### The Equational Theory of Kleene Lattices

Hajnal Andréka<sup>1</sup>, Szabolcs Mikulás<sup>2</sup>, István Németi<sup>1</sup>

TACL 2011, 29/07/2011

<sup>1</sup> Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

<sup>2</sup> Department of Computer Science and Information Systems Birkbeck, University of London

## Kleene algebras

The class KA of Kleene algebras is the collection of algebras of the similarity type (+,;,\*,0,1) satisfying a certain finite set of quasi-equations (Kozen).

Standard interpretations of KA are

- language algebras, LKA, connection with regular expressions and regular languages.
- relation algebras, RKA, connection with program semantics and propositional dynamic logic PDL.

## Language Kleene algebras

Let  $\Sigma$  be a set (alphabet) and  $\Sigma^*$  denote the free monoid of all finite words over  $\Sigma$ , including the empty word  $\lambda$ . The class LKA of *language Kleene algebras* is defined as the class of subalgebras of algebras of the form

$$(\wp(\Sigma^*),+,;,^*,0,1)$$

• + is set union,

• ; is complex concatenation (of words)

$$X ; Y = \{xy : x \in X, y \in Y\}$$

• \* is the Kleene star operation

$$X^* = \{x_0 x_1 \dots x_{n-1} : n \in \omega, x_i \in X \text{ for each } i < n\}$$

- 0 is the empty language and
- 1 is the singleton language consisting of the empty word  $\lambda$ .

## Relational Kleene algebras

The class RKA of *relational Kleene algebras* is defined as the class of subalgebras of algebras of the form

 $(\wp(W), +, ;, *, 0, 1)$ 

where  $W = U \times U$  for some set U,

- + is set union,
- ; is relation composition

 $x ; y = \{(u, v) \in W : (u, w) \in x \text{ and } (w, v) \in y \text{ for some } w\}$ 

- \* is reflexive-transitive closure,
- 0 is the emptyset and
- 1 is the identity relation restricted to W

$$1 = \{(u, v) \in W : u = v\}$$

## Equational theories of Kleene algebras

 $LKA \subseteq RKA$ , whence  $Eq(RKA) \subseteq Eq(LKA)$ .

Cayley representation f assigns a binary relation to a language X over an alphabet  $\Sigma$ :

$$f(X)=\{(w,wx):w\in\Sigma^* ext{ and }x\in X\}$$

The Cayley representation respects the Kleene algebra operations:  $+,;,{}^{\ast},0,1.$  But

RKA ⊈ LKA.

The identity  $\mathbf{1}=\{\lambda\}$  is an atom (minimal, non-zero element) in language algebras.

(日) (同) (三) (三)

## Equational theories of Kleene algebras

 $LKA \subseteq RKA$ , whence  $Eq(RKA) \subseteq Eq(LKA)$ .

Cayley representation f assigns a binary relation to a language X over an alphabet  $\Sigma$ :

$$f(X)=\{(w,wx):w\in\Sigma^* ext{ and }x\in X\}$$

The Cayley representation respects the Kleene algebra operations:  $+,;,{}^{\ast},0,1.$  But

RKA ⊈ LKA.

The identity  $1 = \{\lambda\}$  is an atom (minimal, non-zero element) in language algebras.

(日) (同) (三) (三)

Equational theories of Kleene algebras (ctd.)

### Same equational theory:

Eq(RKA) = Eq(LKA).

The free algebras of RKA and LKA coincide — it is the algebra of regular expressions, hence a language Kleene algebra (Németi).

Furthermore,

#### Kozen:

Eq(KA) = Eq(LKA)(= Eq(RKA)).

Thus the equational theory of RKA and LKA is finitely *quasi-axiomatizable.* But

### Redko:

The equational theory of language (relational) Kleene algebras is not finitely axiomatizable.

(日) (同) (目) (日)

Equational theories of Kleene algebras (ctd.)

# Same equational theory:

Eq(RKA) = Eq(LKA).

The free algebras of RKA and LKA coincide — it is the algebra of regular expressions, hence a language Kleene algebra (Németi). Furthermore,

### Kozen:

Eq(KA) = Eq(LKA)(= Eq(RKA)).

Thus the equational theory of RKA and LKA is finitely *quasi-axiomatizable*. But

### Redko:

The equational theory of language (relational) Kleene algebras is not finitely axiomatizable.

3

(日) (同) (三) (三)

## Kleene lattices

Note:

- regular languages are closed under intersection,
- intersection in relational interpretation PDL with intersection

#### Kleene lattices:

LKL and RKL are defined as expansions of LKA and RKA, respectively, with meet  $\cdot$  interpreted as intersection.

