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Kleene algebras

The class KA of Kleene algebras is the collection of algebras of the
similarity type (+, ;, ∗, 0, 1) satisfying a certain �nite set of quasi-equations
(Kozen).
Standard interpretations of KA are

language algebras, LKA,
connection with regular expressions and regular languages.

relation algebras, RKA,
connection with program semantics and propositional dynamic logic
PDL.
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Language Kleene algebras

Let Σ be a set (alphabet) and Σ∗ denote the free monoid of all �nite words
over Σ, including the empty word λ. The class LKA of language Kleene

algebras is de�ned as the class of subalgebras of algebras of the form

(℘(Σ∗),+, ;, ∗, 0, 1)

+ is set union,

; is complex concatenation (of words)

X ; Y = {xy : x ∈ X , y ∈ Y }

∗ is the Kleene star operation

X ∗ = {x0x1 . . . xn−1 : n ∈ ω, xi ∈ X for each i < n}

0 is the empty language and

1 is the singleton language consisting of the empty word λ.
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Relational Kleene algebras

The class RKA of relational Kleene algebras is de�ned as the class of
subalgebras of algebras of the form

(℘(W ),+, ;, ∗, 0, 1)

where W = U × U for some set U,

+ is set union,

; is relation composition

x ; y = {(u, v) ∈W : (u,w) ∈ x and (w , v) ∈ y for some w}

∗ is re�exive-transitive closure,

0 is the emptyset and

1 is the identity relation restricted to W

1 = {(u, v) ∈W : u = v}
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Equational theories of Kleene algebras

LKA ⊆ RKA, whence Eq(RKA) ⊆ Eq(LKA).

Cayley representation f assigns a binary relation to a language X over an
alphabet Σ:

f (X ) = {(w ,wx) : w ∈ Σ∗ and x ∈ X}

The Cayley representation respects the Kleene algebra operations:
+, ;, ∗, 0, 1.
But

RKA 6⊆ LKA.

The identity 1 = {λ} is an atom (minimal, non-zero element) in language
algebras.
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Equational theories of Kleene algebras (ctd.)

Same equational theory:

Eq(RKA) = Eq(LKA).

The free algebras of RKA and LKA coincide � it is the algebra of regular
expressions, hence a language Kleene algebra (Németi).
Furthermore,

Kozen:
Eq(KA) = Eq(LKA)(= Eq(RKA)).

Thus the equational theory of RKA and LKA is �nitely quasi-axiomatizable.
But

Redko:
The equational theory of language (relational) Kleene algebras is not
�nitely axiomatizable.
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Kleene lattices

Note:

regular languages are closed under intersection,

intersection in relational interpretation � PDL with intersection

Kleene lattices:
LKL and RKL are de�ned as expansions of LKA and RKA, respectively,
with meet · interpreted as intersection.

Main topic of this talk:

What can we say about the equational theories of LKL and RKL?
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Free Kleene lattices

Unlike in the meet-free case free algebras are not language algebras.

Fact:
No free algebra of LKL or RKL with at least one free generator is
representable as a language algebra.

Proof: In the free algebra, the terms 0, x · 1 and 1 are below 1, and all
three of 0, x · 1 and 1 are di�erent. (For example, x · 1 6= 1 in the free
algebra, because if x = 0, then x · 1 = 0 6= 1.) However, in a language
representation 1 is the one-element set {λ} which has only two subsets.

Fact:
The free algebra of RKL is a relation algebra, it is in RKL.
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More language- than relational validities

The Cayley representation f preserves also meet:

LKL ⊆ RKL, whence Eq(RKL) ⊆ Eq(LKL).

However, strict inclusion and not equality holds in this case:

(x ; y) · 1 = (x · 1) ; (y · 1) (1)

(x · 1) ; y = y ; (x · 1) (2)

(z + (x · 1) ; y)∗ = z∗ + (x · 1) ; (z + y)∗ (3)

E.g. equation (1) expresses that λ cannot be written as a concatenation of
words distinct from λ.

Main result 1:
Equations (1), (2) and (3) axiomatize Eq(LKL) over Eq(RKL), i.e.

Eq(RKL) ∪ {(1), (2), (3)} ` Eq(LKL)
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Without identity

Note: all three �distinguishing� equations (1), (2) and (3) use the identity
1.
Recall: 0∗ = 1 and x+ := x ; x∗.

Identity-free Kleene lattices:

Let RKL− and LKL− denote the (+, ;,+ , 0)-subreducts of RKL and LKL,
respectively.

Main result 2:

The equational theories of LKL− and RKL− coincide, i.e.

Eq(LKL−) = Eq(RKL−)

Also, like in the Kleene algebra case,

Representing free algebras:

The free algebras of LKL− are representable as language algebras.
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Continuity and ground terms

For a variable x we let Γ(x) = {x}, Γ(0) = ∅, Γ(1) = {1},

Γ(τ + σ) = Γ(τ) ∪ Γ(σ)

Γ(τ · σ) = Γ(τ) · Γ(σ)

Γ(τ ; σ) = Γ(τ) ; Γ(σ)

Γ(τ∗) =
⋃
{Γ(τn) : n ∈ ω}

Γ(τ+) =
⋃
{Γ(τn) : 0 < n ∈ ω}

and we let GT =
⋃

τ Γ(τ) denote the set of ground terms.

