The Equational Theory of Kleene Lattices

Hajnal Andréka ${ }^{1}$, Szabolcs Mikulás ${ }^{2}$, István Németi ${ }^{1}$

TACL 2011, 29/07/2011

1 Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
${ }^{2}$ Department of Computer Science and Information Systems Birkbeck, University of London

Kleene algebras

The class KA of Kleene algebras is the collection of algebras of the similarity type $\left(+, ;,{ }^{*}, 0,1\right)$ satisfying a certain finite set of quasi-equations (Kozen).
Standard interpretations of KA are

- language algebras, LKA, connection with regular expressions and regular languages.
- relation algebras, RKA, connection with program semantics and propositional dynamic logic PDL.

Language Kleene algebras

Let Σ be a set (alphabet) and Σ^{*} denote the free monoid of all finite words over Σ, including the empty word λ. The class LKA of language Kleene algebras is defined as the class of subalgebras of algebras of the form

$$
\left(\wp\left(\Sigma^{*}\right),+, ;,{ }^{*}, 0,1\right)
$$

- + is set union,
- ; is complex concatenation (of words)

$$
X ; Y=\{x y: x \in X, y \in Y\}
$$

- * is the Kleene star operation

$$
X^{*}=\left\{x_{0} x_{1} \ldots x_{n-1}: n \in \omega, x_{i} \in X \text { for each } i<n\right\}
$$

- 0 is the empty language and
- 1 is the singleton language consisting of the empty word λ.

Relational Kleene algebras

The class RKA of relational Kleene algebras is defined as the class of subalgebras of algebras of the form

$$
\left(\wp(W),+, ;,{ }^{*}, 0,1\right)
$$

where $W=U \times U$ for some set U,

- + is set union,
- ; is relation composition

$$
x ; y=\{(u, v) \in W:(u, w) \in x \text { and }(w, v) \in y \text { for some } w\}
$$

- * is reflexive-transitive closure,
- 0 is the emptyset and
- 1 is the identity relation restricted to W

$$
1=\{(u, v) \in W: u=v\}
$$

Equational theories of Kleene algebras

$L K A \subseteq R K A$, whence $E q(R K A) \subseteq E q(L K A)$.
Cayley representation f assigns a binary relation to a language X over an alphabet Σ :

$$
f(X)=\left\{(w, w x): w \in \Sigma^{*} \text { and } x \in X\right\}
$$

The Cayley representation respects the Kleene algebra operations: ,$+ ;,{ }^{*}, 0,1$.

Equational theories of Kleene algebras

$L K A \subseteq R K A$, whence $E q(R K A) \subseteq E q(L K A)$.

Cayley representation f assigns a binary relation to a language X over an alphabet Σ :

$$
f(X)=\left\{(w, w x): w \in \Sigma^{*} \text { and } x \in X\right\}
$$

The Cayley representation respects the Kleene algebra operations:
,$+ ;,{ }^{*}, 0,1$.
But

RKA $\nsubseteq \mathrm{LKA}$.

The identity $1=\{\lambda\}$ is an atom (minimal, non-zero element) in language algebras.

Equational theories of Kleene algebras (ctd.)

Same equational theory:
$\mathrm{Eq}(\mathrm{RKA})=\mathrm{Eq}(\mathrm{LKA})$.
The free algebras of RKA and LKA coincide - it is the algebra of regular expressions, hence a language Kleene algebra (Németi).
Furthermore,

Kozen
$\mathrm{E}_{\mathrm{q}}(1 K A)=\mathrm{Eq}(\mathrm{LKA})(=E q(R K A))$
Thus the equational theory of RKA and LKA is finitely quasi-axiomatizable. But

Redko:
The equational theory of language (relational) Kleene algebras is not
finitely axiomatizable.

Equational theories of Kleene algebras (ctd.)

Same equational theory:
$\mathrm{Eq}(\mathrm{RKA})=\mathrm{Eq}(\mathrm{LKA})$.
The free algebras of RKA and LKA coincide - it is the algebra of regular expressions, hence a language Kleene algebra (Németi).
Furthermore,
Kozen:
$E_{q}(K A)=E q(L K A)(=E q(R K A))$.
Thus the equational theory of RKA and LKA is finitely quasi-axiomatizable. But

Redko:

The equational theory of language (relational) Kleene algebras is not finitely axiomatizable.