### Main topic of this talk:

What can we say about the equational theories of LKL and RKL?

## Free Kleene lattices

Unlike in the meet-free case free algebras are not language algebras.

#### Fact:

No free algebra of LKL or RKL with at least one free generator is representable as a language algebra.

**Proof:** In the free algebra, the terms 0,  $x \cdot 1$  and 1 are below 1, and all three of 0,  $x \cdot 1$  and 1 are different. (For example,  $x \cdot 1 \neq 1$  in the free algebra, because if x = 0, then  $x \cdot 1 = 0 \neq 1$ .) However, in a language representation 1 is the one-element set  $\{\lambda\}$  which has only two subsets.

#### Fact:

The free algebra of RKL is a relation algebra, it is in RKL.

(日) (同) (三) (三)

## More language- than relational validities

The Cayley representation f preserves also meet: LKL  $\subseteq$  RKL, whence Eq(RKL)  $\subseteq$  Eq(LKL).

However, strict inclusion and not equality holds in this case:

$$(x; y) \cdot 1 = (x \cdot 1); (y \cdot 1)$$
 (1)

$$(x \cdot 1); y = y; (x \cdot 1)$$
 (2)

$$(z + (x \cdot 1); y)^* = z^* + (x \cdot 1); (z + y)^*$$
 (3)

E.g. equation (1) expresses that  $\lambda$  cannot be written as a concatenation of words distinct from  $\lambda$ .

Main result 1:

Equations (1), (2) and (3) axiomatize Eq(LKL) over Eq(RKL), i.e.

### $\mathsf{Eq}(\mathsf{RKL}) \cup \{(1), (2), (3)\} \vdash \mathsf{Eq}(\mathsf{LKL})$

イロト イポト イヨト イヨト

## More language- than relational validities

The Cayley representation f preserves also meet: LKL  $\subseteq$  RKL, whence Eq(RKL)  $\subseteq$  Eq(LKL).

However, strict inclusion and not equality holds in this case:

$$(x; y) \cdot 1 = (x \cdot 1); (y \cdot 1)$$
 (1)

$$(x \cdot 1); y = y; (x \cdot 1)$$
 (2)

$$(z + (x \cdot 1); y)^* = z^* + (x \cdot 1); (z + y)^*$$
 (3)

E.g. equation (1) expresses that  $\lambda$  cannot be written as a concatenation of words distinct from  $\lambda$ .

#### Main result 1:

Equations (1), (2) and (3) axiomatize Eq(LKL) over Eq(RKL), i.e.

### $\mathsf{Eq}(\mathsf{RKL}) \cup \{(1), (2), (3)\} \vdash \mathsf{Eq}(\mathsf{LKL})$

## More language- than relational validities

The Cayley representation f preserves also meet: LKL  $\subseteq$  RKL, whence Eq(RKL)  $\subseteq$  Eq(LKL).

However, strict inclusion and not equality holds in this case:

$$(x; y) \cdot 1 = (x \cdot 1); (y \cdot 1)$$
 (1)

$$(x \cdot 1); y = y; (x \cdot 1)$$
 (2)

$$(z + (x \cdot 1); y)^* = z^* + (x \cdot 1); (z + y)^*$$
 (3)

E.g. equation (1) expresses that  $\lambda$  cannot be written as a concatenation of words distinct from  $\lambda$ .

#### Main result 1:

Equations (1), (2) and (3) axiomatize Eq(LKL) over Eq(RKL), i.e.

 $\mathsf{Eq}(\mathsf{RKL}) \cup \{(1), (2), (3)\} \vdash \mathsf{Eq}(\mathsf{LKL})$ 

## Without identity

Note: all three "distinguishing" equations (1), (2) and (3) use the identity 1.

```
Recall: 0^* = 1 and x^+ := x; x^*.
```

#### Identity-free Kleene lattices:

Let RKL<sup>-</sup> and LKL<sup>-</sup> denote the (+, ;,<sup>+</sup>, 0)-subreducts of RKL and LKL, respectively.

### Main result 2:

```
The equational theories of LKL<sup>-</sup> and RKL<sup>-</sup> coincide, i.e.
```

```
Eq(LKL^{-}) = Eq(RKL^{-})
```

Also, like in the Kleene algebra case,

### Representing free algebras:

The free algebras of LKL $^-$  are representable as language algebras.

## Without identity

Note: all three "distinguishing" equations (1), (2) and (3) use the identity 1.

