On Augmented Posets And $\left(\mathcal{Z}_{1}, \mathcal{Z}_{1}\right)$-Complete Posets

Mustafa Demirci

Akdeniz University, Faculty of Sciences, Department of Mathematics, 07058-Antalya, Turkey, e-mail: demirci@akdeniz.edu.tr

July 11, 2011

(1) Banaschewski and Bruns's approach (BB-approach)

(1) Banaschewski and Bruns's approach (BB-approach)
(2) Subset selection-based approach (Z-approach)

- \mathcal{Q}-spaces and their category \mathcal{Q}-SPC
(1) Banaschewski and Bruns's approach (BB-approach)
(2) Subset selection-based approach (Z-approach)
- \mathcal{Q}-spaces and their category \mathcal{Q}-SPC
(3) Relation between BB -approach and Z -approach

Banaschewski and Bruns's approach (BB-approach)

Primary concept in their approach is augmented poset that is a triple $U=(|U|, \mathfrak{J} U, \mathfrak{M} U)$, consisting of a poset $|U|$, a subset $\mathfrak{J} U$ of $\mathcal{P}(U)$ in which each member has the join in $|U|$ and a subset $\mathfrak{M U}$ of $\mathcal{P}(U)$ in which each member has the meet in $|U|$. Augmented posets together with structure preserving maps constitute a category \mathbf{P}. A structure preserving map $h: U \rightarrow V$ here means a monotone map $h:|U| \rightarrow|V|$ with the properties
(a) For all $S \in \mathfrak{J} U, h(S) \in \mathfrak{J} V$ and $h(\bigvee S)=\bigvee h(S)$,

Banaschewski and Bruns's approach (BB-approach)

Primary concept in their approach is augmented poset that is a triple $U=(|U|, \mathfrak{J} U, \mathfrak{M} U)$, consisting of a poset $|U|$, a subset $\mathfrak{J} U$ of $\mathcal{P}(U)$ in which each member has the join in $|U|$ and a subset $\mathfrak{M U}$ of $\mathcal{P}(U)$ in which each member has the meet in $|U|$.
Augmented posets together with structure preserving maps constitute a category \mathbf{P}. A structure preserving map $h: U \rightarrow V$ here means a monotone map $h:|U| \rightarrow|V|$ with the properties
(a) For all $S \in \mathfrak{J} U, h(S) \in \mathfrak{J} V$ and $h(\bigvee S)=\bigvee h(S)$,
(b) For all $R \in \mathfrak{M U}, h(R) \in \mathfrak{M} V$ and $h(\bigwedge R)=\bigwedge h(R)$.

The category of spaces, denoted by \mathbf{S}, is another central concept in BB-approach. The objects of S (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W=(|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties
$(\mathrm{S} 1)|W|$ is a set,

The category of spaces, denoted by \mathbf{S}, is another central concept in BB-approach. The objects of S (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W=(|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties
$(\mathrm{S} 1)|W|$ is a set,
(S2) $\mathfrak{D}(W)$ is a subset of $\mathcal{P}(|W|)$,

The category of spaces, denoted by \mathbf{S}, is another central concept in BB-approach. The objects of \mathbf{S} (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W=(|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties
$(\mathrm{S} 1)|W|$ is a set,
(S2) $\mathfrak{D}(W)$ is a subset of $\mathcal{P}(|W|)$,
(S3) $\Sigma(W)$ consists of all $\mathfrak{U} \subseteq \mathfrak{D}(W)$ for which $\cup \mathfrak{U} \in \mathfrak{D}(W)$,

The category of spaces, denoted by \mathbf{S}, is another central concept in BB-approach. The objects of \mathbf{S} (the so-called spaces) and its morphisms generalize the notions of topological spaces and continuous functions. A space is defined to be a quadruple $W=(|W|, \mathfrak{D}(W), \Sigma(W), \Delta(W))$ fulfilling the properties
$(\mathrm{S} 1)|W|$ is a set,
(S2) $\mathfrak{D}(W)$ is a subset of $\mathcal{P}(|W|)$,
(S3) $\Sigma(W)$ consists of all $\mathfrak{U} \subseteq \mathfrak{D}(W)$ for which $\cup \mathfrak{U} \in \mathfrak{D}(W)$,
(S4) $\Delta(W)$ consists of all $\mathfrak{B} \subseteq \mathfrak{D}(W)$ with $\cap \mathfrak{B} \in \mathfrak{D}(W)$.