Kleene lattices

Note:

- regular languages are closed under intersection,
- intersection in relational interpretation - PDL with intersection

Kleene lattices:
LKL and RKL are defined as expansions of LKA and RKA, respectively, with meet - interpreted as intersection.

Main topic of this talk:
What can we say about the equational theories of LKL and RKL?

Free Kleene lattices

Unlike in the meet-free case free algebras are not language algebras.

Fact:

No free algebra of LKL or RKL with at least one free generator is representable as a language algebra.

Proof: In the free algebra, the terms $0, x \cdot 1$ and 1 are below 1 , and all three of $0, x \cdot 1$ and 1 are different. (For example, $x \cdot 1 \neq 1$ in the free algebra, because if $x=0$, then $x \cdot 1=0 \neq 1$.) However, in a language representation 1 is the one-element set $\{\lambda\}$ which has only two subsets.

Fact:

The free algebra of RKL is a relation algebra, it is in RKL.

More language- than relational validities
The Cayley representation f preserves also meet:
$\mathrm{LKL} \subseteq R K L$, whence $\mathrm{Eq}(\mathrm{RKL}) \subseteq \mathrm{Eq}(\mathrm{LKL})$.
However, strict inclusion and not equality holds in this case:

$$
\begin{aligned}
(x ; y) \cdot 1 & =(x \cdot 1) ;(y \cdot 1) \\
(x \cdot 1) ; y & =y ;(x \cdot 1) \\
(z+(x \cdot 1) ; y)^{*} & =z^{*}+(x \cdot 1) ;(z+y)^{*}
\end{aligned}
$$

E.g. equation (1) expresses that λ cannot be written as a concatenation of words distinct from λ.

Main result 1
Equations (1), (2) and (3) axiomatize Eq(LKL) over Eq(RKL), i.e.
$E q(R K L) \cup\{(1),(2),(3)\} \vdash E q(L K L)$

More language- than relational validities
The Cayley representation f preserves also meet:
$L K L \subseteq R K L$, whence $\mathrm{Eq}(\mathrm{RKL}) \subseteq \mathrm{Eq}(\mathrm{LKL})$.
However, strict inclusion and not equality holds in this case:

$$
\begin{align*}
(x ; y) \cdot 1 & =(x \cdot 1) ;(y \cdot 1) \tag{1}\\
(x \cdot 1) ; y & =y ;(x \cdot 1) \tag{2}\\
(z+(x \cdot 1) ; y)^{*} & =z^{*}+(x \cdot 1) ;(z+y)^{*} \tag{3}
\end{align*}
$$

E.g. equation (1) expresses that λ cannot be written as a concatenation of words distinct from λ.

Equations (1), (2) and (3) axiomatize $\mathrm{Eq}(\mathrm{LKL})$ over $\mathrm{Eq}(\mathrm{RKL})$, i.e.

More language- than relational validities

The Cayley representation f preserves also meet:
$L K L \subseteq R K L$, whence $\mathrm{Eq}(\mathrm{RKL}) \subseteq \mathrm{Eq}(\mathrm{LKL})$.
However, strict inclusion and not equality holds in this case:

$$
\begin{align*}
(x ; y) \cdot 1 & =(x \cdot 1) ;(y \cdot 1) \tag{1}\\
(x \cdot 1) ; y & =y ;(x \cdot 1) \tag{2}\\
(z+(x \cdot 1) ; y)^{*} & =z^{*}+(x \cdot 1) ;(z+y)^{*} \tag{3}
\end{align*}
$$

E.g. equation (1) expresses that λ cannot be written as a concatenation of words distinct from λ.

Main result 1:
Equations (1), (2) and (3) axiomatize $\mathrm{Eq}(\mathrm{LKL})$ over $\mathrm{Eq}(\mathrm{RKL})$, i.e.

$$
\mathrm{Eq}(\mathrm{RKL}) \cup\{(1),(2),(3)\} \vdash \mathrm{Eq}(\mathrm{LKL})
$$

Without identity

Note: all three "distinguishing" equations (1), (2) and (3) use the identity 1.

Recall: $0^{*}=1$ and $x^{+}:=x ; x^{*}$.
Identity-free Kleene lattices:
Let RKL- and LKL $^{-}$denote the $\left(+, ;,^{+}, 0\right)$-subreducts of RKL and LKL, respectively.
\square

Without identity

Note: all three "distinguishing" equations (1), (2) and (3) use the identity 1.

