathcal{A}),\supseteq,\stackrel{\smile}{,}*,\mathsf{dom},\mathsf{rng})$ where $S*T=\gamma(S;T)$.

- 1. $(\Gamma(A), \subseteq, \emptyset, \Gamma(A))$ is complete distributive lattice, A embeds \land -densely in A^* via $a \mapsto a^{\uparrow}$.
- 2. A^* satisfies all axioms for domain algebras except $X*X^{\smile} \ge \text{dom}(X)$.
- 3. The embedding preserves these existing infima: $dom(a) = 1' \land a$; $a \subset d_1$; $a \wedge d_2$; $a = d_1$; d_2 ; a (also, order duals), in other respects it is freely generated DL.
- 4. Suppose $dom(X_0) \subseteq dom(X_1) \subseteq ...$ and $rng(X_0) \subseteq rng(X_1) \subseteq ...$ Then

$$\left(\bigwedge_{i} X_{i}\right) * Z = \bigwedge_{i} (X_{i} * Z)$$

Problems

1. A^* is what kind of completion of A?

2. Does {.,;} have FMP?

3. Does {dom, rng, AntiDom, ⁻,;} have FMP?

4. What about signatures containing {;,+}?