A morphism $f: W_{1} \rightarrow W_{2}$ in \mathbf{S} is a function $f:\left|W_{1}\right| \rightarrow\left|W_{2}\right|$ satisfying the next properties

A morphism $f: W_{1} \rightarrow W_{2}$ in \mathbf{S} is a function $f:\left|W_{1}\right| \rightarrow\left|W_{2}\right|$ satisfying the next properties
$(\mathrm{S} 5)\left(f^{\leftarrow}\right) \rightarrow\left(\mathfrak{D}\left(W_{2}\right)\right) \subseteq \mathfrak{D}\left(W_{1}\right)$,

A morphism $f: W_{1} \rightarrow W_{2}$ in \mathbf{S} is a function $f:\left|W_{1}\right| \rightarrow\left|W_{2}\right|$ satisfying the next properties
$(\mathrm{S} 5)\left(f^{\leftarrow}\right) \rightarrow\left(\mathfrak{D}\left(W_{2}\right)\right) \subseteq \mathfrak{D}\left(W_{1}\right)$,
(S6) $\left(f^{\leftarrow}\right) \rightarrow(\mathfrak{U}) \in \Sigma\left(W_{1}\right)$ for all $\mathfrak{U} \in \Sigma\left(W_{2}\right)$,

A morphism $f: W_{1} \rightarrow W_{2}$ in \mathbf{S} is a function $f:\left|W_{1}\right| \rightarrow\left|W_{2}\right|$ satisfying the next properties
$(\mathrm{S} 5)\left(f^{\leftarrow}\right)^{\rightarrow}\left(\mathfrak{D}\left(W_{2}\right)\right) \subseteq \mathfrak{D}\left(W_{1}\right)$,
(S6) $\left(f^{\leftarrow}\right)^{\rightarrow}(\mathfrak{U}) \in \Sigma\left(W_{1}\right)$ for all $\mathfrak{U} \in \Sigma\left(W_{2}\right)$,
(S7) $\left(f^{\leftarrow}\right) \rightarrow(\mathfrak{B}) \in \Delta\left(W_{1}\right)$ and for all $\mathfrak{B} \in \Delta\left(W_{2}\right)$.

A morphism $f: W_{1} \rightarrow W_{2}$ in \mathbf{S} is a function $f:\left|W_{1}\right| \rightarrow\left|W_{2}\right|$ satisfying the next properties
$(\mathrm{S} 5)\left(f^{\leftarrow}\right)^{\rightarrow}\left(\mathfrak{D}\left(W_{2}\right)\right) \subseteq \mathfrak{D}\left(W_{1}\right)$,
(S6) $\left(f^{\leftarrow}\right)^{\rightarrow}(\mathfrak{U}) \in \Sigma\left(W_{1}\right)$ for all $\mathfrak{U} \in \Sigma\left(W_{2}\right)$,
(S7) $\left(f^{\leftarrow}\right) \rightarrow(\mathfrak{B}) \in \Delta\left(W_{1}\right)$ and for all $\mathfrak{B} \in \Delta\left(W_{2}\right)$.

Theorem

[3] \mathbf{P} is dually adjoint to \mathbf{S}, i.e. there are functors $\Psi: \mathbf{P}^{o p} \rightarrow \mathbf{S}$ and $T: \mathbf{S} \rightarrow \mathbf{P}^{\text {OP }}$ such that $T \dashv \Psi: \mathbf{P}^{\mathbf{O P}} \rightarrow \mathbf{S}$.

Corollary

[3] The full subcategory of \mathbf{P} of all spatial objects (SpaP) and the full subcategory of \mathbf{S} of all sober objects (SobS) are dually equivalent.

Subset selection-based approach (Z-approach)

Z-approach uses the notion of subset selection: A subset selection \mathcal{Z} is a rule assigning to each poset P a subset $\mathcal{Z}(P)$ of its power set $\mathcal{P}(P)$.