Recall:  $0^* = 1$  and  $x^+ := x$ ;  $x^*$ .

#### Identity-free Kleene lattices:

Let RKL<sup>-</sup> and LKL<sup>-</sup> denote the (+, ;,<sup>+</sup>, 0)-subreducts of RKL and LKL, respectively.

### Main result 2:

```
The equational theories of LKL<sup>-</sup> and RKL<sup>-</sup> coincide, i.e.
```

```
Eq(LKL^{-}) = Eq(RKL^{-})
```

Also, like in the Kleene algebra case,

#### Representing free algebras:

The free algebras of  $\mathsf{LKL}^-$  are representable as language algebras.

Kleene Lattices

## Continuity and ground terms

For a variable x we let  $\Gamma(x) = \{x\}, \ \Gamma(0) = \emptyset, \ \Gamma(1) = \{1\},$ 

$$\Gamma(\tau + \sigma) = \Gamma(\tau) \cup \Gamma(\sigma)$$
  

$$\Gamma(\tau \cdot \sigma) = \Gamma(\tau) \cdot \Gamma(\sigma)$$
  

$$\Gamma(\tau; \sigma) = \Gamma(\tau); \Gamma(\sigma)$$
  

$$\Gamma(\tau^*) = \bigcup \{\Gamma(\tau^n) : n \in \omega\}$$
  

$$\Gamma(\tau^+) = \bigcup \{\Gamma(\tau^n) : 0 < n \in \omega\}$$

and we let  $GT = \bigcup_{\tau} \Gamma(\tau)$  denote the set of ground terms.

#### Continuity:

For every term au, language or relation algebra  $\mathfrak A$  and valuation k,

 $\tau^{\mathfrak{A}}[k] = \bigcup \{ \sigma^{\mathfrak{A}}[k] : \sigma \in \Gamma(\tau) \}$ 

E.g. instead of RKL  $\models \tau \leq \sigma$  prove that for every  $\tau' \in \Gamma(\tau)$ , there is  $\sigma' \in \Gamma(\sigma)$  with RKL  $\models \tau' \leq \sigma'$ .

Andréka-Mikulás-Németi ()

## Continuity and ground terms

For a variable x we let  $\Gamma(x) = \{x\}, \ \Gamma(0) = \emptyset, \ \Gamma(1) = \{1\},$ 

$$\Gamma(\tau + \sigma) = \Gamma(\tau) \cup \Gamma(\sigma)$$
  

$$\Gamma(\tau \cdot \sigma) = \Gamma(\tau) \cdot \Gamma(\sigma)$$
  

$$\Gamma(\tau; \sigma) = \Gamma(\tau); \Gamma(\sigma)$$
  

$$\Gamma(\tau^*) = \bigcup \{\Gamma(\tau^n) : n \in \omega\}$$
  

$$\Gamma(\tau^+) = \bigcup \{\Gamma(\tau^n) : 0 < n \in \omega\}$$

and we let  $GT = \bigcup_{\tau} \Gamma(\tau)$  denote the set of ground terms.

#### Continuity:

For every term au, language or relation algebra  $\mathfrak A$  and valuation k,

$$\tau^{\mathfrak{A}}[k] = \bigcup \{ \sigma^{\mathfrak{A}}[k] : \sigma \in \Gamma(\tau) \}$$

E.g. instead of RKL  $\models \tau \leq \sigma$  prove that for every  $\tau' \in \Gamma(\tau)$ , there is  $\sigma' \in \Gamma(\sigma)$  with RKL  $\models \tau' \leq \sigma'$ .

Andréka-Mikulás-Németi ()

## Term graphs

Term graphs as special 2-pointed, labelled graphs defined by induction on the complexity of ground terms. Let  $G(0) = \emptyset$ , for variable x, we let

$$G(x) = (\{\iota_x, o_x\}, \{(\iota_x, x, o_x)\}, \iota_x, o_x)$$

where  $\iota_x \neq o_x$ , and

$$G(1) = (\{\iota_1\}, \emptyset, \iota_1, \iota_1)$$

i.e. in this case  $\iota_1=o_1.$  For terms  $\sigma$  and au, we set

$$G(\sigma \, ; \, au) = \, G(\sigma) \, ; \, G( au)$$
 concatenation

and

 $G(\sigma \cdot \tau) = G(\sigma) \cdot G(\tau)$  almost disjoint union

A B M A B M

Graph example:  $G((a; b) \cdot (c; d))$ 



# Graphs and maps

### Map Lemma 1 (Andréka-Bredikhin):

Let  $\tau$  be a ground term, U be a set and k be an evaluation of the variables of  $\tau$  in  $\wp(U \times U)$ . Then for every  $(u, v) \in U \times U$ , the following are equivalent.