Continuity:

For every term τ , language or relation algebra A and valuation k ,

τA[k] =
⋃
{σA[k] : σ ∈ Γ(τ)}

E.g. instead of RKL |= τ ≤ σ prove that for every τ ′ ∈ Γ(τ), there is
σ′ ∈ Γ(σ) with RKL |= τ ′ ≤ σ′.
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Term graphs

Term graphs as special 2-pointed, labelled graphs de�ned by induction on
the complexity of ground terms. Let G (0) = ∅, for variable x , we let

G (x) = ({ιx , ox}, {(ιx , x , ox)}, ιx , ox)

where ιx 6= ox , and
G (1) = ({ι1}, ∅, ι1, ι1)

i.e. in this case ι1 = o1. For terms σ and τ , we set

G (σ ; τ) = G (σ) ; G (τ) concatenation

and
G (σ · τ) = G (σ) · G (τ) almost disjoint union
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Graph example: G ((a ; b) · (c ; d))
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Graphs and maps

Map Lemma 1 (Andréka�Bredikhin):

Let τ be a ground term, U be a set and k be an evaluation of the variables
of τ in ℘(U × U). Then for every (u, v) ∈ U × U, the following are
equivalent.

1 (u, v) ∈ τ [k](= τ [k]℘(U×U)).

2 There is a map hτ : nodes(G (τ)) → U such that hτ (ιτ ) = u,
hτ (oτ ) = v , and for every edge (i , x , j) ∈ edges(G (τ)), we have
(hτ (i), hτ (j)) ∈ k(x).

Corollary:

RKL |= τ ≤ σ i� there is a graph homomorphism g : G (σ) → G (τ).
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Words and maps

Map Lemma 2:

Let τ be a ground term, Σ be an alphabet and k be an evaluation of the
variables of τ in ℘(Σ∗). Then for every w = w1 . . .wn ∈ Σ∗, the following
are equivalent.

1 w ∈ τ [k].

2 There is an order-preserving map
fτ : nodes(G (τ)) → n + 1 = {0, 1, . . . , n} such that fτ (ιτ ) = 0,
fτ (oτ ) = n, and for every edge (i , x , j) ∈ edges(G (τ)), we have
w(fτ (i), fτ (j)) ∈ k(x) where w(p, q) = wp . . .wq.

Say, ab ∈ x [k] and cd ∈ y [k] so that abcd ∈ x ; y [k]:

ιx ;y

~~}
}

}
}

x // u
y //

���
�
� ox ;y

!!B
B

B
B

0 a 1 b 2 c 3 d 4
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Term words

For every ground term τ , de�ne the term word wτ :

wx = `x

w1 = λ

wτ ;σ = wτwσ

if wτ = u1 . . . un and wσ = v1 . . . vn (by adding extra letters to the
shorter one), then wτ ·σ = u1v1u2v2 . . . unvn.

E.g. wa = `a, wb = `b, wc = `c , wd = `d , whence wa;b = `a`b,
wc;d = `c`d and

w(a;b)·(c;d) = `a`c`b`d
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Maps and valuations

Map:

There is an order-preserving map

fτ : nodes(G (τ)) → length(wτ ) + 1

Furthermore, if τ is identity-free, then fτ is injective.

Valuation:
There is a valuation kτ into the language algebra Aτ over the alphabet
consisting of the letters of wτ such that

wτ ∈ τAτ [kτ ]
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Example for τ = (a ; b) · (c ; d)
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Proof of Eq(LKL−) ⊆ Eq(RKL−)

Let LKL− |= τ ≤ σ. By continuity we can assume that τ is a ground term.
By the construction of wτ , kτ and Aτ , we have wτ ∈ τAτ [kτ ]. Hence
wτ ∈ σAτ [kτ ] by Aτ ∈ LKL−.
By Map Lemma 2 there is an order-preserving map
fσ : G (σ) → length(wτ ) + 1.
Also there is an order-preserving, injective map fτ : G (τ) → length(wτ ) + 1.
Then h = fσ ◦ f −1τ : G (σ) → G (τ) is the desired homomorphism that
witnesses RKL− |= τ ≤ σ.

The proof of the �nite axiomatizability of Eq(LKL) over Eq(RKL) goes
along similar lines, but it is more technical.
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Finite (quasi-)axiomatizability?

Question:
Are the equational theories Eq(LKL) and Eq(RKL) �nitely axiomatizable?

Task:
Find a �nitely axiomatizable quasi-variety that generates the same variety
as RKL.

Let RKL∗ and LKL∗ denote the (·,+, ;, ∗)-reducts of RKL and LKL,
respectively.

Question:
Is Eq(LKL∗) �nitely axiomatizable over Eq(RKL∗)?
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Converse and Domain

Let RKA^ denote RKA expanded with inverse (interpreted as relation
converse).

Ésik et al.:
Eq(RKA^) is not �nitely axiomatizable, but it is �nitely
quasi-axiomatizable.

Do these extend to Eq(RKL^)?

Using inverse and meet the operations domain and range are de�nable:

Dom(x) := 1 · (x ; x^) and Ran(x) := 1 · (x^ ; x)

Let RKAD,R denote the expansion of RKA with domain and range.

Question:

Is Eq(RKAD,R) �nitely (quasi-)axiomatizable?
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