Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

On Augmented Posets And $(\mathcal{Z}_1, \mathcal{Z}_1)$ -Complete Posets

Mustafa Demirci

Akdeniz University, Faculty of Sciences, Department of Mathematics, 07058-Antalya, Turkey, e-mail: demirci@akdeniz.edu.tr

July 11, 2011

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Banaschewski and Bruns's approach (BB-approach)

Mustafa Demirci Akdeniz University, Faculty of Sciences, Departr On Augmented Posets And $(\mathcal{Z}_1, \mathcal{Z}_1)$ -Complete Posets

.⊒ . ►

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Banaschewski and Bruns's approach (BB-approach)

Subset selection-based approach (Z-approach)

 $\bullet \ \mathcal{Q}\text{-spaces}$ and their category $\mathcal{Q}\text{-}\mathsf{SPC}$

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Banaschewski and Bruns's approach (BB-approach)

Subset selection-based approach (Z-approach)
 Q-spaces and their category Q-SPC

3 Relation between BB-approach and Z-approach

Banaschewski and Bruns's approach (BB-approach)

Primary concept in their approach is augmented poset that is a triple $U = (|U|, \Im U, \mathfrak{M}U)$, consisting of a poset |U|, a subset $\Im U$ of $\mathcal{P}(U)$ in which each member has the join in |U| and a subset $\mathfrak{M}U$ of $\mathcal{P}(U)$ in which each member has the meet in |U|. Augmented posets together with structure preserving maps constitute a category **P**. A structure preserving map $h: U \to V$ here means a monotone map $h: |U| \to |V|$ with the properties

(a) For all $S \in \mathfrak{J}U$, $h(S) \in \mathfrak{J}V$ and $h(\bigvee S) = \bigvee h(S)$,

Banaschewski and Bruns's approach (BB-approach)

Primary concept in their approach is augmented poset that is a triple $U = (|U|, \Im U, \mathfrak{M}U)$, consisting of a poset |U|, a subset $\Im U$ of $\mathcal{P}(U)$ in which each member has the join in |U| and a subset $\mathfrak{M}U$ of $\mathcal{P}(U)$ in which each member has the meet in |U|. Augmented posets together with structure preserving maps constitute a category **P**. A structure preserving map $h: U \to V$ here means a monotone map $h: |U| \to |V|$ with the properties

(a) For all $S \in \mathfrak{J}U$, $h(S) \in \mathfrak{J}V$ and $h(\bigvee S) = \bigvee h(S)$,

(b) For all $R \in \mathfrak{M}U$, $h(R) \in \mathfrak{M}V$ and $h(\bigwedge R) = \bigwedge h(R)$.

イロト イポト イラト イラト

The category of spaces, denoted by **S**, is another central concept in BB-approach. The objects of **S** (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W = (|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties (S1) |W| is a set, The category of spaces, denoted by **S**, is another central concept in BB-approach. The objects of **S** (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W = (|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties

(S1) |W| is a set,

(S2) $\mathfrak{D}(W)$ is a subset of $\mathcal{P}(|W|)$,

· • E • • E • E

The category of spaces, denoted by **S**, is another central concept in BB-approach. The objects of **S** (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W = (|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties

(S1) |W| is a set,

(S2) $\mathfrak{D}(W)$ is a subset of $\mathcal{P}(|W|)$,

(S3) $\Sigma(W)$ consists of all $\mathfrak{U} \subseteq \mathfrak{D}(W)$ for which $\cup \mathfrak{U} \in \mathfrak{D}(W)$,

- * 同 * * ヨ * * ヨ * - ヨ

The category of spaces, denoted by **S**, is another central concept in BB-approach. The objects of **S** (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W = (|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties

(S1) |W| is a set,

(S2) $\mathfrak{D}(W)$ is a subset of $\mathcal{P}(|W|)$,

(S3) $\Sigma(W)$ consists of all $\mathfrak{U} \subseteq \mathfrak{D}(W)$ for which $\cup \mathfrak{U} \in \mathfrak{D}(W)$,

(S4) $\Delta(W)$ consists of all $\mathfrak{B} \subseteq \mathfrak{D}(W)$ with $\cap \mathfrak{B} \in \mathfrak{D}(W)$.

