Two results on compact congruences

Miroslav Ploščica

Slovak Academy of Sciences, Košice

July 15, 2011

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Problem. For a given class \mathcal{K} of algebras describe Con \mathcal{K} =all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

- \bullet very few relevant classes ${\cal K}$ with a satisfactory answer;
- many partial results;
- well documented complexity of the problem.

Let A be an infinite algebra. What can we say about the cardinality of $\operatorname{Con}_c A$? (The \lor -semilattice of all compact (finitely generated) congruences)? Obvious:

$$\operatorname{Con}_c A| \le |A|.$$

When the equality holds?

Suppose that A is a subdirect product of finite algebras, $A \leq \Pi_{i \in I} A_i$. Then A has at least |I| congruences, and the inequality

 $|\operatorname{Con} A| \le 2^{|\operatorname{Con}_c A|}$

gives a lower bound for $|\operatorname{Con}_{c} A|$. In fact, for $|A| = \aleph_{0}$ we are done.

Theorem

Let A be an infinite subalgebra of the direct product $\prod_{i \in I} A_i$. Suppose that there exists a natural number n such that $|A_i| \leq n$ for every $i \in I$. Then $|\operatorname{Con}_c A| = |A|$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

The common finite bound on the cardinalities of ${\cal A}_i$ is necessary. The ring of $p\text{-}{\rm adic}$ integers

- is a subdirect product of finite rings,
- its cardinality is continuum,
- has only countably many congruences.

4 A > 4 > 1

Lemma

Let *n* be a natural number, *X* an infinite set and $F \subseteq \{0, ..., n-1\}^X$. Suppose that $D(x, y) = \{f \in F \mid f(x) \neq f(y)\}$ is nonempty for every $x, y \in X$. Then there are |X| mutually different sets of the form D(x, y).

ヘロト ヘポト ヘヨト ヘヨト

Theorem

Let A be an infinite algebra in a finitely generated congruence-distributive variety. Then $|\operatorname{Con}_{c} A| = |A|$.

Miroslav Ploščica Two results on compact congruences

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

We say that a variety \mathcal{V} has the compact intersection property (CIP) if, for every $A \in \mathcal{V}$, the compact congruences of A are closed under intersection. (That is, $\operatorname{Con}_c A$ is a lattice.) It seems that we only have a good description of $\operatorname{Con} \mathcal{V}$ when

- $\bullet \ \mathcal{V}$ is congruence-distributive, and
- $\mathcal V$ has CIP.

A systematic study of this situation - a joint work with my PhD student F. Krajník.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Theorem

Let \mathcal{K} be a locally finite congruence-distributive variety. The following conditions are equivalent.

- (1) For every $A \in \mathcal{K}$ the set $\operatorname{Con}_c(A)$ is closed under intersection.
- (2) Every finite subalgebra of a subdirectly irreducible algebra in \mathcal{K} is itself subdirectly irreducible.
- (3) For every embedding $f : A \to B$ of algebras in \mathcal{K} with A finite, the mapping $\operatorname{Con}_c(f)$ preserves meets.

The equivalence of (1) and (2) has been claimed by K. Baker and proved by Blok-Pigozzi (using the concept of equationally definable principal meet).

Examples: Boolean algebras, distributive lattices, pseudocomplemented distributive lattices...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Take any finite, subdirectly irreducible algebra A, generating a congruence-distributive variety. Enhance the type of A by taking all elements of A as constants (nullary operations). Then the resulting algebra A^* generates a variety satisfying (2).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Suppose that $\ensuremath{\mathcal{V}}$ is a locally finite congruence-distributive variety with CIP, such that

- every subdirectly irreducible algebra is simple;
- no simple algebra has a one-element subalgebra.

Then the following conditions are equivalent:

(1)
$$L \in \operatorname{Con}_c \mathcal{V};$$

(2) L is a Boolean algebra.

Example: bounded distributive lattices

Suppose that $\ensuremath{\mathcal{V}}$ is a locally finite congruence-distributive variety with CIP, such that

- every subdirectly irreducible algebra is simple;
- there is a simple algebra with a one-element subalgebra.

Then the following conditions are equivalent:

- (1) $L \in \operatorname{Con}_c \mathcal{V};$
- (2) L is a generalized Boolean algebra (sectionally complemented distributive lattice).

Example: distributive lattices

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Suppose that $\ensuremath{\mathcal{V}}$ is a locally finite congruence-distributive variety with CIP, such that

- every subdirectly irreducible algebra is simple or has the 3-element chain as its congruence lattice;
- every subalgebra of a subdirectly irreducible algebra S has the same congruence lattice as S.

Then the following conditions are equivalent:

(1)
$$L \in \operatorname{Con}_c \mathcal{V};$$

(2) L is a dually Stone lattice in which codense elements form a Boolean algebra.

Example: principal Stone algebras

・ロト ・ 同ト ・ ヨト ・ ヨト ・

For a locally finite congruence-distributive variety \mathcal{V} with CIP, the class $\operatorname{Con} \mathcal{V}$ is determined by all possible diagrams of the form $\operatorname{Con}_c \mathcal{D}$, where \mathcal{D} is a diagram in \mathcal{V} consisting of subdirectly irreducible algebras and proper embeddings between them.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・