$$(u, v) \in \tau[k] (= \tau[k]^{\wp(U \times U)})$$

**2** There is a map  $h_{\tau}$ : nodes $(G(\tau)) \to U$  such that  $h_{\tau}(\iota_{\tau}) = u$ ,  $h_{\tau}(o_{\tau}) = v$ , and for every edge  $(i, x, j) \in \text{edges}(G(\tau))$ , we have  $(h_{\tau}(i), h_{\tau}(j)) \in k(x)$ .

#### Corollary:

 $\mathsf{RKL} \models \tau \leq \sigma$  iff there is a graph homomorphism  $g \colon G(\sigma) \to G(\tau)$ .

### Words and maps

#### Map Lemma 2:

Let  $\tau$  be a ground term,  $\Sigma$  be an alphabet and k be an evaluation of the variables of  $\tau$  in  $\wp(\Sigma^*)$ . Then for every  $w = w_1 \dots w_n \in \Sigma^*$ , the following are equivalent.

- $w \in \tau[k]$ .
- **2** There is an order-preserving map  $f_{\tau}: \operatorname{nodes}(G(\tau)) \to n+1 = \{0, 1, \ldots, n\}$  such that  $f_{\tau}(\iota_{\tau}) = 0$ ,  $f_{\tau}(o_{\tau}) = n$ , and for every edge  $(i, x, j) \in \operatorname{edges}(G(\tau))$ , we have  $w(f_{\tau}(i), f_{\tau}(j)) \in k(x)$  where  $w(p, q) = w_p \ldots w_q$ .

Say,  $ab \in x[k]$  and  $cd \in y[k]$  so that  $abcd \in x$  ; y[k]:



## Words and maps

#### Map Lemma 2:

Let  $\tau$  be a ground term,  $\Sigma$  be an alphabet and k be an evaluation of the variables of  $\tau$  in  $\wp(\Sigma^*)$ . Then for every  $w = w_1 \dots w_n \in \Sigma^*$ , the following are equivalent.

•  $w \in \tau[k]$ .

**2** There is an order-preserving map 
$$f_{\tau}: \operatorname{nodes}(G(\tau)) \to n+1 = \{0, 1, \ldots, n\}$$
 such that  $f_{\tau}(\iota_{\tau}) = 0$ ,  $f_{\tau}(o_{\tau}) = n$ , and for every edge  $(i, x, j) \in \operatorname{edges}(G(\tau))$ , we have  $w(f_{\tau}(i), f_{\tau}(j)) \in k(x)$  where  $w(p, q) = w_p \ldots w_q$ .

Say,  $ab \in x[k]$  and  $cd \in y[k]$  so that  $abcd \in x$  ; y[k]:



### Term words

For every ground term  $\tau$ , define the *term word*  $w_{\tau}$ :

- $w_x = \ell_x$
- $w_1 = \lambda$
- $w_{\tau;\sigma} = w_{\tau} w_{\sigma}$
- if  $w_{\tau} = u_1 \dots u_n$  and  $w_{\sigma} = v_1 \dots v_n$  (by adding extra letters to the shorter one), then  $w_{\tau \cdot \sigma} = u_1 v_1 u_2 v_2 \dots u_n v_n$ .

E.g.  $w_a = \ell_a$ ,  $w_b = \ell_b$ ,  $w_c = \ell_c$ ,  $w_d = \ell_d$ , whence  $w_{a;b} = \ell_a \ell_b$ ,  $w_{c;d} = \ell_c \ell_d$  and

$$W_{(a;b)\cdot(c;d)} = \ell_a \ell_c \ell_b \ell_d$$

## Maps and valuations

#### Map:

```
There is an order-preserving map
```

$$f_{ au}$$
: nodes $(G( au)) 
ightarrow$  length $(w_{ au}) + 1$ 

Furthermore, if au is identity-free, then  $f_{ au}$  is injective.

#### Valuation:

There is a valuation  $k_\tau$  into the language algebra  $\mathfrak{A}_\tau$  over the alphabet consisting of the letters of  $w_\tau$  such that

$$w_{\tau} \in \tau^{\mathfrak{A}_{\tau}}[k_{\tau}]$$

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Maps and valuations

#### Map:

```
There is an order-preserving map
```

$$f_{ au}$$
 :  $\mathsf{nodes}(G( au)) o \mathsf{length}(w_{ au}) + 1$ 

Furthermore, if  $\tau$  is identity-free, then  $f_{\tau}$  is injective.