イロト イポト イヨト イヨト 二日

A morphism $f : W_1 \to W_2$ in **S** is a function $f : |W_1| \to |W_2|$ satisfying the next properties

3

A morphism $f: W_1 \to W_2$ in **S** is a function $f: |W_1| \to |W_2|$ satisfying the next properties

```
(\mathsf{S5}) \ (f^{\leftarrow})^{
ightarrow} (\mathfrak{D}(W_2)) \subseteq \mathfrak{D}(W_1),
```

-

A morphism $f : W_1 \to W_2$ in **S** is a function $f : |W_1| \to |W_2|$ satisfying the next properties

 $\begin{array}{l} (\mathsf{S5}) \ (f^{\leftarrow})^{\rightarrow} \left(\mathfrak{D}(W_2)\right) \subseteq \mathfrak{D}(W_1), \\ (\mathsf{S6}) \ (f^{\leftarrow})^{\rightarrow} \left(\mathfrak{U}\right) \in \Sigma(W_1) \text{ for all } \mathfrak{U} \in \Sigma(W_2), \end{array}$

- ロ ト - (同 ト - (回 ト -) 回 -) - (回 ト -) - (\Pi -) - (\Pi

A morphism $f : W_1 \to W_2$ in **S** is a function $f : |W_1| \to |W_2|$ satisfying the next properties

 $(\mathsf{S5}) \ (f^{\leftarrow})^{\rightarrow} \left(\mathfrak{D}(W_2)\right) \subseteq \mathfrak{D}(W_1),$

(S6) $(f^{\leftarrow})^{\rightarrow}(\mathfrak{U}) \in \Sigma(W_1)$ for all $\mathfrak{U} \in \Sigma(W_2)$,

(S7) $(f^{\leftarrow})^{\rightarrow}(\mathfrak{B}) \in \Delta(W_1)$ and for all $\mathfrak{B} \in \Delta(W_2)$.

▲口 ▶ ▲冊 ▶ ▲目 ▶ ▲目 ▶ ● ● ● ● ●

A morphism $f: W_1 \to W_2$ in **S** is a function $f: |W_1| \to |W_2|$ satisfying the next properties

$$(\mathsf{S5}) \ (f^{\leftarrow})^{
ightarrow} (\mathfrak{D}(W_2)) \subseteq \mathfrak{D}(W_1),$$

(S6) $(f^{\leftarrow})^{\rightarrow}(\mathfrak{U}) \in \Sigma(W_1)$ for all $\mathfrak{U} \in \Sigma(W_2)$,

(S7) $(f^{\leftarrow})^{\rightarrow}(\mathfrak{B}) \in \Delta(W_1)$ and for all $\mathfrak{B} \in \Delta(W_2)$.

Theorem

[3] **P** is dually adjoint to **S**, i.e. there are functors $\Psi : \mathbf{P}^{op} \to \mathbf{S}$ and $T : \mathbf{S} \to \mathbf{P}^{op}$ such that $T \dashv \Psi : \mathbf{P}^{op} \to \mathbf{S}$.

Corollary

[3] The full subcategory of **P** of all spatial objects (**SpaP**) and the full subcategory of **S** of all sober objects (**SobS**) are dually equivalent.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Subset selection-based approach (Z-approach)

Z-approach uses the notion of subset selection: A subset selection \mathcal{Z} is a rule assigning to each poset P a subset $\mathcal{Z}(P)$ of its power set $\mathcal{P}(P)$.