Subset selection \mathcal{Z}	elements of $\mathcal{Z}(P)$
\mathcal{V}	no subset of P
\mathcal{V}_{\perp}	the empty set \emptyset
\mathcal{P}_{n}	nonempty subsets of P with cardinality less than or equal to n
\mathcal{F}	finite subsets of P
$\mathcal{C N}$	countable subsets of P
\mathcal{D}	directed subsets of P
$\mathcal{B N}$	bounded subsets of P

\mathcal{C}	nonempty linearly ordered subsets (chains) of P
\mathcal{C}_{\perp}	linearly ordered subsets (including \emptyset) of P
\mathcal{P}	subsets of P
\mathcal{A}	downsets of P
\mathcal{W}	well-ordered chains of P

A subset selection \mathcal{Z} is called a subset system $[2,6,14]$ iff for each order-preserving function $f: P \rightarrow Q$, the implication $M \in \mathcal{Z}(P) \Rightarrow f(M) \in \mathcal{Z}(Q)$ holds.
During this talk, \mathcal{Z} will be assumed as a subset selection unless further assumptions are made.

Definition

$[8,18]$ A poset P with the property that each $M \in \mathcal{Z}(P)$ has the join (meet) in P is called a \mathcal{Z}-join(meet)-complete poset.

For simplicity, we call a \mathcal{Z}_{1}-join-complete and \mathcal{Z}_{2}-meet-complete poset a $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-complete poset. There are two useful subset selections $\mathcal{Z}_{1}^{\text {sup }}$ and $\mathcal{Z}_{2}^{\text {inf }}$ derived from given two original subset selections \mathcal{Z}_{1} and \mathcal{Z}_{2} by the formulas

$$
\begin{aligned}
\mathcal{Z}_{1}^{\text {sup }}(P) & =\left\{M \in \mathcal{Z}_{1}(P) \mid \bigvee M \text { exists in } P\right\} \\
\mathcal{Z}_{2}^{\text {inf }}(P) & =\left\{N \in \mathcal{Z}_{2}(P) \mid \bigwedge N \text { exists in } P\right\}
\end{aligned}
$$

With the help of these derived subset selections, every poset can be introduced as a $\left(\mathcal{Z}_{1}^{\text {sup }}, \mathcal{Z}_{2}^{\text {inf }}\right)$-complete poset.

Definition

A monotone map $f: P \rightarrow Q$ is $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-continuous iff the following two conditions are satisfied:
(i) For each $M \in \mathcal{Z}_{1}^{\text {sup }}(P), f(\bigvee M)=\bigvee f(M)$,
(ii) For each $N \in \mathcal{Z}_{2}^{\inf }(P), f(\bigwedge N)=\bigwedge f(N)$.

Under the assumption " \mathcal{Z}_{3} and \mathcal{Z}_{4} are subset systems", $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-complete posets and $\left(\mathcal{Z}_{3}, \mathcal{Z}_{4}\right)$-continuous maps constitute a category \mathcal{Q}-CPos, where \mathcal{Q} stands for $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}, \mathcal{Z}_{3}, \mathcal{Z}_{4}\right)$. \mathcal{Q}-CPos provides a practically useful categorical framework for many order-theoretic structures.

Example

(Examples of \mathcal{Q}-CPos)
$(\mathcal{F}, \mathcal{V}, \mathcal{V}, \mathcal{V})$-CPos $=$ Category of join-semilattices with \perp and monotone maps (SEMI [12]),
$(\mathcal{D}, \mathcal{V}, \mathcal{D}, \mathcal{V})$-CPos=Category of directed-complete posets and Scott-continuous functions (DCPO [1]),
$(\mathcal{P}, \mathcal{P}, \mathcal{C}, \mathcal{V})$-CPos=Category of complete lattices and maps preserving joins of chains (LC [13]),
$(\mathcal{P}, \mathcal{P}, \mathcal{V}, \mathcal{V})$-CPos $=$ Category of complete lattices and monotone maps (LI [13]).

Q-spaces and their category Q-SPC

Z-approach suggests another generalization of topological space called \mathcal{Q}-space: A \mathcal{Q}-space is, by definition, a pair (X, τ) consisting of a set X and a subset τ (so-called a \mathcal{Q}-system on X) of $\mathcal{P}(X)$ such that the inclusion map $i_{\tau}:(\tau, \subseteq) \hookrightarrow(\mathcal{P}(X), \subseteq)$ is a \mathcal{Q}-CPos-morphism.