Recall: $0^{*}=1$ and $x^{+}:=x ; x^{*}$.
Identity-free Kleene lattices:
Let RKL ${ }^{-}$and LKL^{-}denote the (,$+ ;{ }^{+}, 0$)-subreducts of RKL and LKL, respectively.

Main result 2:
The equational theories of LKL^{-}and RKL^{-}coincide, i.e.

$$
\mathrm{Eq}\left(\mathrm{LKL}^{-}\right)=\mathrm{Eq}\left(\mathrm{RKL}^{-}\right)
$$

Also, like in the Kleene algebra case,
Representing free algebras:
The free algebras of LKL^{-}are representable as language algebras.

Continuity and ground terms

For a variable x we let $\Gamma(x)=\{x\}, \Gamma(0)=\emptyset, \Gamma(1)=\{1\}$,

$$
\begin{aligned}
\Gamma(\tau+\sigma) & =\Gamma(\tau) \cup \Gamma(\sigma) \\
\Gamma(\tau \cdot \sigma) & =\Gamma(\tau) \cdot \Gamma(\sigma) \\
\Gamma(\tau ; \sigma) & =\Gamma(\tau) ; \Gamma(\sigma) \\
\Gamma\left(\tau^{*}\right) & =\bigcup\left\{\Gamma\left(\tau^{n}\right): n \in \omega\right\} \\
\Gamma\left(\tau^{+}\right) & =\bigcup\left\{\Gamma\left(\tau^{n}\right): 0<n \in \omega\right\}
\end{aligned}
$$

and we let $G T=\bigcup_{\tau} \Gamma(\tau)$ denote the set of ground terms.

For every term τ, language or relation algebra \mathfrak{A} and valuation k,

\square

Continuity and ground terms

For a variable x we let $\Gamma(x)=\{x\}, \Gamma(0)=\emptyset, \Gamma(1)=\{1\}$,

$$
\begin{aligned}
\Gamma(\tau+\sigma) & =\Gamma(\tau) \cup \Gamma(\sigma) \\
\Gamma(\tau \cdot \sigma) & =\Gamma(\tau) \cdot \Gamma(\sigma) \\
\Gamma(\tau ; \sigma) & =\Gamma(\tau) ; \Gamma(\sigma) \\
\Gamma\left(\tau^{*}\right) & =\bigcup\left\{\Gamma\left(\tau^{n}\right): n \in \omega\right\} \\
\Gamma\left(\tau^{+}\right) & =\bigcup\left\{\Gamma\left(\tau^{n}\right): 0<n \in \omega\right\}
\end{aligned}
$$

and we let $G T=\bigcup_{\tau} \Gamma(\tau)$ denote the set of ground terms.

Continuity:

For every term τ, language or relation algebra \mathfrak{A} and valuation k,

$$
\tau^{\mathfrak{A}}[k]=\bigcup\left\{\sigma^{\mathfrak{A}}[k]: \sigma \in \Gamma(\tau)\right\}
$$

E.g. instead of $\operatorname{RKL} \models \tau \leq \sigma$ prove that for every $\tau^{\prime} \in \Gamma(\tau)$, there is $\sigma^{\prime} \in \Gamma(\sigma)$ with RKL $\models \tau^{\prime} \leq \sigma^{\prime}$.

Term graphs

Term graphs as special 2-pointed, labelled graphs defined by induction on the complexity of ground terms. Let $G(0)=\emptyset$, for variable x, we let

$$
G(x)=\left(\left\{\iota_{x}, o_{x}\right\},\left\{\left(\iota_{x}, x, o_{x}\right)\right\}, \iota_{x}, o_{x}\right)
$$

where $\iota_{x} \neq o_{x}$, and

$$
G(1)=\left(\left\{\iota_{1}\right\}, \emptyset, \iota_{1}, \iota_{1}\right)
$$

i.e. in this case $\iota_{1}=o_{1}$. For terms σ and τ, we set

$$
G(\sigma ; \tau)=G(\sigma) ; G(\tau) \quad \text { concatenation }
$$

and

$$
G(\sigma \cdot \tau)=G(\sigma) \cdot G(\tau) \quad \text { almost disjoint union }
$$

Graph example: $G((a ; b) \cdot(c ; d))$

Graphs and maps

Map Lemma 1 (Andréka-Bredikhin):