Subset selection \mathcal{Z}	elements of $\mathcal{Z}(P)$
\mathcal{V}	no subset of P
\mathcal{V}_{\perp}	the empty set \emptyset
\mathcal{P}_n	nonempty subsets of P with cardinality less
	than or equal to <i>n</i>
\mathcal{F}	finite subsets of P
\mathcal{CN}	countable subsets of P
\mathcal{D}	directed subsets of P
\mathcal{BN}	bounded subsets of P

\mathcal{C}	nonempty linearly ordered subsets (chains) of P
\mathcal{C}_{\perp}	linearly ordered subsets (including \emptyset) of P
\mathcal{P}	subsets of P
\mathcal{A}	downsets of P
\mathcal{W}	well-ordered chains of P

A subset selection \mathcal{Z} is called a subset system [2, 6, 14] iff for each order-preserving function $f : P \to Q$, the implication $M \in \mathcal{Z}(P) \Rightarrow f(M) \in \mathcal{Z}(Q)$ holds. During this talk, \mathcal{Z} will be assumed as a subset selection unless further assumptions are made.

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

 $\mathcal Q$ -spaces and their category $\mathcal Q$ -SPC

- 4 同 6 4 日 6 4 日 6

Definition

[8, 18] A poset P with the property that each $M \in \mathcal{Z}(P)$ has the join (meet) in P is called a \mathcal{Z} -join(meet)-complete poset.

For simplicity, we call a \mathcal{Z}_1 -join-complete and \mathcal{Z}_2 -meet-complete poset a $(\mathcal{Z}_1, \mathcal{Z}_2)$ -complete poset. There are two useful subset selections \mathcal{Z}_1^{sup} and \mathcal{Z}_2^{inf} derived from given two original subset selections \mathcal{Z}_1 and \mathcal{Z}_2 by the formulas

$$\begin{aligned} \mathcal{Z}_{1}^{\mathsf{sup}}\left(P\right) &= \left\{ M \in \mathcal{Z}_{1}\left(P\right) \mid \bigvee M \text{ exists in } P \right\}, \\ \mathcal{Z}_{2}^{\mathsf{inf}}\left(P\right) &= \left\{ N \in \mathcal{Z}_{2}\left(P\right) \mid \bigwedge N \text{ exists in } P \right\}, \end{aligned}$$

With the help of these derived subset selections, every poset can be introduced as a $(\mathcal{Z}_1^{sup}, \mathcal{Z}_2^{inf})$ -complete poset.

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Definition

A monotone map $f : P \to Q$ is $(\mathcal{Z}_1, \mathcal{Z}_2)$ -continuous iff the following two conditions are satisfied:

(i) For each
$$M \in \mathcal{Z}_1^{sup}(P)$$
, $f(\bigvee M) = \bigvee f(M)$,

(ii) For each $N \in \mathbb{Z}_2^{\inf}(P)$, $f(\bigwedge N) = \bigwedge f(N)$.

Under the assumption " Z_3 and Z_4 are subset systems", (Z_1, Z_2)-complete posets and (Z_3, Z_4)-continuous maps constitute a category Q-**CPos**, where Q stands for (Z_1, Z_2, Z_3, Z_4). Q-**CPos** provides a practically useful categorical framework for many order-theoretic structures.

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Example

(Examples of Q-CPos) ($\mathcal{F}, \mathcal{V}, \mathcal{V}, \mathcal{V}$)-CPos=Category of join-semilattices with \bot and monotone maps (SEMI [12]),

 $(\mathcal{D}, \mathcal{V}, \mathcal{D}, \mathcal{V})$ -**CPos=**Category of directed-complete posets and Scott-continuous functions (**DCPO** [1]),

 $(\mathcal{P}, \mathcal{P}, \mathcal{C}, \mathcal{V})$ -**CPos**=Category of complete lattices and maps preserving joins of chains (**LC** [13]),

 $(\mathcal{P}, \mathcal{P}, \mathcal{V}, \mathcal{V})$ -**CPos**=Category of complete lattices and monotone maps (LI [13]).

イロト イポト イヨト イヨト 三日

 $\mathcal Q\text{-spaces}$ and their category $\mathcal Q\text{-}\mathsf{SPC}$

- 4 同 2 4 日 2 4 日 2 4

Q-spaces and their category Q-SPC

Z-approach suggests another generalization of topological space called Q-space: A Q-space is, by definition, a pair (X, τ) consisting of a set X and a subset τ (so-called a Q-system on X) of $\mathcal{P}(X)$ such that the inclusion map $i_{\tau} : (\tau, \subseteq) \hookrightarrow (\mathcal{P}(X), \subseteq)$ is a Q-**CPos**-morphism.