Example

(Examples of \mathcal{Q}-systems)
$(\mathcal{V}, \mathcal{V}, \mathcal{V}, \mathcal{V})$-system $=$ System $[7,8]$,
$(\mathcal{P}, \mathcal{F}, \mathcal{P}, \mathcal{F})$-system $=$ Topology $[7,8]$,
$(\mathcal{F}, \mathcal{P}, \mathcal{F}, \mathcal{P})$-system $=$ Topological closure system $[7,8]$,
$(\mathcal{V}, \mathcal{P}, \mathcal{V}, \mathcal{P})$-system $=$ Closure system $[7,8]$,
$(\mathcal{D}, \mathcal{P}, \mathcal{D}, \mathcal{P})$-system $=$ Algebraic closure system $[7,8]$,
$(\mathcal{D}, \mathcal{F}, \mathcal{D}, \mathcal{F})$-system $=$ Pretopology [11],
$(\mathcal{D}, \mathcal{F}, \mathcal{P}, \mathcal{F})$-system $\tau=$ Pretopology τ such that for each $V \subseteq \tau$, if V is not directed but has the join in (τ, \subseteq), then $\bigcup V \in \tau$,
($\mathcal{P}, \mathcal{P}, \mathcal{C}_{\perp}, \mathcal{V}$)-system $\tau=(\tau, \subseteq)$ is a complete lattice such that joins of chains are exactly unions of chains.

Continuous functions turn into \mathcal{Q}-space-continuous functions in Z-approach:

A map $f:(X, \tau) \rightarrow(Y, \nu)$ between \mathcal{Q}-spaces (X, τ) and (Y, ν) is \mathcal{Q}-space-continuous if the usual requirement of continuity (i.e. $\left.\left(f^{\leftarrow}\right) \rightarrow(\nu) \subseteq \tau\right)$ is satisfied.
\mathcal{Q}-spaces and \mathcal{Q}-space-continuous maps form a category \mathcal{Q}-SPC extending the familiar category of topological spaces (Top) to the Z-approach.

Relation between BB-approach and Z-approach

We describe this relation via the functors $G_{\mathcal{Q}}: \mathcal{Q} \mathbf{- C P o s} \rightarrow \mathbf{P}$ and $H_{\mathcal{Q}}: \mathcal{Q}-\mathbf{S P C} \rightarrow \mathbf{S}$, defined by

$$
\begin{aligned}
G_{\mathcal{Q}}(P) & =\left(P, \mathcal{Z}_{3}^{\text {sup }}(P), \mathcal{Z}_{4}^{\text {inf }}(P)\right), G_{\mathcal{Q}}(f)=f, \\
H_{\mathcal{Q}}(X, \tau) & =\left(X, \tau, \mathcal{Z}_{3}^{\text {sup }}(\tau), \mathcal{Z}_{4}^{\text {inf }}(\tau)\right) \text { and } H_{\mathcal{Q}}(g)=g
\end{aligned}
$$

It is easy to check that $G_{\mathcal{Q}}$ and $H_{\mathcal{Q}}$ are full embeddings, and so BB-approach is more general than Z-approach. Using these full embeddings, we may formulate spatiality and sobriety in Z-approach as follows:

Definition

(i) A $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-complete poset P is \mathcal{Q}-spatial iff $G_{\mathcal{Q}}(P)$ is spatial,
(ii) A \mathcal{Q}-space (X, τ) is \mathcal{Q}-sober iff $H_{\mathcal{Q}}(X, \tau)$ is sober.