#### Valuation:

There is a valuation  $k_{\tau}$  into the language algebra  $\mathfrak{A}_{\tau}$  over the alphabet consisting of the letters of  $w_{\tau}$  such that

$$w_{\tau} \in \tau^{\mathfrak{A}_{\tau}}[k_{\tau}]$$

Example for  $au = (a; b) \cdot (c; d)$ The map  $f_{\tau}$ :



The valuation  $k_{\tau}$ :



# Proof of $Eq(LKL^{-}) \subseteq Eq(RKL^{-})$

Let  $\mathsf{LKL}^- \models \tau \leq \sigma$ . By continuity we can assume that  $\tau$  is a ground term. By the construction of  $w_{\tau}$ ,  $k_{\tau}$  and  $\mathfrak{A}_{\tau}$ , we have  $w_{\tau} \in \tau^{\mathfrak{A}_{\tau}}[k_{\tau}]$ . Hence  $w_{\tau} \in \sigma^{\mathfrak{A}_{\tau}}[k_{\tau}]$  by  $\mathfrak{A}_{\tau} \in \mathsf{LKL}^-$ . By Map Lemma 2 there is an order-preserving map  $f_{\sigma} \colon G(\sigma) \to \mathsf{length}(w_{\tau}) + 1$ . Also there is an order-preserving, injective map  $f_{\tau} \colon G(\tau) \to \mathsf{length}(w_{\tau}) + 1$ . Then  $h = f_{\sigma} \circ f_{\tau}^{-1} \colon G(\sigma) \to G(\tau)$  is the desired homomorphism that witnesses  $\mathsf{RKL}^- \models \tau \leq \sigma$ .

The proof of the finite axiomatizability of Eq(LKL) over Eq(RKL) goes along similar lines, but it is more technical.

# Finite (quasi-)axiomatizability?

#### Question:

Are the equational theories Eq(LKL) and Eq(RKL) finitely axiomatizable?

#### Task:

Find a finitely axiomatizable quasi-variety that generates the same variety as RKL.

Let RKL\* and LKL\* denote the  $(\cdot, +, ;, *)$ -reducts of RKL and LKL, respectively.

Question:

Is Eq(LKL\*) finitely axiomatizable over Eq(RKL\*)?

イロト イポト イヨト イヨト

# Finite (quasi-)axiomatizability?

#### Question:

Are the equational theories Eq(LKL) and Eq(RKL) finitely axiomatizable?

#### Task:

Find a finitely axiomatizable quasi-variety that generates the same variety as RKL.

Let RKL\* and LKL\* denote the (+, +, ;, \*)-reducts of RKL and LKL, respectively.

#### Question:

Is Eq(LKL\*) finitely axiomatizable over Eq(RKL\*)?

# Converse and Domain

Let RKA  $\stackrel{\smile}{}$  denote RKA expanded with inverse (interpreted as relation converse).

### Ésik et al.:

 $Eq(RKA^{\smile})$  is not finitely axiomatizable, but it is finitely quasi-axiomatizable.

### Do these extend to Eq(RKL)?

Using inverse and meet the operations domain and range are definable:

```
\mathsf{Dom}(x) := 1 \cdot (x ; x^{\smile}) \text{ and } \mathsf{Ran}(x) := 1 \cdot (x^{\smile} ; x)
```

Let RKA<sup>D,R</sup> denote the expansion of RKA with domain and range.

Question

ls Eq(RKA<sup>D,R</sup>) finitely (quasi-)axiomatizable?

Andréka-Mikulás-Németi ()

# Converse and Domain

Let  $\mathsf{RKA}^{\smile}$  denote  $\mathsf{RKA}$  expanded with inverse (interpreted as relation converse).

Ésik et al.:

 $Eq(RKA^{\smile})$  is not finitely axiomatizable, but it is finitely quasi-axiomatizable.

Do these extend to  $Eq(RKL^{\sim})$ ?

Using inverse and meet the operations domain and range are definable:

```
\mathsf{Dom}(x) := 1 \cdot (x; x^{\smile}) \text{ and } \mathsf{Ran}(x) := 1 \cdot (x^{\smile}; x)
```

Let RKA<sup>D,R</sup> denote the expansion of RKA with domain and range.

Question:

```
Is Eq(RKA<sup>D,R</sup>) finitely (quasi-)axiomatizable?
```

Andréka-Mikulás-Németi ()