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Example

(Examples of *Q*-systems)

 $(\mathcal{V},\mathcal{V},\mathcal{V},\mathcal{V})$ -system=System [7, 8], ,

 $(\mathcal{P}, \mathcal{F}, \mathcal{P}, \mathcal{F})$ -system=Topology [7, 8],

 $(\mathcal{F}, \mathcal{P}, \mathcal{F}, \mathcal{P})$ -system=Topological closure system [7, 8],

 $(\mathcal{V}, \mathcal{P}, \mathcal{V}, \mathcal{P})$ -system=Closure system [7, 8],

 $(\mathcal{D}, \mathcal{P}, \mathcal{D}, \mathcal{P})$ -system=Algebraic closure system [7, 8],

 $(\mathcal{D}, \mathcal{F}, \mathcal{D}, \mathcal{F})$ -system=Pretopology [11],

 $(\mathcal{D}, \mathcal{F}, \mathcal{P}, \mathcal{F})$ -system τ =Pretopology τ such that for each $V \subseteq \tau$, if V is not directed but has the join in (τ, \subseteq) , then $\bigcup V \in \tau$,

 $(\mathcal{P}, \mathcal{P}, \mathcal{C}_{\perp}, \mathcal{V})$ -system $\tau = (\tau, \subseteq)$ is a complete lattice such that joins of chains are exactly unions of chains.

 $\mathcal Q\text{-spaces}$ and their category $\mathcal Q\text{-}\mathsf{SPC}$

Continuous functions turn into $\mathcal{Q}\mbox{-space-continuous functions in Z-approach:}$

A map $f: (X, \tau) \to (Y, \nu)$ between Q-spaces (X, τ) and (Y, ν) is Q-space-continuous if the usual requirement of continuity (i.e. $(f^{\leftarrow})^{\rightarrow}(\nu) \subseteq \tau$) is satisfied.

Q-spaces and Q-space-continuous maps form a category Q-SPC extending the familiar category of topological spaces (Top) to the Z-approach.

Relation between BB-approach and Z-approach

We describe this relation via the functors $G_Q : Q$ -**CPos** \rightarrow **P** and $H_Q : Q$ -**SPC** \rightarrow **S**, defined by

$$\begin{aligned} \mathcal{G}_{\mathcal{Q}}(P) &= \left(P, \mathcal{Z}_{3}^{\mathsf{sup}}\left(P\right), \mathcal{Z}_{4}^{\mathsf{inf}}\left(P\right)\right), \ \mathcal{G}_{\mathcal{Q}}(f) = f, \\ \mathcal{H}_{\mathcal{Q}}\left(X, \tau\right) &= \left(X, \tau, \mathcal{Z}_{3}^{\mathsf{sup}}\left(\tau\right), \mathcal{Z}_{4}^{\mathsf{inf}}\left(\tau\right)\right) \ \mathsf{and} \ \mathcal{H}_{\mathcal{Q}}\left(g\right) = g \end{aligned}$$

It is easy to check that G_Q and H_Q are full embeddings, and so BB-approach is more general than Z-approach. Using these full embeddings, we may formulate spatiality and sobriety in Z-approach as follows:

Definition

(i) A (Z₁, Z₂)-complete poset P is Q-spatial iff G_Q(P) is spatial,
(ii) A Q-space (X, τ) is Q-sober iff H_Q(X, τ) is sober.

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Theorem

(Main result) Assume that Z_1 , Z_2 are iso-invariant subset selections and Z_3 , Z_4 are subset systems. Let Q-**CPos**_s and Q-**SPC**_s denote the full subcategory of Q-**CPos** of all Q-spatial objects and the full subcategory of Q-**SPC** of all Q-sober objects.

(i) Q-**CPos**_s and Q-**SPC** are dually adjoint to each other.

(ii) Q-**CPos**_s is dually equivalent to Q-**SPC**_s.