Let τ be a ground term, U be a set and k be an evaluation of the variables of τ in $\wp(U \times U)$. Then for every $(u, v) \in U \times U$, the following are equivalent.
(1) $(u, v) \in \tau[k]\left(=\tau[k]^{\wp(U \times U)}\right)$.
(2) There is a map $h_{\tau}: \operatorname{nodes}(G(\tau)) \rightarrow U$ such that $h_{\tau}\left(\iota_{\tau}\right)=u$, $h_{\tau}\left(o_{\tau}\right)=v$, and for every edge $(i, x, j) \in \operatorname{edges}(G(\tau))$, we have $\left(h_{\tau}(i), h_{\tau}(j)\right) \in k(x)$.

Corollary:

RKL $\models \tau \leq \sigma$ iff there is a graph homomorphism $g: G(\sigma) \rightarrow G(\tau)$.

Words and maps

Map Lemma 2:

Let τ be a ground term, Σ be an alphabet and k be an evaluation of the variables of τ in $\wp\left(\Sigma^{*}\right)$. Then for every $w=w_{1} \ldots w_{n} \in \Sigma^{*}$, the following are equivalent.
(1) $w \in \tau[k]$.
(2) There is an order-preserving map
$f_{\tau}: \operatorname{nodes}(G(\tau)) \rightarrow n+1=\{0,1, \ldots, n\}$ such that $f_{\tau}\left(\iota_{\tau}\right)=0$, $f_{\tau}\left(o_{\tau}\right)=n$, and for every edge $(i, x, j) \in \operatorname{edges}(G(\tau))$, we have $w\left(f_{\tau}(i), f_{\tau}(j)\right) \in k(x)$ where $w(p, q)=w_{p} \ldots w_{q}$.

Words and maps

Map Lemma 2:

Let τ be a ground term, Σ be an alphabet and k be an evaluation of the variables of τ in $\wp\left(\Sigma^{*}\right)$. Then for every $w=w_{1} \ldots w_{n} \in \Sigma^{*}$, the following are equivalent.
(1) $w \in \tau[k]$.
(2) There is an order-preserving map
$f_{\tau}: \operatorname{nodes}(G(\tau)) \rightarrow n+1=\{0,1, \ldots, n\}$ such that $f_{\tau}\left(\iota_{\tau}\right)=0$, $f_{\tau}\left(o_{\tau}\right)=n$, and for every edge $(i, x, j) \in \operatorname{edges}(G(\tau))$, we have $w\left(f_{\tau}(i), f_{\tau}(j)\right) \in k(x)$ where $w(p, q)=w_{p} \ldots w_{q}$.

Say, $a b \in x[k]$ and $c d \in y[k]$ so that $a b c d \in x ; y[k]$:

Term words

For every ground term τ, define the term word w_{τ} :

- $w_{x}=\ell_{x}$
- $w_{1}=\lambda$
- $W_{\tau ; \sigma}=W_{\tau} W_{\sigma}$
- if $w_{\tau}=u_{1} \ldots u_{n}$ and $w_{\sigma}=v_{1} \ldots v_{n}$ (by adding extra letters to the shorter one), then $w_{\tau \cdot \sigma}=u_{1} v_{1} u_{2} v_{2} \ldots u_{n} v_{n}$.
E.g. $w_{a}=\ell_{a}, w_{b}=\ell_{b}, w_{c}=\ell_{c}, w_{d}=\ell_{d}$, whence $w_{a ; b}=\ell_{a} \ell_{b}$, $w_{c ; d}=\ell_{c} \ell_{d}$ and

$$
w_{(a ; b) \cdot(c ; d)}=\ell_{a} \ell_{c} \ell_{b} \ell_{d}
$$

Maps and valuations

Map:

There is an order-preserving map

$$
f_{\tau}: \operatorname{nodes}(G(\tau)) \rightarrow \text { length }\left(w_{\tau}\right)+1
$$

Furthermore, if τ is identity-free, then f_{τ} is injective.
\square
There is a valuation k_{τ} into the language algebra \mathfrak{A}_{τ} over the alphabet consisting of the letters of w_{τ} such that

Maps and valuations

Map:

There is an order-preserving map

$$
f_{\tau}: \operatorname{nodes}(G(\tau)) \rightarrow \text { length }\left(w_{\tau}\right)+1
$$

Furthermore, if τ is identity-free, then f_{τ} is injective.