Theorem

(Main result) Assume that $\mathcal{Z}_{1}, \mathcal{Z}_{2}$ are iso-invariant subset selections and $\mathcal{Z}_{3}, \mathcal{Z}_{4}$ are subset systems. Let $\mathcal{Q}-\mathbf{C P o s}_{s}$ and $\mathcal{Q}-\mathbf{S P C}_{s}$ denote the full subcategory of \mathcal{Q}-CPos of all \mathcal{Q}-spatial objects and the full subcategory of \mathcal{Q}-SPC of all \mathcal{Q}-sober objects.
(i) $\mathcal{Q}-\mathrm{CPos}_{s}$ and $\mathcal{Q}-\mathrm{SPC}$ are dually adjoint to each other.
(ii) $\mathcal{Q}-\mathrm{CPos}_{s}$ is dually equivalent to $\mathcal{Q}-\mathrm{SPC}_{s}$.
(iii) If \mathcal{Z}_{1} and \mathcal{Z}_{2} are surjectivity-preserving subset systems, then $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}, \mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-CPos is dually adjoint to $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}, \mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-SPC.

A subset selection \mathcal{Z} is iso-invariant [6] iff for each order-isomorphism $f: P \rightarrow Q$, the implication $M \in \mathcal{Z}(P) \Rightarrow f(M) \in \mathcal{Z}(Q)$ holds

A subset system \mathcal{Z} is surjectivity-preserving iff for each surjective monotone map $f: P \rightarrow Q$ and for each $M \in \mathcal{Z}(Q)$, there exists at least one $N \in \mathcal{Z}(P)$ such that $f(N)=M$.

Thank you for attending....

REFERENCES

四 Abramsky，S．，Jung，A．：Domain theory．In：Abramsky，S．， Gabbay，D．，Maibaum，T．S．E．（eds．）Handbook of logic in computer science．vol．3．，pp．1－168．The Clarendon Press， Oxford University Press，New York（1994）
R Adámek，J．，Koubek，V．，Nelson E．，Reiterman，J．：Arbitrarily large continuous algebras on one generator．Trans．Amer． Math．Soc．291，681－699（1985）

嗇 Banaschewski，B．，Bruns，G．：The fundamental duality of partially ordered sets．Order 5，61－74（1988）

围 Bandelt，H．－J．，Erné，M．：The category of Z－continuous posets．J．Pure Appl．Algebra 30，219－226（1983）

Remirci, M: $\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$-complete partially ordered sets and their representations by \mathcal{Q}-spaces, Appl. Categ. Structures (Submitted).

Erné, M: Bigeneration in complete lattices and principle separation in posets. Order 8, 197-221 (1991)

Erné, M: The ABC of order and topology. In: Herrlich, H., Porst, H. E. (eds.) Category Theory at Work, pp.57-83. Heldermann, Berlin, Germany (1991)

Erné, M: Algebraic ordered sets and their generalizations. In: Rosenberg, I., Sabidussi, G. (eds.) Algebras and Orders, Proc. Montreal, 1992, pp. 113-192, Kluwer Academic Publishers, Amsterdam, Netherlands (1993)

Erné, M: Z-continuous posets and their topological manifestation, Appl. Categ. Structures 7, 31-70 (1999)

Erné，M：General Stone duality．Topology and its Applications 137，125－158（2004）

國 Erné，M．：Choiceless，pointless，but not useless：dualities for preframes．Appl．Categ．Structures 15，541－572（2007）
－Gierz，G．，Hofmann，K．H．，Keimel K．，Lawson，J．D．，Mislove， M．，Scott，D．S．：Continuous Lattices and Domains．Cambridge University Press，Cambridge（2003）

國 Markowsky，G．：Categories of chain－complete posets．Theor． Comput．Sci．4，125－135（1977）

睩 Nelson，E．：Z－continuous algebras．In ：Banaschewski，B．， Hoffmann，R．E．（eds．）Continuous Lattices．Proc．Conf．， Bremen 1979．Lect．Notes Math．871，pp．315－334． Springer－Verlag，Berlin（1981）

围 Pasztor，A．：The epis of $\operatorname{Pos}(Z)$ ．Comment．Math．Univ． Carolin．23，285－299（1982）

R Powers，R．C．，Riedel，T．：Z－Semicontinuous posets．Order 20， 365－371（2003）
（in Venugopalan，G．：Z－continuous posets．Houston J．Math．12， 275－294（1986）

目 Wright，J．B．，Wagner，E．G．，Thatcher，J．W．：A uniform approach to inductive posets and inductive closure．Theoret． Comput．Sci．7，57－77（1978）

國 Zhao，D．：On projective Z－frames．Can．Math．Bull．40，39－46 （1997）