(iii) If Z_1 and Z_2 are surjectivity-preserving subset systems, then (Z_1, Z_2, Z_1, Z_2) -**CPos** is dually adjoint to (Z_1, Z_2, Z_1, Z_2) -**SPC**.

・ロト ・同ト ・ヨト ・ヨト

A subset selection \mathcal{Z} is iso-invariant [6] iff for each order-isomorphism $f: P \to Q$, the implication $M \in \mathcal{Z}(P) \Rightarrow f(M) \in \mathcal{Z}(Q)$ holds

A subset system \mathcal{Z} is surjectivity-preserving iff for each surjective monotone map $f : P \to Q$ and for each $M \in \mathcal{Z}(Q)$, there exists at least one $N \in \mathcal{Z}(P)$ such that f(N) = M.

Banaschewski and Bruns's approach (BB-approach) Subset selection-based approach (Z-approach) Relation between BB-approach and Z-approach

Thank you for attending....

Mustafa Demirci Akdeniz University, Faculty of Sciences, Departr On Augmented Posets And $(\mathcal{Z}_1, \mathcal{Z}_1)$ -Complete Posets

REFERENCES

- Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D., Maibaum, T.S.E. (eds.) Handbook of logic in computer science. vol. 3., pp. 1–168. The Clarendon Press, Oxford University Press, New York (1994)
- Adámek, J., Koubek, V., Nelson E., Reiterman, J.: Arbitrarily large continuous algebras on one generator. Trans. Amer. Math. Soc. 291, 681-699 (1985)
- Banaschewski, B., Bruns, G.: The fundamental duality of partially ordered sets. Order 5, 61-74 (1988)
- Bandelt, H. -J., Erné, M.: The category of Z-continuous posets. J. Pure Appl. Algebra 30, 219-226 (1983)

(日) (同) (日) (日) (日)

- Demirci, M: $(\mathcal{Z}_1, \mathcal{Z}_2)$ -complete partially ordered sets and their representations by \mathcal{Q} -spaces, Appl. Categ. Structures (Submitted).
- Erné, M: Bigeneration in complete lattices and principle separation in posets. Order 8, 197-221 (1991)
- Erné, M: The ABC of order and topology. In: Herrlich, H., Porst, H. E. (eds.) Category Theory at Work, pp.57-83.
 Heldermann, Berlin, Germany (1991)
- Erné, M: Algebraic ordered sets and their generalizations. In: Rosenberg, I., Sabidussi, G. (eds.) Algebras and Orders, Proc. Montreal, 1992, pp. 113-192, Kluwer Academic Publishers, Amsterdam, Netherlands (1993)
- Erné, M: Z-continuous posets and their topological manifestation, Appl. Categ. Structures 7, 31-70 (1999)

- Erné, M: General Stone duality. Topology and its Applications 137, 125-158 (2004)
- Erné, M.: Choiceless, pointless, but not useless: dualities for preframes. Appl. Categ. Structures 15, 541-572 (2007)
- Gierz, G., Hofmann, K.H., Keimel K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)
- Markowsky, G.: Categories of chain-complete posets. Theor. Comput. Sci. 4, 125-135 (1977)
- Nelson, E.: Z-continuous algebras. In : Banaschewski, B., Hoffmann, R.E. (eds.) Continuous Lattices. Proc. Conf., Bremen 1979. Lect. Notes Math. 871, pp. 315-334.
 Springer-Verlag, Berlin (1981)

(日) (同) (日) (日) (日)

- - Pasztor, A.: The epis of Pos(Z). Comment. Math. Univ. Carolin. 23, 285-299 (1982)
- Powers, R.C., Riedel, T.: Z-Semicontinuous posets. Order 20, 365-371 (2003)
- Venugopalan, G.: Z-continuous posets. Houston J. Math. 12, 275-294 (1986)
- Wright, J. B., Wagner, E. G., Thatcher, J. W.: A uniform approach to inductive posets and inductive closure. Theoret. Comput. Sci. 7, 57-77 (1978)
- Zhao, D.: On projective Z-frames. Can. Math. Bull. 40, 39-46 (1997)