Valuation:

There is a valuation k_{τ} into the language algebra \mathfrak{A}_{τ} over the alphabet consisting of the letters of w_{τ} such that

$$
w_{\tau} \in \tau^{\mathfrak{A}_{\tau}}\left[k_{\tau}\right]
$$

Example for $\tau=(a ; b) \cdot(c ; d)$

The $\operatorname{map} f_{\tau}$:

The valuation k_{τ} :

Proof of $\mathrm{Eq}\left(\mathrm{LKL}^{-}\right) \subseteq \mathrm{Eq}\left(\mathrm{RKL}^{-}\right)$

Let $\mathrm{LKL}^{-} \models \tau \leq \sigma$. By continuity we can assume that τ is a ground term. By the construction of w_{τ}, k_{τ} and \mathfrak{A}_{τ}, we have $w_{\tau} \in \tau^{\mathfrak{A}_{\tau}}\left[k_{\tau}\right]$. Hence $w_{\tau} \in \sigma^{\mathfrak{A}_{\tau}}\left[k_{\tau}\right]$ by $\mathfrak{A}_{\tau} \in \mathrm{LKL}^{-}$.
By Map Lemma 2 there is an order-preserving map
$f_{\sigma}: G(\sigma) \rightarrow$ length $\left(w_{\tau}\right)+1$.
Also there is an order-preserving, injective map $f_{\tau}: G(\tau) \rightarrow$ length $\left(w_{\tau}\right)+1$. Then $h=f_{\sigma} \circ f_{\tau}^{-1}: G(\sigma) \rightarrow G(\tau)$ is the desired homomorphism that witnesses $\mathrm{RKL}^{-} \models \tau \leq \sigma$.

The proof of the finite axiomatizability of $\mathrm{Eq}(\mathrm{LKL})$ over $\mathrm{Eq}(\mathrm{RKL})$ goes along similar lines, but it is more technical.

Finite (quasi-)axiomatizability?

Question:

Are the equational theories $\mathrm{Eq}(\mathrm{LKL})$ and $\mathrm{Eq}(\mathrm{RKL})$ finitely axiomatizable?

Task:

Find a finitely axiomatizable quasi-variety that generates the same variety as RKL.

Finite (quasi-)axiomatizability?

Question:

Are the equational theories $\mathrm{Eq}(\mathrm{LKL})$ and $\mathrm{Eq}(\mathrm{RKL})$ finitely axiomatizable?

Task:

Find a finitely axiomatizable quasi-variety that generates the same variety as RKL.

Let RKL^{*} and $\mathrm{LKL}{ }^{*}$ denote the $\left(\cdot,+, ;,{ }^{*}\right)$-reducts of RKL and LKL , respectively.

Question:

Is $\mathrm{Eq}\left(\mathrm{LKL}{ }^{*}\right)$ finitely axiomatizable over $\mathrm{Eq}\left(\mathrm{RKL}^{*}\right)$?

Converse and Domain

Let RKA denote RKA expanded with inverse (interpreted as relation converse).

Ésik et al.:

$\mathrm{Eq}\left(\mathrm{RKA}^{`}\right)$ is not finitely axiomatizable, but it is finitely quasi-axiomatizable.

Do these extend to $\mathrm{Eq}\left(\mathrm{RKL}^{`}\right)$?
Using inverse and meet the operations domain and range are definable:
\square

Is Eq(RKA $\left.{ }^{D, R}\right)$ finitely (quasi-)axiomatizable?

Converse and Domain

Let RKA - denote RKA expanded with inverse (interpreted as relation converse).

Ésik et al.:

$\mathrm{Eq}\left(\mathrm{RKA}^{-}\right)$is not finitely axiomatizable, but it is finitely quasi-axiomatizable.

Do these extend to $\mathrm{Eq}\left(\mathrm{RKL}^{-}\right)$?
Using inverse and meet the operations domain and range are definable:

$$
\operatorname{Dom}(x):=1 \cdot\left(x ; x^{\smile}\right) \text { and } \operatorname{Ran}(x):=1 \cdot\left(x^{\smile} ; x\right)
$$

Let RKA ${ }^{D, R}$ denote the expansion of RKA with domain and range.

Question:

Is $\mathrm{Eq}\left(\mathrm{RKA}^{\mathrm{D}, \mathrm{R}}\right.$) finitely (quasi-)axiomatizable?

